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Abstract: In many data envelopment analysis (DEA) applications, the analyst always 

confronts the difficulty that the selected data set is not suitable to apply traditional DEA 

models for their poor discrimination. This paper presents an approach using Shannon’s 

entropy to improve the discrimination of traditional DEA models. In this approach, DEA 

efficiencies are first calculated for all possible variable subsets and analyzed using 

Shannon’s entropy theory to calculate the degree of the importance of each subset in the 

performance measurement, then we combine the obtained efficiencies and the degrees of 

importance to generate a comprehensive efficiency score (CES), which can observably 

improve the discrimination of traditional DEA models. Finally, the proposed approach has 

been applied to some data sets from the prior DEA literature. 
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1. Introduction 

Data envelopment analysis (DEA) has been proven to be an effective tool for performance evaluation 

and benchmarking since it was first introduced in [1]. Based on data from Google Scholar [1] has been cited 

over 16,000 times. After the first CCR model, a number of different DEA models have been proposed, 

which have wide applications in various performance evaluation problems (e.g., [2–4], etc.). In DEA 

models, each input or output variable is attached with a weight, and the relative efficiency of each 

decision-making unit (DMU) is defined as the ratio of its weighted sum of outputs to the weighted sum 

of inputs, thus DEA efficiencies are relative to the set of input-output data available [5]. The nature of 

the DEA method allows each DMU under evaluation to maximize its relative efficiency by 

discretionarily choosing its weight based upon a set of constraints that all the efficiencies of DMUs are 

not bigger than one. If the efficiency score of a DMU is one, it is DEA (weakly) efficient. Accordingly, 

at a given number of DMUs, the efficiency score of each DMU relies heavily on the dimensionality of 

the weight space. Adding variables to a DEA model will result in higher dimensionality of the weight 

space and higher efficiency scores, as well as an expanded set of efficient DMUs [6]. In other words, the 

greater the number of variables a DEA model has, the more efficient DMUs will be, and the less 

discerning the DEA analysis is [7]. This situation suggests the need for selecting as few variables for 

DEA models as possible. 

A guideline commonly applied to variable selection is that the number of variables should be less than 

one third of the number of the DMUs [8]. However, a great number of practical applications in 

performance measurement are inconsistent with this guideline. For example, [9] evaluated the 

performance of seven university departments with six variables. Reference [10] presented an example 

where DEA was used to evaluate eight hotels with eight variables, and the same data set has also been 

applied by [7] and [11]. In [12] a series of DEA models were applied to measuring the performance of 22 

solid waste disposal alternatives with eight variables, and that data set has also been applied by [7]. In [13] its 

authors presented a banking example with two inputs and four outputs to compare ten different banks. 

Reference [14] measured the ecology efficiencies of 17 Chinese cities with 30 variables. Apparently, 

these aforementioned data sets have a common characteristic which is that the number of variables is too 

large to directly apply DEA methods to the criteria of the number of variables being “large” is according 

to the guideline [8]. 

There are several factors that should be accounted for as a common characteristic of these data sets. 

Firstly, the initial list of potential variables to be considered for DEA is often very large [11]. For 

example, any resource used in the process should be treated as an input [11], and many environmental 

variables should also be taken into the efficiency measurement [15], as they can influence the 

availability of resources. Secondly, the limited rationality of human beings and potential relationships 

among variables make it hard for the analyst to determine the best choice among all variables related or 

unrelated to the production process, though the analyst can use prior knowledge and experience to omit 

some variables that have no effect on the production process [16]. These practical conditions lead the 

analyst to choose as many variables as possible. 

The conflict between the two requirements of the practical conditions and traditional DEA methods in 

variables selection causes a situation to always occur, which is that the selected data set is not suitable 
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for applying traditional DEA methods due to its poor discrimination. Then, the natural question that 

follows is raised: 

How to improve the discrimination of traditional DEA methods to create a complete ranking for all 

DMUs when the aforementioned situation occurs? 

Note that if we cannot identify the production frontier from preliminary surveys, it may be risky to 

rely on one particular DEA model only considering all variables from the selected data set, especially 

when we are hesitating at which variables should be chosen to characterize the production process. 

Hence, it is wise to try different models and combine the results of these different models [17]. To this 

end, this paper presents an approach to improve the discrimination of traditional DEA methods without 

losing variable information. We consider all possible DEA model specifications in the final result, 

where each specification includes an alternative variable combination. Efficiencies are calculated for all 

possible DEA model specifications and analyzed using Shannon’s entropy theory to generate a 

comprehensive efficiency score (CES) for each DMU, which can then be used to give a complete 

ranking. The proposed approach has been applied to some data sets from prior DEA. 

The rest of this paper is organized as follows: Section 2 includes a literature review on the methods 

for improving the discrimination. Section 3 describes how to combine traditional DEA methods and 

Shannon’s entropy theory to generate a CES. In Section 4, we illustrate the proposed approach using 

some data sets from the literature. Section 5 gives our conclusions. 

2. Literature Review 

The methods of prior DEA studies in discrimination improvement can be divided into two categories. 

The first one is to enlarge the number of DMUs while keeping the number of variables fixed. One 

approach to this is to use pooled cross section and time series data. However, this approach assumes no 

technological change over the sample periods, which may be a major problem in practice [18]. 

The second one is to reduce the dimensionality of the selected data set by using variable reduction 

(VR) based on partial covariance analysis or principal component analysis (PCA). Reference [7] 

introduced a multivariate statistical approach, called the VR method, using the partial covariance 

analysis in terms of the principle of minimizing information reduction. They concluded that the major 

impact of the calculated DEA efficiencies could be maintained even when deleting highly correlated 

variables (see also [19]). The other discrimination improving method uses PCA to transform the data set 

into a set of principal components, and a limited number of components are selected and analyzed by 

traditional DEA models to calculate the efficiency score of each DMU. References [13] and [20] 

proposed a PCA/DEA method by directly taking the computing procedure of the original input or output 

variables, respectively, and using the principal components to produce a reduced number of variables for 

a subsequent data envelopment analysis. This proposed approach has been applied to performance 

measurement of deregulated airline networks [13] and airport quality [21]. The authors of [14] 

proposed an Assurance Region (AR) PCA/DEA model, and the AR restrictions are used to reflect the 

difference of the relative importance of each principal component generated from the ratios of single 

output to single input. They applied their approach to measuring the eco-efficiencies of 17 Chinese 

cities. In [22] Monte Carlo simulation was applied to compare the PCA-DEA and VR methodologies, 

and demonstrated that the former provides a more powerful tool than the latter with consistently more 
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accurate results. However, the use of the principal components as compared to original variables would 

cause a more opaque result in the subsequent analysis [13], such as the measurement of the efficient 

levels for each original variable and the directions on the performance improvement for inefficient 

DMUs, and so on. However, this kind of approach improves the discrimination ability of DEA at the 

expense of losing some variable information. 

3. Discrimination Improvement Using Shannon’s Entropy 

3.1. Traditional DEA Models 

Suppose there are n  independent DMUs, and each jDMU ( },...,2,1{ nNj  ) consumes m 

inputs }),...,2,1{( mMixij   to generate s outputs }),...,2,1{( sSryrj  . The efficiency for any given

dDMU  can be computed using the following CCR DEA model [1]: 
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where j , 
is  and 

rs  are unknown parameters.   is the non-Archimedes infinitesimal, and 

),( SMEd  is the optimal efficiency for dDMU  with considering input data set M and output data set S. 

CCR DEA model is based on the constant return to scale (CRS) assumption. If we add the constraint 
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j
j  into the constraints of model (1), then we could obtain BCC DEA model [23], which is based 

on the variable return to scale (VRS) assumption. 
Moreover, if the decision maker wants to make dDMU  efficient (i.e., the efficiency improvement of 

dDMU ) under the variable set ( , )M S , he could use the following equations to calculate the optimal 

level of inputs and outputs: 
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3.2. Shannon’s Entropy DEA Models 

The following paragraphs describe how to calculate the degree of importance of each model in the 

efficiency measurement via Shannon’s entropy and combine the results to be a CES. 
Theoretically, a DEA model at least has one input and one output [11]. Accordingly, the number of all 

different combinations of input subsets from M and output subsets from S is )12()12(  smK . 
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Denote model (1) based upon the kth combination of variable set as kM , and model set 

},...,,{ 21 KMMM . We denote the efficiency score of jDMU  based on kM  as kjE , j = 1, …, n, k = 1, 

…, K. If we solve model (1) K times, once with an alternative combination of variable sets, we get an 

efficiency matrix KnjkE ][  as follows: 
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The concept of Shannon’s entropy [24] plays a central role in information theory, and sometimes 

refers to a measure of uncertainty. This concept has been extended to different scientific fields, such as 

physics, social sciences, and so on (e.g., [25–28], etc.). To the best of our knowledge, the first work 

integrating Shannon’s entropy and DEA is [17], in which the authors integrated a series of efficiency 

scores of a DMU based upon many different DEA models (such as CCR, BCC and so on) into a 

comprehensive efficiency score via using Shannon’s entropy to calculate the degree of importance of 

each model. In [29] an entropy-based approach to deal with the problem of the distorted efficiency 

measurement in the non-proportional radial measure was proposed. Besides, there are also many other 

studies based on Shannon’s entropy and DEA, such as [30,31]. Because the issue of these studies is 

how to integrate the performance evaluation results calculated by different DEA models into a unified 

result by using Shannon’s entropy, they don’t consider the discrimination problem of DEA. Therefore, 

it is an absolutely different issue comparing with this work, and we don’t further detail it in this study. 

In this paper, we introduce an approach to evaluate the importance of each variable combination and 

obtain the CES. The computing procedure for obtaining a CES is given as follows: 

Step 1: Calculate the efficiency matrix KnjkE ][  based upon model (1) with all alternative combination 

of variable set. 

Step 2: Normalize the efficiency Matrix KnjkE ][  and set 
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Step 6: Calculate the CES as njEW
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Definition 1: If 1j , then jDMU  ),...,2,1( nj   is comprehensively DEA efficient. 

Theorem 1. There is a negative correlation between the entropy value and the difference of DEA 

efficiencies for a given variable subset. Particularly, if all efficiencies under a variable subset are equal, 

then the minimal weight of the subset would be obtained.  
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Proof. For a given variable subset k }),..,2,1{( Kk , if there is a low difference of DEA efficiencies, i.e., 

jke  n/1 }),...,2,1{( nj , then we can compute its entropy value as 
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Theorem 1 states that the value of kd  is appropriate to represent the importance of kM  as compared 

to other models from  . The less discerning the DEA analysis is, the smaller the value kd  will be. If 

the CES of a given DMU is one, then it is always efficient in . 

It should also be noted that if the data set only has one input and one output, the proposed method is 

equivalent to the traditional models, and the proposed method in this section does not rely on the 

particular form of the DEA model. This method can be used with either constant or variable returns to 

scale, or with either an input or an output orientation.  

Theorem 2. A DMU is efficient in the CES if and only if it is efficient in all variable combinations. 

Proof. For a given 
0j

DMU }),...,2,1{( 0 nj   under evaluation is efficient, this means that 
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From the computing procedure, we can know 0kW , ( Kk ,...,2,1 ). As a result, kjE
0

 ( Kk ,...,2,1 ) 

must be equal to 1 in equation (4). That is, 
0j

DMU  is efficient in all variable combinations. ■ 

Theorem 2 implies that our approach is a DEA discrimination improving method. When some DMUs 

are efficient under one subset but inefficient under another subset, and in this case their CES would be 

inefficient. When some DMUs are efficient under all subsets, then we consider that their performance is 

indeed efficient and does not need any further adjustment. In general, it would be very rare to get two (or 

more) efficient DMUs simultaneously based on our proposed approach. But the traditional DEA models 

determine this because they evaluate the performance of DMUs under a certain variable set, and their 

discrimination powers are heavily influenced by the variable dimensionality [11]. Moreover, from the 

computing procedure, if the CES cannot distinguish two (or more) efficient DMUs, then the traditional 

simple DEA method must also be unable to distinguish them. Therefore, the performance of traditional 

DEA approach with Shannon’s entropy must be better than simple DEA method in all kind of 

circumstance. 
From the perspective of the slack analysis, all DMUs can obtain the optimal inputs and outputs under 

each variable subset by applying the system of equations (2). Based on the optimal inputs and outputs, all 

DMUs would be efficient under each subset. From Theorem 2, we can get 1j , i.e., each DMU is 

comprehensively DEA efficient. We don’t obtain a unified improvement plan by calculating the 

weighted sum of Wk and the optimal inputs and outputs of kM  directly because such a plan cannot 

ensure all DMUs are efficient after the efficiency improvement. 
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4. Numerical Examples 

4.1. Simple Data Set From [32]  

Table 1 shows a simple data set has five DMUs with three inputs and two outputs from [32]. The 

number of variables is more than the number of DMUs. It is inconsistent with the guideline that the 

number of variables should be less than one third of the number of the DMUs [8]. Thus, as mentioned 

above, the discrimination of traditional DEA models might be decreased [7]. In the following paragraphs, 

we employ this example to illustrate our proposed approach. The results of applying to this data set are 

based upon the input-oriented, constant return to scale DEA model as described above. The number of 
all possible variable subsets is 21)12()12( 23 K . 

Table 1. Characteristics of the data set from Reprinted by permission. Copyright 2008 

INFORMS [32].  

DMU X1 X2 X3 Y1 Y2 

1 7 7 7 4 4 
2 5 9 7 7 7 
3 4 6 5 5 7 
4 5 9 8 6 2 
5 6 8 5 3 6 

As shown in the second and the third columns of Table 2, they are a combination of input and output 

variables and efficiencies for all specifications, respectively. The number “1” in the second column of 

Table 2 means that its corresponding variable is included in the combination, while “0” means the 

variable is removed. According to the computing procedure described in Section 3.1, the degrees of the 

relative importance of all specifications are calculated as shown in the last column. Table 2 is sorted by 

the degrees in descending order. The results show that the efficiencies are enlarged when we expand the 

variables in the data set, and the discrimination of DEA is poorer and poorer. The biggest degree of the 

importance is W1 = 0.11103, and its corresponding subset is M1 only includes two variables (X3 and Y2). 

The smallest degree W21 = 0.007768 corresponds to M21, which includes all variables from the data set. 

Using the expression of Step 6 in Section 3.2, the comprehensive efficiency score of each DMU can 

be calculated as shown in the second column of Table 3. For the convenience of DEA model 

comparison, the last three columns of Table 3 shows the efficiencies resulting from the traditional 

input-oriented CCR model, game cross DEA model [32], super-efficiency DEA model [33] and SBM 

model [34], respectively.  

The CCR efficiencies show that DMU2 and DMU3 are both DEA efficient and should be ranked at 

the same order, while the other three models’ results report that DMU3 performs better than DMU2. In 

fact, paying attention to the results in the third column of Table 2, we find that DMU3 is always DEA 

efficient based upon all DEA specifications, except model M8. As to DMU2, it is efficient based upon 

12 DEA models, while the other nine models will lead it to be inefficient. Besides, we can find that the 

SBM efficiencies can’t distinguish efficient DMUs, such as DMU2 and DMU3, which is similar as the 

situation of CCR efficiencies. 
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Another interesting finding is the differences of the four different models in distinguishing 

inefficient DMUs. Both CCR and super-CCR efficiencies show DMU4 and DMU5 have a same 

efficiency score (0.85714), but game cross efficiencies show DMU4 ranks below DMU5, which 

conflicts with the results of our proposed approach. Taking attention to the results in third column of 

Table 2 again, it shows that the number of the DEA specifications is eight, based upon which DMU4 

has an efficiency score of 0.85714, and the number for DMU5 is eight too. However, the efficiency 

scores of DMU4 are flukier than those of DMU5 when different DEA model specifications are used. 

For example, the results from the last 14 models show its efficiencies are at least 0.75, but its 

efficiencies are lower than 0.23 based upon the first seven DEA models. The efficiencies of DMU5 are 

relatively steady from the lower bound 0.35714 to the upper bound 0.85714 when different DEA 

models are tried. Therefore, it is risky to rely on these models using all variables in calculation at a 

time, especially when we are hesitating as to which variables should be chosen to characterize the 

production process. 

Table 2. Efficiencies and degrees of importance of all DEA specifications. 

Mk 
Variable combinations Efficiencies for all specifications 

Wk 
X1 X2 X3 Y1 Y2 DMU1 DMU2 DMU3 DMU4 DMU5 

1 0 0 1 0 1 0.40816 0.71429 1 0.17857 0.85714 0.11103 

2 1 0 0 0 1 0.32653 0.8 1 0.22857 0.57143 0.10836 

3 0 1 1 0 1 0.4898 0.71429 1 0.19048 0.85714 0.096124 

4 1 0 1 0 1 0.40816 0.8 1 0.22857 0.85714 0.09486 

5 0 1 0 0 1 0.4898 0.66667 1 0.19048 0.64286 0.091951 

6 1 1 1 0 1 0.4898 0.8 1 0.22857 0.85714 0.084255 

7 1 1 0 0 1 0.4898 0.8 1 0.22857 0.64286 0.082092 

8 1 0 0 1 0 0.40816 1 0.89286 0.85714 0.35714 0.066891 

9 1 0 0 1 1 0.40816 1 1 0.85714 0.57143 0.044747 

10 1 1 0 1 0 0.68571 1 1 0.85714 0.45 0.032067 

11 0 1 0 1 0 0.68571 0.93333 1 0.8 0.45 0.029345 

12 0 0 1 1 0 0.57143 1 1 0.75 0.6 0.024453 

13 1 0 1 1 0 0.57143 1 1 0.85714 0.6 0.024033 

14 0 1 1 1 0 0.68571 1 1 0.8 0.6 0.017232 

15 1 1 1 1 0 0.68571 1 1 0.85714 0.6 0.017074 

16 0 0 1 1 1 0.57143 1 1 0.75 0.85714 0.017036 

17 1 0 1 1 1 0.57143 1 1 0.85714 0.85714 0.01547 

18 1 1 0 1 1 0.68571 1 1 0.85714 0.64286 0.014303 

19 0 1 0 1 1 0.68571 0.93333 1 0.8 0.64286 0.012432 

20 0 1 1 1 1 0.68571 1 1 0.8 0.85714 0.008484 

21 1 1 1 1 1 0.68571 1 1 0.85714 0.85714 0.007768 

Besides, when these DEA models are extended from the constant return to scale (CRS) version to 

variable return to scale (VRS) version, the game cross DEA model may be problematic for the existence of 
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the negative efficiency scores [32] and super-efficiency DEA model may be infeasible [35,36]. However, 

the proposed approach here is independent of the CRS/VRS assumption and can be used in all cases. 

Table 3. Efficiencies based upon four different DEA models. 

DMU CES CCR GCE SuperCCR SBM 

1 0.47997 0.68571 0.6384 0.68571 0.47619 
2 0.83347 1 0.97664 1.12 1 
3 0.99283 1 1 1.5 1 
4 0.41582 0.85714 0.79878 0.85714 0.32179 
5 0.69064 0.85714 0.66703 0.85714 0.56863 

4.2. Hotel Chain 

Our last example is from a textbook [10], which measures the efficiencies of eight hotel chains. Each 

chain (DMU) has gathered information regarding six input variables (service, climate control, price, 

convenience, room comfort, and food quality) and two output variables (overall satisfaction and value). 

The same data set has also been applied by [7] and [11]. The following results are based upon 

input-oriented, constant returns to scale DEA models. 

Table 4 reports the results of applying the proposed approach, traditional CCR model, game cross 

DEA model and super-efficiency DEA model respectively to the data set. It shows that except for the 

traditional CCR model and the SBM model, the other three models can give a complete ranking for all 

departments. The results of the three models report that DMU2 ranks above other DMUs, while the results 

from the proposed model and game cross DEA model show that DMU3 ranks next to any other DMUs. 

Table 4. Results of applying four different models to the data set from [10]. 

DMU CES CCR GCE SuperCCR SBM 

1 0.29138 0.88542 0.823 0.88542 0.4156 
2 0.92407 1 1 4.2144 1 
3 0.24193 0.87312 0.80414 0.87312 0.36333 
4 0.34309 0.88315 0.85682 0.88315 0.47566 
5 0.65948 1 0.99719 1.8971 1 
6 0.82922 1 0.96786 1.2222 1 
7 0.47185 0.85697 0.8493 0.85697 0.60733 
8 0.59083 1 0.96464 1.8165 1 

Here we can find that the result of superCCR also has a high discrimination power. However, it is 

only under an individual variable set with six inputs and two outputs. Moreover, as [37] demonstrated, in 

fact, the super-efficiency model is inappropriate to rank efficient DMUs because that the efficiencies of 

efficient DMUs are not calculated under a common platform (i.e., the efficient frontier is changed for 

each efficient DMU). 

In the case of DMU5 and DMU6, the ranking order of CES varies from the GCE and superCCR. 

Because both GCE and superCCR are calculated under the same individual variable set with six inputs and 

two outputs. We consider that a special variable set is not enough to represent the actual performance of 

DMUs. In fact, in the calculation process of the CES, we find that the performance of DMU5 is less than 
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DMU6 under many variable subsets. By integrating the efficiencies of all subsets, we can obtain the CES. 

Therefore, the CES is more comprehensive and seems more representative than the GCE and superCCR. 

The Pearson’s linear correlation coefficient matrix of the five different models’ efficiencies is 

obtained as shown in Table 5. The correlation matrix indicates that the efficiencies of the proposed 

model are highly correlated with the ones based upon the traditional SBM model and the game cross 

CCR model. 

Table 5. Correlation matrix of the five different models’ efficiencies to hotel case. 

Corr CES CCR GCE SuperCCR SBM 

CES 1 0.85083 0.91554 0.75718 0.91618 
CCR 0.85083 1 0.9582 0.65395 0.94433 
GCE 0.91554 0.9582 1 0.71683 0.97824 

SuperCCR 0.75718 0.65395 0.71683 1 0.63874 
SBM 0.91618 0.94433 0.97824 0.63874 1 

5. Conclusions 

This paper presents an approach to improve the discrimination of traditional DEA methods by 

considering all possible specifications. An approach to give a ranking with more discriminant ability for 

all individual DMUs is presented, and numerical examples show that the proposed approach has some 

advantages in ranking DMUs as compared to traditional DEA models, game cross DEA model, and the 

so-called super efficiency model. In this paper, we select an input-oriented constant return to scale the 

DEA model to illustrate the examples. It can also be replaced by other DEA models. For example, 

various DEA models have been proposed to deal with undesirable outputs/inputs, such as in [38–42]. 

Thus, our proposed approach has good compatibility.  
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Appendix: The Matlab Code for the Composite Multiscale Entropy Algorithm 

function [All_Efficiency CES Weights] = Entropy_DEA(X, Y) 

%All_Efficiency: the efficiency matrix based upon standard input-oriented constant returns to 

scale %model with all alternative combination of variable set. 

m = size(X, 2); 

[n, s] = size(Y); 

set = {}; 

set1 = {}; 

set2 = {}; 

containsX = zeros(1, m); 

containsY = zeros(1, s); 

set1 = subset(X, set1, containsX, 1); 

set2 = subset(Y, set2, containsY, 1); 

set1{end+1, 1} = X; 

set2{end+1, 1} = Y; 

for i = 1 : size(set1, 1) 

 for j = 1 : size(set2, 1) 

 mark = ones(1, m+s); 

 if isequal(set1{i, 1}, zeros(n, m)) || isequal(set2{j, 1}, zeros(n, s)) 

 continue; 

 else 

 set{end + 1, 1} = set1{i, 1}; 

 set{end, 2} = set2{j, 1}; 

 for k = 1 : m 

 if isequal(set1{i, 1}(:, k), zeros(n, 1)) 

 mark(1, k) = 0; 

 end 

 end 

 for k = 1 : s 

 if isequal(set2{j, 1}(:, k), zeros(n, 1)) 

 mark(1, m+k) = 0; 

 end 

 end 

 set{end, 3} = mark; 

 end 

 end 

end  

for i = 1 : size(set, 1); 

 subX = set{i, 1}; 
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 subY = set{i, 2}; 

 All_Efficiency(:, i) = CCR_I(subX, subY); % It can be changed as any other DEA %models. 

end 

[CES Weights] = Shannon_Effciency(All_Efficiency); 

 

function [CES Weights] = Shannon_Effciency(All_Efficiency) 

[n l] = size(All_Efficiency); 

for j = 1 : l 

 for i = 1 : n 

 e_new(i, j) = All_Efficiency(i, j)/sum(All_Efficiency(:, j)); 

 end 

end 

e_log = log(e_new); 

for j = 1 : l 

 for i = 1 : n 

 e_new2(i, j) = e_new(i, j) * e_log(i, j); 

 end 

end 

e_l = -sum(e_new2)/log(n);%Shannon Entropy 

d_l = ones(1, l) - e_l; 

for i = 1 : l 

 Weights(i, 1) = d_l(i)/sum(d_l); 

 if Weights(i, 1) < 0.00009 

 Weights(i, 1) = 0; 

 end 

end 

CES = All_Efficiency * Weights; 

 

function [e w] = CCR_I(X, Y) 

m = size(X, 2); 

[n s] = size(Y);  

for i = 1:n 

 Aeq = [zeros(1, s) X(i, :)]; 

 beq = 1; 

 f = -[Y(i, :) zeros(1, m)]; 

 A = [Y -X]; 

 b = zeros(n, 1); 

 LB = zeros(s+m, 1);  

 w(:, i) = linprog(f, A, b, Aeq, beq, LB); 

 e(i, 1) = -f * w(:, i); 

end 
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