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a b s t r a c t

Exploiting both appearance similarity and geometric consistency is popular in addressing the feature
correspondence problem. However, when there exist outliers the performance generally deteriorates
greatly. In this paper, we propose a novel partial correspondence method to tackle the problem with
outliers. Specifically, a novel pairwise term together with a neighborhood system is proposed, which,

solved as a subgraph matching problem. The problem is then approximated by the recently proposed
Graduated Non-Convexity and Graduated Concavity Procedure (GNCGCP). The proposed algorithm
obtains a state-of-the-art accuracy in the existence of outliers while keeping OðN3Þ computational
complexity and OðN2Þ storage complexity. Simulations on both the synthetic and real-world images
witness the effectiveness of the proposed method.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Feature correspondence, aiming to find a reasonable assign-
ment between local feature sets of different images, is one
fundamental problem in computer vision and pattern recognition
and is extensively applied in many tasks including object detection
and recognition, camera self-calibration, 3D reconstruction and
tracking. The extracted local features can hardly be used by most
current objective object recognition, 3D reconstruction algorithms,
unless they are put into correspondence. Though the correspon-
dence problem has been studied for decades, it is still a challen-
ging problem.

Starting from using only the appearance descriptor such as SIFT
descriptor [1], bag-of-words model [2] which get good results in
some computer vision tasks, recently much more effort in this area
has been devoted to the incorporation of structural information
into the appearance cues. They thus formulate the correspondence
problem as a combination of the unary term and the pairwise term
which relate to the appearance similarity and geometric consis-
tency, respectively. Inspite of some controversy over the effective-
ness of the structural constraints [3,4], some most recent works
[5,6] which pay more attention to the robustness and distinctive
ability of the structural model witness obvious performance
improvements on some benchmark datasets and reconfirm the
usefulness of structural cues.
ll rights reserved.
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However, the correspondence is still a challenging task when
there exist outliers, which are inevitable in many practical appli-
cations, e.g. when matching an object in complex background or
part of the object is occluded. Such a correspondence problem
with unequal feature points in two images in the presence of
outliers is denoted as partial correspondence. Many current partial
correspondence methods deteriorate greatly as the outlier number
increases [7] and some other methods [8], especially the adjacency
matrix based methods [6,9–11] cannot even deal with the partial
problem.

In this paper, we propose a novel partial feature correspon-
dence method, with two main contributions listed below:
1.
 A pairwise term together with a neighborhood system which
describes the coherence of key points is proposed. The coher-
ence prior means that the adjacent points more likely locate in
the same image region, either in object region or background
region.
2.
 An effective and efficient combinatorial optimization frame-
work named Graduated-NonConvexity-and-Graduated-Con-
cavity-Procedure (GNCGCP) [12] is introduced to solve the
partial correspondence problem.

In addition, two pairwise terms based on our previously
proposed directed distance and direction descriptors [6] with
remarkable distinctive ability are adapted to the partial situation.
Together with the appearance term, coherence term and GNCGCP,
the whole scheme achieves state-of-the-art performance, and at
the same time enjoys OðN3Þ computational complexity and OðN2Þ
storage complexity, where N is the key point number.
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There has been other literature on the partial correspondence
issue [5,7,13]. The proposed method differentiates mainly from
two aspects: (1) the directed structural model based objective
function; and (2) the GNCGCP based optimization algorithm.
2. Proposed method

2.1. Objective function

Given two image feature sets G∈Rm�s;H∈Rn�s;m≤n, where m, n
are the key point numbers and s is the appearance descriptor
dimension. The partial correspondence problem is formulated as
finding a good assignment, or equivalently a partial permutation
matrix P∈Rm�n between the key points in G and H to get a
correspondence criterion FðP;G;HÞ minimized. In this paper, we
utilize

FðP;G;HÞ ¼wappFappðPÞ þwdisFdisðPÞ þwdirFdirðPÞ þwcohFcohðPÞ;

s:t: P∈P;P ¼ PjPij ¼ f0;1g; ∑
n

j ¼ 1
Pij ¼ 1; ∑

m

i ¼ 1
Pij ≤1;∀i; j

( )
ð1Þ

where wapp, wdis, wdir, wcoh are weights of the four terms.
Next we will first introduce a neighborhood system, and then

give the explanation for each term in (1).
When using the complete neighborhood system [6,9] where all

the key points are mutually connected, the connection between
two points far away from each other often brings in noise rather
than makes the structural model robust, especially in the non-rigid
correspondence. Instead we utilize a local neighborhood system
where a key point i is connected to its K nearest neighboring
points N K ðiÞ, and is considered as infinitely far away from all the
other points. A neighborhood matrix N∈Rn�n is given as

Nij ¼
1=K if j∈N K ðiÞ;
0 if j∉N K ðiÞ:

(
ð2Þ

where i, j are two key points. The local neighborhood system
improves the correspondence performance as will be illustrated in
Section 3. Based on the system, several pairwise terms are
introduced or modified below.

FappðPÞ is a unary term which measures the appearance simi-
larity between feature sets. We define it as

FappðPÞ ¼ trðCPT Þ ð3Þ
where trð � Þ is the matrix trace, C∈Rm�n is the cost matrix where cij
denotes the dissimilarity between the two appearance descriptors
gi and hj normalized by the largest value in C. SIFT descriptor,
shape context descriptor, bag-of-words model and other appear-
ance descriptors could be adopted in this term depending on their
typical uses, and the dissimilarity measures vary accordingly,
where the chi-square distance for histogram based appearance
descriptor such as SIFT and the Euclidean distance are two
common choices.

FdisðPÞ is a pairwise term which measures the geometric
consistency from the distance aspect. We define it as

FdisðPÞ ¼ ∥Adis
G �PAdis

H PT∥2F ð4Þ
where ∥ � ∥ is the Frobenius matrix norm defined as

∥A∥F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i∑jA

2
ij

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðATAÞ

q
. Adis

G ∈Rm�m;Adis
H ∈Rn�n are the adja-

cency matrices describing the distance attributes of feature sets
defined as

a-
dis

ij
¼ exp � ‖li�lj‖2

maxj∈NK ðiÞ‖li�lj‖2

� �
if j∈N K ðiÞ

0 otherwise

8<
: ð5Þ
where li, lj are the locations of key points i and j respectively. The

distance descriptor is directed since generally a-
dis

ij
≠a-dis

ji
, which

makes it more distinctive between i and j [6], and the descriptor
normalized by the local distance maximum makes itself less
affected by the outliers compared with the traditional normal-
ization [6].

FdirðPÞ is a similar pairwise term as FdisðPÞ but from the
orientation aspect. We define it as

FdirðPÞ ¼ ‖Adir
G �PAdir

H PT‖2F ð6Þ
where Adir

G ∈Rm�m;Adir
H ∈Rn�n are the adjacency matrices for the

direction attribute defined as

a-
dir

ij
¼

1
π
arccos

ðli�ljÞ
∥li�lj∥

d

∥d∥

 !
if j∈N K ðiÞ∧∥d∥≠0

0 otherwise

8><
>: ð7Þ

where d is denoted as the object orientation which is a relatively
fixed direction with respect to the object rotation. When matching
two objects with clear background, an effective definition is

d ¼ ∑
i ¼ 1⋯n

li≠l

li�l

∥li�l∥
ð8Þ

where l ¼ ð1=nÞ∑i ¼ 1⋯nli can be regarded as the center of the
object [6]. While with complex background or given the prior that
there is rare rotation between two objects, e.g. Chinese character
matching, it is better to utilize horizon direction instead. Similarly

to a-
dis

ij
, a-

dir

ij
is also a directed descriptor which makes it more

robust and distinctive [6].
FcohðPÞ is a pairwise penalty term which penalizes the corre-

spondence status difference between neighboring key points. That
means the neighboring key points should locate in the coherent
region—both in the object region or both in the background [5].
We define it as

FcohðPÞ ¼�‖PNHP
T‖2F ð9Þ

where NH is the neighborhood matrix of H given by (2). Minimiz-
ing this term means that when a key point in H is selected then
more of its neighboring points are preferred to be selected.

2.2. Feature correspondence algorithm

The problem (1) is a combinatorial optimization problemwhich
could be solved by the graph matching algorithms [14]. The
feature points could be viewed as the vertices of the graph model
and the pairwise relations describe the edge attributes. Then the
unary term and pairwise term measure the similarity of vertices
and consistency of edges, respectively. However, the above pro-
blem is an NP-hard problem with factorial complexity [10]. To
make the problem computationally tractable, some approxima-
tions are necessary, for which a comprehensive review is referred
to, e.g., [15].

Here we will adopt the recently proposed Graduated Non-
Convexity and Graduated Concavity Procedure (GNCGCP) to mini-
mize (1). The GNCGCP was proposed as a general framework for
the discrete optimization problem over the set of partial permuta-
tion matrices P. It has been proved to realize exactly the Convex–
Concave Relaxation Procedure [9,10,16] but in a much simpler
manner; it does not involve explicitly the convex or concave
relaxation functions, which are typically difficult to construct
[7,9–11] and greatly hinder the real application of CCRP. The
GNCGCP exhibited competitive or even better accuracy than
traditional CCRP, and meanwhile enjoys a low computational and
storage complexity as CCRP. Since GNCGCP does not need convex
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or concave relaxation explicitly, this makes GNGCGP applicable on
subgraph matching problem.

To solve (1), the GNCGCP takes the following form:

FζðPÞ ¼
ð1�ζÞFðP;G;HÞ þ ζtr PTP if 1≥ζ≥0;
ð1þ ζÞFðP;G;HÞ þ ζtr PTP if 04ζ≥�1;

P∈D;

(
ð10Þ

where D∈Rm�n is the convex hull of P defined as

D¼ DjDij≥0; ∑
n

j ¼ 1
Xij ¼ 1; ∑

m

i ¼ 1
≤1; ∀i; j

( )
ð11Þ

which is referred to as the set of doubly sub-stochastic matrices.
In implementation, when ζ decreases gradually from 1 to �1,

the objective function FζðPÞ becomes gradually from trPTP to
FðP;G;HÞ (Graduated NonConvexity) and then gradually to
�trPTP (Graduated Concavity). Meanwhile, a partial permutation
matrix solution P is finally gotten because FζðPÞ has exactly the
same local minima in P as (1) when FζðPÞ becomes concave. The
algorithm is rewritten by Algorithm 1, where Frank–Wolfe algo-
rithm [17] in the inner loop is utilized to minimize FζðPÞ on each
fixed ζ.

Algorithm 1. GNCGCP based feature correspondence scheme.
Input: Two feature sets G and H
Initialization: P ¼ 1N�N=N, ζ¼ 1
repeat

repeat
X ¼ arg min trð∇FζðPÞTXÞ; s:t:X∈D ①

α¼ arg min FζðP þ αðX�PÞÞ; s:t:0≤α≤1 ②

P ¼ P þ αðX�PÞ
until P converges ③

ζ¼ ζ�dζ
until ζo�1∨X∈P
Output A permutation matrix P
In this algorithm, the linear programming problem ① could be
solved by the Hungarian algorithm [18], the line search problem②

could be solved by the backtracking algorithm [19], and the stop
condition for ③ is given as follows: if trð∇FηðPÞT ðP�XÞÞo
εjFηðPÞ þ trð∇FηðPÞT ðX�PÞÞj, then break. FζðPÞ is got through (10),
and its gradient is given by

∇FζðPÞ ¼
ð1�ζÞ∇FðP;G;HÞ þ 2ζP if 1≥ζ≥0;
ð1þ ζÞ∇FðP;G;HÞ þ 2ζP if 04ζ≥�1;

P∈D;

(
ð12Þ

where

∇FðP;G;HÞ ¼wapp∇FappðPÞ þwdis∇FdisðPÞ þwdir∇FdirðPÞ
þwcoh∇FcohðPÞ;

and

∇FappðPÞ ¼ C;

∇Fdis=dirðPÞ ¼ 2PðAT
HP

TPAH þ AHP
TPAT

HÞ�2ðAGPA
T
H þ AT

GPAHÞ;
where AG and AH should be replaced by Adis

G , Adir
G and Adis

H , Adir
H ,

respectively,

∇Fcoh ¼�2PðNT
HP

TPNH þ NHP
TPNT

HÞ:
Fig. 1. Some ‘House’ samples with the indices as 0, 20, 40 60, 80, 100.
3. Experiments

We apply the proposed scheme to a benchmark dataset as well as
the real-world images. Two experiments are carried out, with the first
one to compare the proposed scheme with some state-of-the-art
methods, and second to evaluate the effect of the coherence pairwise
term together with the neighborhood system.

3.1. Comparison with state-of-the-art methods

Experimental setting: In this experiment, the comparison is
carried out on the CMU ‘House’ sequence consisting of 111 frames
where each frame is marked with the same 30 landmark points as
[3] and some samples are shown in Fig. 1. The methods for
comparison are Spectral technique(SPE) [13], Factorized method
(FAC), Path following method(PF), Extended path following method
(EPF), Hungarian algorithm(HUN) and the proposed method(OUR),
where the structural models for SPE and FAC are the same as
[7,13], for PF and EPF are undirected and directed [6], respectively,
and for HUN is only the unary term with SIFT as the appearance
descriptor.

We make two comparisons between these methods, with the
first one to compare the correspondence accuracy with respect to
n�m, where n is set to be 30 and m decreases from 30 to 10, and
the second one with respect to the frame separation, where larger
frame separation implies heavier 3D-rotation between two
‘houses’. Following the law of the single variable, in the first
comparison we average the accuracy with frame separations
increasing from 0 to 90 by a step 10, and in the second one with
n�m increasing from 0 to 20 by step size 2. In both comparisons,
we set wapp ¼wdis ¼wdir ¼wcoh ¼ 0:25 and K¼5.

Result: The first comparison result is shown in Fig. 2(a), from
which we can observe that (1) generally the accuracies for all the
methods with pairwise term get worse as the n�m increases;
(2) the proposed method achieves the best result when n�m410
implying its better robustness to outliers which is due to the
coherence term. However, this term slightly affects the accuracy
when n�mo6. Actually, when n�m¼ 0, EPF, OUR and FAC get
100% accuracy in case we set wcoh ¼ 0;wapp ¼wdis ¼wdir ¼ 0:33;
(3) the accuracies of PF and EPF decrease faster as n�m increases,
probably because it is not an equivalent transformation by
transforming the original subgraph matching problem to the
equal-sized adjacency matrix matching problem by adding
dummy nodes which may change the global solution. Actually, it
is such an in-equivalence that necessitates the direct subgraph
matching algorithm; and (4) OUR and EPF outperform PF, which
validates the effectiveness of directed structural model.

Fig. 2(b) shows the result of the second comparison. Generally
the accuracies decrease when the frames are more separated and
the proposed method gets the best result in most cases. Mean-
while, it is also observed that when the frame separation is 0 HUN
and OUR get much better accuracy than the others. It is reasonable
that HUN gets 100% accuracy because it only uses unary term. That
OUR outperforms the other methods with pairwise terms is
mainly due to the neighborhood system making the model more
distinctive.

Some correspondence samples are shown in Fig. 3.

3.2. Evaluation of the coherence term

Experimental setting: The second experiment is performed on
two datasets from Caltech256 [20] with 20 pairs of revolver images
and eiffel images. For each pair, one image contains only the object
with 20 and 35 key points in the two datasets while the other
image contains both the object with 20 and 35 ground-truth



Fig. 3. Some ‘House’ correspondence samples where m¼20, n¼30 and frame separation is 50.
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Fig. 2. Experimental results on the ‘House’ sequence. (a) Comparison with respect to n�m. (b) Comparison with respect to frame separation.
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correspondence points and the background with 20 randomly
selected points. The shape context descriptor [21] is adopted as the
appearance descriptor.

To evaluate the neighborhood system and coherence pairwise
term, K is increased from 1 to its maximum 19(34) by a step size 2
(3) and wcoh is increased from 0 to 0.5 by a step size 0.25. The
accuracy is averaged as the outlier number increases from 0 to 20
and we set wapp ¼wdis ¼wdir ¼ 1�wcoh=3.
Result: The result is shown in Fig. 4(a), with some typical
correspondence samples given in Fig. 4(b). From Fig. 4(a) we can
observe that the accuracy gets its minimum when setting K¼19
and K¼34 for revolver and eiffel, respectively, implying the
complete neighborhood system's sensitivity to the outliers. On
the other hand, it verifies the effectiveness of the neighborhood
system by observing that the accuracy maximum is gotten at
K ¼ 4∼5. Meanwhile, it is also observed that the coherence term
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makes certain improvement to the correspondence accuracy on
both datasets.
4. Conclusion

In this paper we proposed a novel partial feature correspon-
dence method for the unequal sized feature sets, which were
designed to tackle the correspondence problem with outliers and
obtained a state-of-the-art accuracy while keeping low computa-
tional and storage complexities. The resulting performance owes
to three aspects: (1) GNCGCP is effective and efficient in solving
the combinatorial optimization problem over the partial permuta-
tion matrices; (2) the coherence pairwise term makes the algo-
rithm less sensitive to outliers; and (3) the structural model is
directed, which makes it more distinctive. In the future, we will
extend the work to the correspondence of objects both in complex
backgrounds, i.e., there are outliers in both images.
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