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Bilinear models have been proposed to separate the factors from the observations for joint factors

identification or translation tasks.

However, the performance of existing bilinear models may degrade under challenging conditions

when local image information cannot be obtained caused by occlusions or image noises. In this paper, a

novel sub-pattern bilinear model (SpBM) is proposed. Different from existing bilinear models, SpBM

constructs the sub-pattern bilinear model through a novel learning algorithm utilizing local patterns

generated by dividing global patterns in a deterministic way. As a result, the specific factors of testing

observation are identified by synthesizing the discriminative information provided by the local sub-

patterns.

To further improve the identification performance of SpBM, a new ridge regressive parameter

estimation algorithm (RRPE) is also proposed. RRPE introduces the ridge regression into parameter

estimation to stabilize the matrix inverse computation and alleviate the non-convergent cases.

The proposed sub-pattern bilinear model is introduced into pose estimation of work-pieces to

separate and estimate some key pose factors individually. Experimental results demonstrate the

effectiveness of the proposed method.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Observations in perceptual systems, such as appearances of
objects or voices of speakers, are commonly an interaction of
different independent physical factors, for instance, handwriting
styles and characters [1], face identities and viewpoints [2],
localized features and transformations [3], person identities,
expressions, head poses and illuminations [4], and so on. How
to separate the factors from the observations is still an open
question for joint factors identification or translation.

According to the routine separation requirements of percep-
tual systems, Tenenbaum and Freeman [1] proposed bilinear
models which separate the independent style and content factors
of the observations. Bilinear models are linear in either factor
when the other is held constant. Thus, they share almost all of the
advantages of linear models: they have simple structures and are
easy to implement; they can be trained by efficient well-known
techniques, such as the singular value decomposition (SVD) and
the expectation-maximization algorithm (EM) [1,13].

Some extensions and improvements of bilinear models have
been proposed by other researchers. Vasilescu and Terzopoulos

[4] gave a multi-linear model based on tensor theory. In their
work, the observations of the faces are decomposed into ortho-
gonal factors including person identities, expressions, head poses
and illuminations; and the interaction of these multi-factors are
modeled by the basic images, i.e., tensorfaces. Elgammal and Lee
[5] embedded bilinear models in a nonlinear manifold and
separated the intrinsic body configuration from the appearance
of the person for gait recognition. Du and Lin [6] proposed a
general bilinear model in kernel space by mapping the observa-
tions into a kernel space. Similarly, Zhou and Lin [7] used kernel-
based bilinear models to decompose the identity and expression
of face image, and then synthesized the realistic comprehensive
expressional images by controlling the decomposed identity and
expression parameters. Gonzalez-Mora et al. [8] proposed bilinear
active appearance models to separate pose from expression/
identity changes within the active appearance model framework.

Although different improvements have been made to bilinear
models, there are still some issues that should be further dealt
with. Firstly, existing bilinear models usually separate style and
content from observations using global patterns, such as the
whole appearance of faces, and ignore the description of local
image information. Therefore, the performance of these methods
may degrade under challenging conditions when local image
information cannot be obtained caused by occlusions or image
noises. Secondly, parameter estimation in bilinear models for
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separating the style and the content from testing observations
always require a repetitive computation of matrix inverse opera-
tions [1]. This may lead to a non-convergent case which conse-
quently affects the identification or translation results.

To overcome these limitations, in this paper, a novel sub-
pattern bilinear model (SpBM) combined with a new ridge
regressive parameter estimation algorithm (RRPE) is proposed.
The sub-pattern bilinear model is constructed utilizing local
patterns, and then the style and content factors are sepa-
rated from observations with a new ridge regressive para-
meter estimation algorithm. This extends the ability of existing
bilinear models in challenging cases when local image informa-
tion cannot be obtained, because the rest sub-patterns are usually
able to provide enough discriminative information for identi-
fication.

In the proposed method, firstly, the original observations are
divided into some smaller non-overlapped sub-observations in a
deterministic way. All the sub-observations sharing the same sub-
pattern are collected to construct the sub-pattern training sets.
Secondly, a sub-bilinear model training algorithm is designed to
estimate the model parameters using the sub-pattern training
sets. Thirdly, the style and content parameters of the testing
observation are estimated using the proposed ridge regressive
parameter estimation algorithm with a novel objective function.
Finally, the obtained style and content parameters of the sub-
patterns are synthesized with majority voting and nearest neigh-
bor algorithm to give the final identification results.

The proposed sub-pattern bilinear model is introduced into
pose estimation of work-pieces to separate and estimate some
key pose factors individually. SpBM shows satisfactory results
under challenging conditions, such as occlusions and noises.

The main contributions of this paper are summarized in three
aspects:

(1) A novel sub-pattern bilinear model (SpBM) is proposed.
Different from existing bilinear models, SpBM constructs the
sub-pattern bilinear model through a novel learning algo-
rithm utilizing local patterns generated by dividing global
patterns in a deterministic way. As a result, the specific style
and content of testing observations are identified by synthe-
sizing the discriminative information provided by the local
sub-patterns. Thus, SpBM is able to obtain good identification
results in the cases when local image information cannot be
obtained caused by occlusions or image noises.

(2) To further improve the identification performance of SpBM, a
new ridge regressive parameter estimation algorithm (RRPE)
is also proposed. RRPE introduces the ridge regression into
parameter estimation to stabilize the matrix inverse compu-
tation and alleviate the non-convergent cases. And some
theoretical analysis of RRPE is also given to prove its
efficiency.

(3) The proposed sub-pattern bilinear model is introduced into
pose estimation of work-pieces to separate and estimate
some key pose factors individually. Experimental results
demonstrate the effectiveness of the proposed method.

The remainder of this work is organized as follows: we review
existing bilinear models briefly in Section 2. In Section 3, the
development of sub-pattern bilinear model is described. The
generation of sub-patterns, the training algorithm of SpBM, the
new ridge regressive parameter estimation and the identification
algorithm are presented. Experiments which utilize SpBM to
separate and estimate some key pose factors of work-pieces from
simulated and real images are given in Section 4. Section 5 gives
the conclusions.

2. Review of bilinear models

Bilinear models which separate and identify two independent
factors (such as style and content) are firstly proposed by
Tenenbaum and Freeman [1]. Fig. 1 shows the overview of
existing bilinear models. In the learning stage, the style factor
and the content factor, represented by parametric vectors, are
estimated by alternately updating one factor within each iteration
until convergence; and then the interaction matrix are derived
from the estimated style and content factors (Algorithm 1). In the
identification stage, the style and content factors of the testing
observation are separated using the interaction matrix obtained
in the learning stage (Algorithm 2); and then the specific style and
content are identified by comparing with the model parameters.

2.1. Bilinear model learning

Let zsc denote a K dimension observation vector in specific
style s and content c. It is assumed that zsc is given by the general
bilinear form [1]:

zsc ¼
XI

i ¼ 1

XJ

j ¼ 1

wija
s
i b

c
j ð1Þ

where the observation zsc is separated into two independent

factor vectors as ¼ ðas
1,as

2,. . .,as
I Þ

T and bc
¼ ðbc

1,bc
2,. . .,bc

J Þ
T, with a

series of interaction vectors wij of dimension K. I and J are the
dimensions of as and bc, respectively. Given a set of training

observations fzscg
Ts ,Tc

s ¼ 1,c ¼ 1 of Ts styles and Tc contents, the model

parameters fasg
Ts

s ¼ 1, fbc
g

Tc

c ¼ 1 and fwijg
I,J
i ¼ 1,j ¼ 1 can be computed by

minimizing the total squared error [1]:

Elearn
¼
XTs

s ¼ 1

XTc

c ¼ 1

:zsc�
XI

i ¼ 1

XJ

j ¼ 1

wija
s
i b

c
j :

2
, ð2Þ

We first stack all the training data into a matrix as follows [1]:

Algorithm 1. Bilinear model learning algorithm

(1) Decompose the matrix Z with SVD algorithm into Z¼USVT,
then the stacked content parameter matrix B is initialized by
the first J rows of VT.

Observation
training set 

Bilinear model 
learning using 
Algorithm I 

Parameter estimation 
using Algorithm II 

Testing
observation

Estimated parameters 

Styles { }sa

Contents { }cb

Interaction
matrix W

Model parameters 
Style a

Content b

Identification

Learning Identification

Specific style and content 

Fig. 1. Overview of bilinear models.
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(2) Compute (ZBT)VT
¼WVTA. Apply SVD algorithm to (ZBT)VT, the

stacked style parameter matrix A is estimated by the first I

rows of VT.
(3) Compute (ZVTAT)VT

¼WB. Apply SVD algorithm to (ZVTAT)VT,
the stacked content parameter matrix B is estimated by the
first J rows of VT.

(4) Repeat steps (2) and (3) until the parameter matrices A and B
converge.

(5) Estimate the interaction matrix W by computing:

W¼ ððYBT
Þ
VTAT
Þ
VT

Z¼

z11 � � � z1Tc

^ & ^

zTs1 � � � zTsTc

2
64

3
75, ZVT

¼

z11 � � � zTs1

^ & ^

z1Tc � � � zTsTc

2
64

3
75 ð3Þ

where the superscript VT denote the vector transpose [1,9]. Then,
the bilinear model can be rewritten in a compact form:

Z¼ ðWVTAÞVTB, ZVT
¼ ðWBÞVTA ð4Þ

where A is the stacked style parameter matrix with size I� Ts, B is
the stacked content parameter matrix with size J� Tc, and W is
the stacked interaction matrix with size (I�K)� J. They can be
represented as

A¼ ½a1,. . .,aTs �, B¼ ½b1,. . .,bTc �, W¼

w11 � � � w1J

^ & ^

wI1 � � � wIJ

2
64

3
75 ð5Þ

Based on the (4), the model parameters can be determined by
an iterative singular value decomposition (SVD) algorithm [1]
(Algorithm 1).

Convergence of Algorithm 1 can be guaranteed [1] (Magnus
and Neudecker [23] proposed a proof for the scalar case, e.g. K¼1;
and this proof can be extended to the vector case considered
here). Usually, Algorithm 1 converged within 5 steps in our
experiments.

2.2. Bilinear model parameter estimation

Given a testing observation ztest, its style and content factors
are separated using the interaction matrix obtained in the
training stage.

According to (1), the testing observation can be represented in
a similar way as (4)

ztest ¼ ðWVTaÞVTb or ztest ¼ ðWbÞVTa ð6Þ

Then, the style and content parameters can be expressed as
follows:

Algorithm 2. Parameter estimation algorithm

(1) Initialize the content parameter b with the mean vector of B.
(2) Update the style parameter a by computing:

a¼ ððWbÞVT
Þ
þ
Uztest :

(3) Update the content parameter b by computing:

b¼ ððWVTaÞVT
Þ
þ
Uztest :

(4) Repeat steps (2) and (3) until the parameters a and b
converge.

a¼ ððWbÞVT
Þ
þ
Uztest ð7Þ

b¼ ððWVTaÞVT
Þ
þ
Uztest ð8Þ

where (�)þ denotes the pseudo-inverse. (7) and (8) suggest an
iterative algorithm to estimate the style and content parameters.
By initializing the content parameter vector b as the mean vector
of B, the style and content parameters (a and b) can be derived by
alternately updating one factor within each iteration until con-
vergence [1] (Algorithm 2). Algorithm 2 converges if the condition
numbers satisfy: k((WVTa)VT)oZ and k((Wb)VT)oZ, where
kðXÞ ¼ smaxðXÞ=sminðXÞ, smaxðXÞ and sminðXÞ are the maximum
and minimum singular values of X, respectively, Z is the threshold
for avoiding being ill-conditioned.

Table 1
Comparison between Independent Component Analysis and Bilinear Models.

Independent Component Analysis Bilinear Models

Purpose
Find a linear representation of statistically independent non-

Gaussian components

Separate one factor (content) from the other (style) from the

observations

Model x¼
Pn

i ¼ 1

aisi zsc ¼
PI

i ¼ 1

PJ
j ¼ 1

wija
s
i bc

j

Model Category Linear Linear

Characteristics of the components

or factors

� Components are of the same kind

� Statistically independent

� Non-Gaussian

� Two kinds of components according to the two factors

� Independent factors

Preprocessing Centering and Whitening None

Training method fastICA Singular value decomposition or Quasi-Newton method

Variances of the components or

factors
Cannot be determined Cannot be determined

Component order Cannot be determined In an descending order according to the singular values

Applications (not limited)

� Separation of artifacts in MEG data [25,26]

� Finding hidden factors in financial data [25,26]

� Reducing noise in natural images [25,26]

� Telecommunications [25,26]

� Face recognition [27]

� Voice signal processing [28]

� Image separation [29]

� Facial expression synthesis [1,7]

� Letter extrapolation [1]

� Sparse coding [3]

� Face/Facial recognition [10,11,13]

� Gait recognition [5,12]

� Speaker adaption [14]

� Spatio-temporal point distribution analysis [15]
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2.3. Style and content identification

The specific style and content of the testing observation can be
identified in an exhausting searching manner. Denote the corre-
sponding distances between the estimated and learned model
parameters by

d1ðs,XÞ ¼ :as�X: ð9Þ

d2ðc,XÞ ¼ :bc
�X: ð10Þ

where X is the estimated parameter, as denotes the parameter of
style s, bc denotes the parameter of content c. The specific style
and content are determined using the nearest neighbor classifier:

sn ¼ argsmind1ðs,aÞ and d1ðs
n,aÞoys ð11Þ

cn ¼ argc mind2ðc,bÞ and d2ðc
n,bÞoyc ð12Þ

where s* and c* are the determined style and content, ys and yc are
thresholds.

2.4. Compared with ICA

Independent Component Analysis (ICA) [25,26] is a linear
transformation which represents the observation data by using
non-Gaussian independent components. ICA shows a similar
model with bilinear models as

x¼
Xn

i ¼ 1

aisi ð13Þ

Comparing (13) and (1), both ICA and bilinear models can be
interpreted as an observation that is represented by a linear
combination of the basic images (wij in bilinear models and ai in
ICA) with the weights provided by the components or factors.

However, there are some differences between the two meth-
ods. ICA obtains the independence of the components in ICA by
decorrelating the high order statistics so that it seems to capture
the essential structure of the data in many applications. In
bilinear model, the ‘‘style’’ factor and the ‘‘content’’ factor are
separated in the criterion of least square (e.g., second order
statistics) so that observations in unfamiliar styles or contents
can be identified or synthesized. And more differences are
summarized in Table 1.

3. Sub-pattern bilinear model

Existing bilinear models usually separate style and content on
global pattern of observations, and the performance of bilinear
models mainly depends on the integrity of the observation data.
Thus, bilinear models are lack of the capability to cope with
challenging conditions when local image information cannot be
obtained caused by occlusions or image noises. What’s worse,
there are usually repetitive computations of matrix inverse in
Algorithm II which may lead to a non-convergent case. To over-
come these limitations, a novel sub-pattern bilinear model
(SpBM) combined with a ridge regressive parameter estimation
algorithm (RRPE) is proposed.

Fig. 2 illustrates the overview of the proposed method. SpBM
consists of two stages: the model learning stage and the identifi-
cation stage.

In the learning stage, the original observations are divided into
some smaller non-overlapped sub-observations in a deterministic
way. All the sub-observations sharing the same sub-pattern are
collected to form the sub-pattern training sets. Afterwards, the
style parameter and the content parameter, as well as their
interaction matrix, are estimated from the sub-pattern training
sets by a sub-pattern bilinear model learning algorithm.

In the identification stage, the style and the content are
separated from each sub-pattern of the testing observation using
the new ridge regressive parameter estimation algorithm. The
obtained styles and contents are synthesized using majority
voting and nearest neighbor algorithm to give the final decision
of specific style and content.

3.1. Sub-pattern bilinear model learning

In SpBM, the original observations are divided into some
smaller non-overlapped equally sized sub-observations in a
deterministic way. And all the sub-observations which share the
same specific sub-pattern are collected to build the corresponding
training sub-pattern set. Fig. 3 shows the sub-pattern generating
procedure described above. Then, the sub-pattern bilinear model
learning algorithm is applied to each sub-pattern training set to
estimate the model parameters. More specifically, assume the K

dimensional observation zsc represents the whole pattern in
style s and content c, s¼ 1,. . .,Ts, c¼ 1,. . .,Tc . It is divided into M

Sub-pattern
set { }z

Sub-pattern
set { }z

Sub-pattern
set { }z

Sub-pattern bilinear model learning 

W W W

{ }a { }a { }a

{ }b { }b { }b

Testing observation z

z z z

Ridge regressive pose estimation 

aaa

bbb

Identification

Specific style and content 

Fig. 2. Overview of the proposed sub-pattern bilinear model.
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sub-pattern observations of dimension D (K¼M�D) as: zsc
m,

s¼ 1,. . .,Ts, c¼ 1,. . .,Tc , m¼ 1,. . .,M.
Similar to (1), each sub-observation can be represented by a

linear combination of the style factor and the content factor as

zsc
m ¼

XI

i ¼ 1

XJ

j ¼ 1

wmija
s
mib

c
mj, m¼ 1,. . .,M ð14Þ

where as
m ¼ ða

s
m1,as

m2,. . .,as
mIÞ

T and bc
m ¼ ðb

c
m1,bc

m2,. . .,bc
mJÞ

T are the
style parameter and the content parameter of the mth sub-
pattern, respectively, wmij are a series of interaction vectors of
the corresponding sub-pattern. Thus, the model parameters of
each sub-pattern can be estimated by minimizing the following
total square error:

Elearn
m ¼

XTs

s ¼ 1

XTc

c ¼ 1

:zsc
m�

XI

i ¼ 1

XJ

j ¼ 1

wmija
s
mib

c
mj:

2
, m¼ 1,. . .,M ð15Þ

The minimization of the total squared error of each sub-
pattern can be solved by iterative singular value decomposition
(SVD) algorithm similar to Algorithm 1. This gives the model
parameters for each sub-pattern: fas

mg
Ts

s ¼ 1, fbc
mg

Tc

c ¼ 1 and
fwmijg

I,J
i ¼ 1,j ¼ 1, m¼ 1,. . .,M.

Algorithm 3. Ridge regressive parameter estimation algorithm

(1) Initialize the content parameter b with the mean vector of B.
(2) Update the style parameter a by computing:

a¼ ðððWbÞVT
Þ
T
ðWbÞVT

þl1IÞ�1
ððWbÞVT

Þ
Tztest

(3) Update the content parameter b by computing:

b¼ ðððWVTaÞVT
Þ
T
ðWVTaÞVT

þl2IÞ�1
ððWVTaÞVT

Þ
Tztest

(4) Repeat steps (2) and (3) until the parameters a and b
converge.

Thus, the local image information is preserved by means of
styles and contents as well as their interaction vectors of each
sub-pattern.

3.2. Ridge regressive parameter estimation

The parameter estimation algorithm given in Algorithm 2 may
be instable due to the correlation of the data or noises [10]. To
overcome this problem and stabilize the computation, a new
ridge regressive parameter estimation algorithm is proposed in
this subsection.

The parameter estimation algorithm of Algorithm 2 can be
derived by minimizing the following objective function:

Eða,bÞ ¼
XK

k ¼ 1

zk�
XI

i ¼ 1

XJ

j ¼ 1

wijkaibj

0
@

1
A

2

¼ ðz�ðWbÞVTaÞTðz�ðWbÞVTaÞ ¼ ðz�ðWVTaÞVTbÞTðz�ðWVTaÞVTbÞ

ð16Þ

Then, the ridge regression is introduced into the parameter
estimation by modifying the objective function as follows:

Eða,bÞ ¼
XK

k ¼ 1

zk�
XI

i ¼ 1

XJ

j ¼ 1

wijkaibj

0
@

1
A

2

þl1

XI

i ¼ 1

a2
i þl2

XJ

j ¼ 1

b2
j

¼ ðz�ðWbÞVTaÞTðz�ðWbÞVTaÞþl1ða
TaÞþl2ðb

TbÞ

¼ ðz�ðWVTaÞVTbÞTðz�ðWVTaÞVTbÞþl1ða
TaÞþl2ðb

TbÞ ð17Þ

where l1 and l2 are positive constants. We differentiate the
objective function E(a,b) and set the partial derivatives equal to
zeros: qE/qa¼0 and qE/qb¼0 to obtain:

a¼ ðððWbÞVT
Þ
T
ðWbÞVT

þl1IÞ�1
ððWbÞVT

Þ
Tz ð18Þ

b¼ ðððWVTaÞVT
Þ
T
ðWVTaÞVT

þl2IÞ�1
ððWVTaÞVT

Þ
Tz ð19Þ

Thus, the specific style and content of the testing observation
can be estimated by iterating (18) and (19) until convergence. The
details of the new ridge regressive parameter estimation algo-
rithm are shown in Algorithm 3.

Therefore, the style and the content of each sub-pattern of a
given testing observation ztest are estimated using Algorithm 3
instead of Algorithm 2.

By adding positive real numbers l1 and l2 to the diagonals of
((Wb)VT)T(Wb)VT and ((WVTa)VT)T(WVTa)VT, respectively, ridge
regression keeps (18) and (19) in well-conditioned (the condition
numbers of (18) and (19) are constrained). Thus, the inverse
operations in Algorithm 3 are stable and as a result the conver-
gence of the model parameters is guaranteed. Typically,
Algorithm 3 converges within 20 steps in our experiments.
Theoretical analysis of the stability of proposed ridge regressive
parameter estimation is given in the Appendix. The differences
between RRPE and a similar algorithm proposed by Shin et al. [10]
are also discussed in the Appendix.

3.3. Style and content identification

To finally determine the specific style and content of a given
testing observation ztest, a method which combines majority
voting and minimal distance algorithm is proposed in this sub-
section. The style and the content of each sub-pattern, famg

M
m ¼ 1

and fbmg
M
m ¼ 1, are estimated by Algorithm 3 given in foregoing

subsection.
Using (9) and (10), the distances between the estimated factor

parameters and the model parameters are measured as

d1 s,amð Þ ¼ :as�am:, s¼ 1,. . .,Ts, m¼ 1,. . .,M ð20Þ

d2 c,bmð Þ ¼ :bc
�bm:, c¼ 1,. . .,Tc , m¼ 1,. . .,M ð21Þ

For each sub-pattern observation ztest
m , the corresponding

optimal style and content are computed as following:

sopt
m ¼ argsmind1ðs,amÞ, m¼ 1,. . .,M ð22Þ

copt
m ¼ argcmind2ðc,bmÞ, m¼ 1,. . .,M ð23Þ

Then, majority voting is used to find the best fitting
style(s) and content(s) for the testing observation:

Sopt
¼ s argsmax

XM
m ¼ 1

dstyle
s,m

 !�����
)(

ð24Þ

Copt
¼ c argcmax

XM
m ¼ 1

dcontent
c,m

 !�����
)(

ð25Þ

Sub-pattern
set 1

Sub-pattern
set 2 

Sub-pattern
set M

Fig. 3. Construction of sub-pattern sets.
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where

dstyle
s,m ¼

1, s¼ sopt
m

0, sasopt
m

, s¼ 1,. . .,Ts, m¼ 1,. . .,M

(
ð26Þ

dcontent
c,m ¼

1, c¼ copt
m

0, cacopt
m

, c¼ 1,. . .,Tc , m¼ 1,. . .,M

(
ð27Þ

Since there may be more than one style or content identified,
the final decision is given by computing the minimal distance
between the estimated parameter and the learned model para-
meter

sDecision ¼ argsminðmin
m

d1ðs,amÞÞ, sASopt
ð28Þ

cDecision ¼ argcminðmin
m

d2ðc,bmÞÞ, cACopt
ð29Þ

where sDecision and cDecision are the final identified style and
content.

3.4. Time complexity discussion

The time complexity of SVD is Oðminfmn2,m2ngÞ for a m�n

matrix [24]. Based on this, the time complexity of Algorithm 1 can

be deduced: OðQKðJT2
s þ IT2

c ÞÞ, where Q is the iteration steps.

Therefore, the time complexity for SpBM training is O
PM

i ¼ 1 Qi

�
K=M
� �

ðJT2
s þ IT2

c ÞÞ, where Qi is the iteration steps of the ith sub-

pattern.
The time complexity of Algorithms 2 and 3 are the same as:

O(Q(I3
þ J3)). And the time complexity of parameter estimation of

SpBM is O
PM

i ¼ 1 QiðI
3
þ J3
Þ

� �
.

4. Experimental results and discussion

Bilinear models have been successfully applied to different
kinds of tasks, including sparse coding of location and content in
natural images [3], gait recognition [5,12], facial expression
synthesis [7], facial recognition [10,11], 3D facial expression
recognition [13], speaker adaption [14], spatio-temporal point
distribution analysis [15], and so on.

In this paper, the proposed sub-pattern bilinear model is
introduced into pose estimation of work-pieces to separate and
estimate some key pose factors individually. The observation of
the work-piece is affected by the following pose factors: the
translations along the coordinate axis (X, Y, Z), the roll angle
(rotation around Z-axis), the pitch angle (rotation around Y-axis)
and the yaw angle (rotation around X-axis). Since translations can
be well estimated by existing methods [16–21], we focus on
separating and estimating the pitch angle and the yaw angle. The
proposed method also can be extended to the separation and
estimation of other factors.

Fig. 4 shows the illustrations of the pitch angle (denoted by j)
and the yaw angle (denoted by y) of a piston and a crank shaft,
respectively.

Two kinds of data sets were used: simulated images and real
images. For simulated images, the piston and the crank shaft were
modeled in SolidWorks and then generated with an interval of 0.11
in 12 specific angle ranges (shown in Table 2) using OPENGL. That
is, 12 specific data sets are generated for each work-piece. Each
data set contains 400 images; and there are totally 4800 images
for the piston and the crank shaft, respectively.

For the real images in our database, 840 images of the crank
shaft were taken by the CCD camera with 704�576 pixels
mounted on the industrial robot. The crank shaft was placed at

35 different yaw angles y as: y¼�851, �801, y, 801, 851. For
each yaw angle, the crank shaft was fixed at 24 different pitch
angles as follows: j¼01, 51, 7.51, 101, y, 57.51, 601. All the images
were clipped and resized into 240�240, containing the crank
shaft located at the center position. Then, the crank shaft was
segmented from the background manually. Fig. 5 shows some real
images of the crank shaft in the database.

In order to evaluate the identification results with the same
bias, each original data set is arranged into training set and
testing set in the following way:

� Half of the images were sampled in an interlaced way along
the yaw (pitch) direction to form the training set.
� The rest ones sampled in the similar interlaced way along the

yaw (pitch) direction were used as testing set.

ϕ

θ ϕθ

Fig. 4. Illustration of the pitch angle j and the yaw angle y of a piston (left) and a

crank shaft (right).

Table 2
Specific angle ranges of simulated images.

Pitch j
Yaw y

01 451 901

01
yA 01,21½ Þ yA 441,461½ Þ yA 891,911½ Þ

jA 01,21½ Þ jA 01,21½ Þ jA 01,21½ Þ

151
yA 01,21½ Þ yA 441,461½ Þ yA 891,911½ Þ

jA 141,161½ Þ jA 141,161½ Þ jA 141,161½ Þ

301
yA 01,21½ Þ yA 441,461½ Þ yA 891,911½ Þ

jA 291,311½ Þ jA 291,311½ Þ jA 291,311½ Þ

451
yA 01,21½ Þ yA 441,461½ Þ yA 891,911½ Þ

jA 441,461½ Þ jA 441,461½ Þ jA 441,461½ Þ

θ

ϕ

Fig. 5. Some real images of the crank shaft sampled from the real image data set.

The images were captured in different poses with an interval of 2.51 along the

pitch angle j and 51 along the yaw angle y.
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To improve the calculation cost of the SpBM, the data sets
were preprocessed using dimension reduction algorithm, such as
random projection algorithm [22] in this paper.

4.1. Efficiency of ridge regressive parameter estimation (RRPE)

In the identification stage, we proposed a new ridge regressive
parameter estimation algorithm to improve the performance of
SpBM. In this subsection, the validation of RRPE was proven by
comparing with other parameter estimation algorithms, such as
the original parameter estimation algorithm (PE) [1] and Shin’s
algorithm (Shin’s) [10].

One specific simulated image data set of the piston, in which
the poses were in the range of jA 291,311½ Þ and yA 441,461½ Þ, was
taken as the experimental data set.

The parameter l in Shin’s algorithm [10] and the parameters
l1 and l2 in RRPE were determined using a tuning process. 40
percent of the testing images were taken for evaluating the
identification with respect to different values of each parameter:
l, l1 and l2. According the identification results, we chose the
parameters that showed the best performance. To make the
tuning process convenient, l1 and l2 were set the same value.

Firstly, we tested the performance of the proposed RRPE using
testing data sets without noises. Experimental results are given in
Table 3. All of the three pose estimation algorithms show
satisfactory identification results. In the experiments, the para-
meters were set as l¼1 and l1¼l2¼1.

Secondly, we tested the performance of the proposed RRPE
using testing data sets with salt and pepper noises whose density
was 0.01. The optimal values of l, l1 and l2 were determined first.
As mentioned above, 40% of the testing images were taken for
evaluation. Fig. 6 shows the identification results with different
values of l in Shin’s method. Fig. 7 shows the identification
results with respect to different values of l1 and l2. According to
Figs. 6 and 7, we chose the parameters as: l¼100 and
l1¼l2¼2000.

Experimental results are given in Table 4. By introducing the
ridge regression, both the Shin’s algorithm and RRPE stabilized
the matrix inverse computation in parameter estimation and
consequently improved the identification results of SpBM. Com-
pared to the original parameter estimation algorithm (PE) [1],
Shin’s algorithm increased the identification rate by about 5%
while RRPE showed a more significant improvement of about 10%.

4.2. Performance of SpBM in non-occlusion cases

In this subsection, we check the performance of SpBM in the
non-occlusion cases, i.e., the work-pieces are not occluded by
other objects. The simulated images of the crank shaft and the
piston were taken for evaluation.

Experimental results are shown in Tables 5 and 6. For the
crank shaft, 8 sub-patterns (M¼8) were used when the yaw angle
range was yA 01,21½ Þ or yA 891,911½ Þ; 16 sub-patterns (M¼16)
were used when the yaw angle range was yA 441,461½ Þ. All the
yaw angles of the crank shaft could be identified correctly; and
over 85% of the pitch yaws were identified correctly in most cases.

Table 3
Comparison of identification results using testing data sets without noises (16 sub-

patterns were used, i.e., M¼16).

Method Error 01 Errorr0.11

Yaw angle identification rate

SpBMþRRPE 99.5% 100%

SpBMþShin’s 99.5% 100%

SpBMþPE 98.5% 100%

Pitch angle identification rate

SpBMþRRPE 97.5% 100%

SpBMþShin’s 96.5% 100%

SpBMþPE 95.5% 100%

Fig. 7. Identification results with respect to different values of l1 and l2 in RRPE

(l1¼l2).

Fig. 6. Identification results with respect to different values of l in Shin’s method.

Table 4
Comparison of identification results using testing data sets with salt and pepper

noises (16 sub-patterns were used, i.e., M¼16).

Method Error 01 Errorr0.11 Errorr0.21

Yaw angle identification rate

SpBMþRRPE 45.5% 85% 94.5%
SpBMþShin’s 34% 68% 89%

SpBMþPE 32% 66% 83%

Pitch angle identification rate

SpBMþRRPE 41.5% 87% 95%
SpBMþShin’s 36% 74.5% 88.5%

SpBMþPE 29% 69.5% 85%
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For the piston, 16 sub-patterns (M¼16) were used for identi-
fication. Over 95% of the pitch angle and the yaw angle are
identified correctly in cases when the pitch angle is larger than
151; and the identification rates are over 85% when the pitch
angle is near 01. SpBM shows a satisfactory result in non-
occlusion cases.

Experimental results show that identification of the yaw
angles is more accurate than the pitch angle identification. That
is because the appearance of the objects changes more signifi-
cantly as the yaw angle changes.

4.3. Performance of SpBM in occlusion cases

Three different kinds of experiments were carried out to
validate the performance of SpBM when the observations were
with occlusions.

First, the identification consistency of SpBM in different pose
situations is explored. Six sets of simulated piston images were
selected and occlusions of the same size were added to these
images at the same position. The six sets were organized into two
groups: (1) the pitch angle range was jA 141,161½ Þ, with the yaw
angles were in three different angle ranges: yA 01,21½ Þ,
yA 441,461½ Þ andyA 891,911½ Þ; (2) the pitch angle range was
jA 441,461½ Þ, with the yaw angles were in three different angle
ranges: yA 01,21½ Þ, yA 441,461½ Þ andyA 891,911½ Þ.

We compared the identification results of existing bilinear
models (BM) with SpBM. The global pattern was divided into 16
sub-patterns (M¼16). Experiment results are shown in Fig. 8.
SpBM gave a good result in all the six simulated image sets even
though some part of the piston was occluded. SpBM identified
almost all the yaw angle correctly while no more than 90% of yaw
angles were identified by BM. BM identified less than 20% of the
pitch angles with occlusion correctly. While SpBM identified more
than 95% of the pitch angles when the pitch angle range was
jA 141,161½ Þ and over 80% when jA 441,461½ Þ.

Second, the relationship between the identification performance
of SpBM and the size of the occlusion was evaluated. We chose a
specific simulated image set where the pose of the piston was in the
following range: jA 291,311½ Þ, yA 441,461½ Þ. The piston images in
testing set were occluded with different portions from 10% to 50%.

Table 5
Identification rate of the pitch and yaw angle of the crank shaft without occlusion (8 sub-

patterns were used when yA 01,21½ Þ or yA 891,911½ Þ; 16 sub-patterns were used when

yA 441,461½ Þ).

Pitch j
Yaw y

01 451 901

01

y: 100% y: 100% y: 100%

j: 93% j: 89% j: 93%

151

y: 100% y: 100% y: 100%

j: 86% j: 82.5% j: 84%

301

y: 100% y: 100% y: 100%

j: 93.5% j: 86% j: 87%

451

y: 100% y: 100% y: 100%

j: 93% j: 98.5% j: 97.5%

Table 6
Identification rate of the pitch and yaw angle of the piston (16 sub-patterns were

used, i.e., M¼16).

Pitch j
Yaw y

01 451 901

01

y: 94.5% y: 98.5% y: 94%

j: 90% j: 86% j: 92%

151

y: 100% y: 99.5% y: 100%

j: 98% j: 96.5% j: 96%

301

y:100% y: 99% y: 100%

j: 98.5% j: 99.5% j: 100%

451

y: 99% y: 97% y: 100%

j: 99.5% j: 100% j: 99%
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As the experimental results shown in Fig. 9, the identification
performance of SpBM decreased as the occluded portion increased.
Yaw angle identification rate of SpBM kept up to 85% even though
half of the piston was occluded. Identification rate of the pitch angle
kept about 75% when 30% of the piston was occluded, but dropped
rapidly when more portion of the piston was occluded. Meanwhile,
the identification rate of BM dropped to less than 10% even when
only 10% of the piston was occluded. Thus, for simulated images of
work-pieces, SpBM is able to estimate the pitch angle and the yaw
angle when no more than 30% of the work-piece is occluded.

Third, the identification performance of SpBM using real
images was validated. Occlusions of the same size 85�85 were
added to the testing crank shaft images (240�240) randomly.

That is, the crank shaft in each testing image was occluded with
different portion in different positions. Fig. 10 shows some real
images of the crank shaft with random occlusion.

Both SpBM and BM were used to identify the pitch angle and
the yaw angle. Fig. 11 shows the experimental results. SpBM
showed a great improvement in yaw angle identification that over
80% testing images are within an error criterion of 51. Pitch angle
identification is improved by increasing the identification rate
within an error criterion of 2.51.

The parameters l1 and l2 were sensitive to different identifica-
tion conditions, for instance, different work-pieces, different noise
conditions or different occlusion sizes. However, when the pitch
angle and the yaw angle were identified under the same condition,

Fig. 8. The pitch and yaw angle identification of the piston with the same occlusion (16 sub-patterns were used, i.e., M¼16). (a) Identification results of the piston with occlusion at

pitch angle range of jA 141,161½ Þ and three different yaw angle ranges: jA 01,21½ Þ jA 441,461½ Þ jA 891,911½ Þ (Left: yaw angle; Right: pitch angle). (b) Identification results of the

piston with occlusion at pitch angle range of jA 441,461½ Þ and three different yaw angle ranges: jA 01,21½ Þ jA 441,461½ Þ jA 891,911½ Þ (Left: yaw angle; Right: pitch angle).

Fig. 9. Identification results of the piston at the specific angle range (pitch angle jA 291,311½ Þ, yaw angle yA 441,461½ Þ ) with different occlusion portions. (Left: yaw angle;

Right: pitch angle. 16 sub-patterns were used M¼16.)
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the values of l1 and l2 can be set the same values. For example, l1

and l2 were set the same value as l1¼l2¼5 in the six experi-
ments in which the pitch angle and the yaw angle were identified
from the simulated piston images with occlusions of the same size
(Fig. 8). In contrast, l1 and l2 were set different values when
different portions of the work-piece were occluded (Fig. 9).

4.4. Comparison between SpBM and LCM

Lots of works have been presented for pose estimation
[30–32]. Especially, the work of Ullman and Basri [32], in which
the objects was represented by combining the object models in a
linear way, shows a similar mechanism in representing the object
with new pose. Therefore, in this subsection, we compared the
pose estimation performance of the Sub-pattern Bilinear Model
(SpBM) with Ullman’s approach, e.g. the Linear Combination of
Models (LCM [32]).

Eighty-one simulated images of piston, in which the poses are
in the range of jA[29.61,30.41] and yA[44.61,45.41] with intervals
of 0.11, were taken for testing the performances of SpBM and LCM.
The testing images were evaluated using another 49 simulated
images of piston whose pose ranges were in jA[271,331] and
yA[421,481] with intervals of 11.

The two approaches were compared in non-occlusion cases and
occlusion cases. In occlusion experiments, black blocks of size
30�30 were added to the testing images (240�240) randomly.

For LCM, six template images were used and corresponding
features were extracted by Harris interest point detector. Fig. 12
shows one of the synthesized images of the piston using LCM. For
SpBM, the parameters l1 and l2 were set as l1¼l2¼5. The
experimental results of non-occlusion cases and occlusion cases
are shown in Tables 7 and 8, respectively. The results show that
SpBM outperforms LCM in both non-occlusion cases and occlusion
cases within an error criterion of 11. But both the two approaches
could identify all the poses correctly within an error criterion of 21.
Since LCM models the object by combining the corresponding
visible points on the object surface from six models in a linear
way, LCM shows robust performance in occlusion cases. However,
it seems that LCM fails to distinguish poses of high precision such
as 0.11 because of the deviation of features extraction and the
rounding error of coordinate computed by linear combination.

5. Conclusions

In this paper, a novel sub-pattern bilinear model (SpBM) which
constructs the sub-pattern bilinear model utilizing local patterns
instead of global patterns is proposed. The specific style and
content of testing observations are identified by synthesizing the
discriminative information provided by the local sub-patterns.
Thus, SpBM is able to obtain good identification results in the
cases when local image information cannot be obtained caused by
occlusions or image noises. To further improve the identification
performance of SpBM, we presented a new ridge regressive
parameter estimation algorithm (RRPE) which introduces the
ridge regression into the parameter estimation algorithm by
modifying the objective function. RRPE stabilizes the matrix
inverse computation and guarantees the convergence of para-
meter estimation. The theoretical analysis of RRPE is also given to
prove its efficiency. Finally, the proposed sub-pattern bilinear
model is introduced into pose estimation of work-pieces to

Fig. 10. Some testing real images sampled from the data set of the crank shaft

with occlusion.

Fig. 11. Identification results of the crank shaft with occlusion using real image data set. (Left: yaw angle; Right: pitch angle. 16 sub-patterns were used, i.e., M¼16.)

Fig. 12. The left one is one of the edge images of the piston; and the right one is its

corresponding synthesized image using LCM.
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separate and estimate some key pose factors individually. Experi-
mental results demonstrate the robust performance in the esti-
mation of the pitch angle and the yaw angle.
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Appendix

In Algorithm 3, one factor parameters are estimated by fixing
the other factor parameters. Therefore, (18) and (19) can be
interpreted as the following traditional ridge regressions, respec-
tively:

â¼ arg min
a
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where Xa¼(Wb)VT, Xb¼(WVTa)VT, Ca¼l2bTb, Cb¼l1aTa.
Then, the variances of the parameter vectors â and b̂ in

Algorithm 3 are computed as
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where e is an error vector that is assumed to be an indepen-
dent and identically distributed random variable with mean 0
and variance s2; Xa and Xb are dependent variable matrices
of a and b, respectively; Xa ¼UaDaVT

a , va,i is the ith column
of Va and da,i is an eigenvalue corresponding to va,i;
Xb ¼UbDbVT

b , vb,j is the jth column of Vb and db,j is an eigenvalue
corresponding to vb,j.

Thus, by adding the positive values l1 and l2 to the diagonal
terms of XT

aXa and XT
bXb, the proposed method reduces the

variance of the parameters â and b̂ to stabilize the
regression model.

In [10], Shin et al. proposed similar ridge regressive pose
estimation by revised the objective function as follows:

E a,bð Þ ¼
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In their algorithm, the variants of the two estimated para-
meters are:

Var â
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The differences between RRPE and Shin’s algorithm lie in
following aspects:

� Different penalty factors are proposed. laTabTb is chosen in

Shin’s algorithm while l1(aTa)þl2(bTb) is given in this paper.
� Different positive numbers are added to the denominator of the

variances of estimated parameters. lbTb and laTa are added in
Shin’s algorithm while l1 and l2 are added in our algorithm.
� The ridge regression proposed by Shin might be instability in

two extreme cases: (1) aTa-0and db,j-0; (2) bTb-0 and
da,i-0. The proposed ridge regressive algorithm keeps stable
when l140 and l240.

References

[1] J.B. Tenenbaum, W.T. Freeman, Separating style and content with bilinear
models, Neural Comput 12 (6) (2000) 1247–1283.

[2] X.B. Gao, C.N. Tian, Multi-view face recognition based on tensor subspace analysis
and view manifold modeling, Neurocomputing 72 (16–18) (2009) 3742–3750.

[3] D.B. Grimes, R.P.N. Rao, Bilinear sparse coding for invariant vision, Neural
Comput 17 (1) (2005) 47–73.

[4] M. Alex, O. Vasilescu, Demetri Terzopoulos, Multilinear analysis of image
ensembles: TensorFaces, in: Proceedings of the European Conference on
Computer Vision, vol. 1, 2002, pp. 447–460.

[5] A. Elgammal, C.S. Lee, Separating style and content on a nonlinear manifold,
in: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, 2004,
pp. 478–485.

[6] Y. Du, X. Lin, Nonlinear factorization models using kernel approaches, in:
Proceedings of the Asian Conference on Computer Vision, vol. 1, 2004,
pp. 426–431.

[7] C. Zhou, X.Y. Lin, Facial expressional image synthesis controlled by emotional
parameters, Pattern Recognition Lett. 26 (16) (2005) 2611–2627.

[8] J. Gonzalez-Moraet al., Bilinear active appearance models, in: IEEE Interna-
tional Conference on Computer Vision, 2007, pp. 1–8.

Table 7
Comparison of pose estimations between SpBM and LCM in non-occlusion cases.

Method Errorr11 Errorr21

Yaw angle identification rate

SpBM 100% 100%

LCM 65.4% 100%

Pitch angle identification rate

SpBM 87.7% 100%

LCM 66.7% 100%

Table 8
Comparison of pose estimations between SpBM and LCM in occlusion cases.

Method Errorr11 Errorr21

Yaw angle identification rate

SpBM 97.5% 100%

LCM 65.4% 100%

Pitch angle identification rate

SpBM 74.1% 100%

LCM 64.2% 100%

Z. Ou et al. / Neurocomputing 83 (2012) 176–187186



Author's personal copy

[9] D.H. Marimont, B.A. Wandell, Linear models of surface and illuminant
spectra, J. Opt. Soc. Am. A 9 (11) (1992) 1905–1913.

[10] D. Shin, H.S. Lee, D. Kim, Illumination-robust face recognition using ridge
regressive bilinear models, Pattern Recognition Lett. 29 (1) (2008) 49–58.

[11] H. Yan, J. Yang, J. Yang, Bimode model for face recognition and face
representation, Neurocomputing 74 (5) (2011) 741–748.

[12] F. Cuzzolin, Using bilinear models for view-invariant action and identity
recognition, in: IEEE Conference on Computer Vision and Pattern Recogni-
tion, vol. 2, 2006, pp. 1701–1708.

[13] I. Mpiperis, S. Malassiotis, M.G. Strintzis, Bilinear models for 3-D face and
facial expression recognition, IEEE Trans. Inform. Forensic Security 3 (3)
(2008) 498–511.

[14] H.J. Song, H.S. Kim, Bilinear model-based maximum likelihood linear regression
speaker adaptation framework, Signal Process. Lett. 16 (12) (2009) 1063–1066.

[15] C. Hoogendoorn, F.M. Sukno, S. Ordás, A.F. Frangi, Bilinear models for spatio-
temporal point distribution analysis, application to extrapolation of left
ventricular, biventricular and whole heart cardiac dynamics, Int. J. Comput.
Vision 85 (3) (2009) 237–252.

[16] G. Borgefors, Hierarchical chamfer matching: a parametric edge matching
algorithm, IEEE Trans. Pattern Anal. Mach. Intell. 10 (6) (1988) 849–865.

[17] D.F. Dementhon, L.S. Davis, Model-based object pose in 25 lines of code, Int. J.
Comput. Vision 15 (1–2) (1995) 123–141.

[18] H. Murase, S.K. Nayar, Visual learning and recognition of 3-D objects from
appearance, Int. J. Comput. Vision 14 (1) (1995) 5–24.

[19] A. Ansar, K. Daniilidis, Linear pose estimation from points or lines, IEEE Trans.
Pattern Anal. Mach. Intell. 25 (5) (2003) 578–589.

[20] M.Y. Liu, et al., Pose estimation in heavy clutter using a multi-flash camera,
in: IEEE International Conference on Robotics and Automation, vol. 3, May
2010, pp. 2028–2035.
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