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Positioning Cylindrical Target Based on
Three-Microscope Vision System

Pengcheng Zhang, De Xu,Senior Member, IEEE, Wei Zou, and Baolin Wu

Abstract—New visual positioning and adjustment techniques
for cylinder target are presented based on three-microscope
vision system, which is used for visually guiding the manipulation
of micro-parts with an eye-to-hand configuration. An image-
based visual control (IBVC) with image Jacobian matrix and
a position-based visual control (PBVC) algorithm for the three-
microscope vision system are investigated. In IBVC, the image
Jacobian matrix of three-microscope vision system is constructed
and estimated based on the exploratory motions. Meanwhile,
the singularity of the image Jacobian matrix is analyzed by
the corresponding condition number. Then the incremental PI
controller is applied to make image features converge to the
desired ones. In PBVC, the coordinate system of three-microscope
vision is established by three clear imaging planes. The position
and orientation adjustment algorithms are employed to drive the
target to the desired pose. By the comparative experiments,the
IBVC scheme demonstrates the better performance on sensitivity
and precision, while the PBVC scheme exhibits the better
performance on stability and robustness. The pose deviations
can converge to within15µm alongX-, Y -,Z-axis directions and
within 0.02◦ around X- and Z-axis directions.

Index Terms—Multi-Sensor, Microscope Vision, Image-based
Visual Control, Position-based Visual Control, Positioning.

I. I NTRODUCTION

M ICROSCOPE vision provides high precision and robust
solutions for positioning, which has been widely ap-

plied in micromanipulation, micro-assembly, micro-injection
and micro-electro mechanical systems. In a monocular micro-
scope system, because of the small depth-of-field and field-
of-view, only three degrees that are translations perpendicular
to the optical axis of lens and rotation around the optical axis
are sensitive to motions. The monocular microscope system
is approximately treated as planar vision system. Therefore,
normally, multiple microscope systems are integrated in order
to detect the pose of a target, for instance, three-microscope
vision system in which the optical axes are approximately
orthogonal to each other is very popular for positioning
cylindrical target, as shown in Fig.1.

In order to achieve a much higher positioning accuracy, the
actuator should be guided through continuous visual feedback
in real-time. Therefore visual servoing scheme based on multi-
microscope vision system becomes an important issue. Many
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approaches, such as position-based visual servoing, image-
based visual servoing, and 2.5D visual servoing, have been
proposed for positioning. Chaumetteet al described visual
servoing based on interaction matrix related to image features
or 3D parameters of target [1], [2]. The visual error can
be expressed in image space, which is commonly known as
IBVC. It can be used to reconstruct the pose error as the input
of control law in Cartesian space too, which is commonly
known as PBVC. Therefore, two visual control schemes based
on multi-microscope vision system are discussed in this work.

In IBVC scheme with image Jacobian matrix,the estimation
of image Jacobian matrix which relates the changes of image
features to the changes of pose is usually involved. In [3],
[4], an estimation technique of Jacobian matrix based on
exploratory motions was proposed on monocular macro-vision
system. However, when the displacement of the motion is too
large, the control system may reach a local minimum or be
unstable because of the singularity of the Jacobian matrix.
In order to improve the stability, a dynamic Quasi-Newton
method was presented to estimate the Jacobian matrix through
minimizing a nonlinear objective function at each step [5].To
develop an dynamic controller, the depth-independent Jacobian
matrix by eliminating the depth in traditional Jacobian matrix
and a new adaptive controller for image-based dynamic control
of robot manipulator were investigated, which combined the
Slotine-Li method with on-line minimization of the errors
between the real and estimated projections of the feature points
on image plane [6], [7]. However, the proposed methods in [6],
[7] are not suitable to the microscope vision system becauseof
its vision system configuration. For the monocular vision sys-
tem, different features, such as points, lines, circles, quadrics,
and distance, can be mixed by adding features to the vector
of pose error and by stacking the corresponding Jacobian
matrices. Furthermore, if the number or the nature of visual
features is modified over time, the Jacobian matrix and the
vector of pose error are modified consequently [1]. For multi-
vision system, an approach for the real-time estimation of the
pose of a target object was presented by using the extended
Kalman filter and only optimal image features were considered
in feature extraction [8]. In [9], a low-level sensor fusion
scheme for positioning multi-sensor robot was implemented.
In [10], a 3D visual servoing scheme based on multi-camera
was designed and the object’s pose was estimated by solving
Jacobian matrix online. However, the existed methods above
are not adequate to multiple microscope vision systems since
there are not any common features in different microscope
vision systems. It is necessary to combine different features
and Jacobian matrixes from different microscopes in order
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Fig. 1. Three-microscope vision system configuration

to obtain the relationship between the changes of image
features in each microscope and the pose changes in whole
microscopes Cartesian space.

In PBVC scheme, the position and orientation of the target
can be reconstructed by visual information. Many solutions
in the literatures proposed the precise and robust 3D visual
control in microscopes vision system. First of all, for the
disadvantages of the small depth-of-field and field-of-view,
the parametric microscope model and calibration algorithm
specifically for optical microscopes were described in [11],
[12]. Based on monocular microscope vision system, in [13],
[14], the target pose was calculated in real-time by a CAD
model-based tracking algorithm at multi-scale magnification
and accurate micro-positioning scheme was demonstrated. For
multi-microscope vision, in [15]–[18], a CAD model based
visual tracking system was proposed in order to be well suited
for flexible automation and assembly of complex 3D geome-
tries. A full six DOFs micro-assembly system paired with
advanced vision was demonstrated, in which the Cartesian
coordinates of the manipulated micro-part were determined
[19], [20]. However, the calibration of microscope vision
system is complex. Consequently, no position-based visual
control solution has been proposed to cope with the case
that no common features exist in different microscope vision
systems.

The motivation of this paper is to develop new positioning
methods based on three-microscope vision system to handle
the cylinder’s pose estimation and the corresponding pose
adjustment, in which the IBVC and PBVC based on three-
microscope vision system are investigated.

The rest of this paper is organized as follows. Section
II describes the definition of the Jacobian matrix of three
microscopes vision system. The IBVC scheme is presented, in
which the Jacobian matrix for cylindrical target is estimated
by exploratory motions. Section III presents the establishment
of the coordinate system for three-microscope vision system.
The target position and orientation are reconstructed; then the
controller drives the target to the desired pose. The experi-
ments and error analysis are given in section IV. Visual control
experiments by the constraints on three translational degrees
of freedom (DOFs) and five pose DOFs are conducted, in

which the same initial, desired poses of robot and the stopping
condition are set in the point-to-point procedure. Finallythe
paper is concluded in section V.

II. I MAGE-BASED V ISUAL CONTROL

A. Estimation of Jacobian Matrix Based on Three-Microscope
Vision System

In this section, the IBVC algorithm is introduced to position
and adjust the cylindrical target. The aim of the vision-based
control scheme is to minimize the errore(t), which is typically
defined by [1], [2]

e(t) = s (m(t), ak)− s∗ (1)

where the vectorm(t) is a set of image features, parameter
ak represents potential additional knowledge about the vision
system ands∗ contains the desired values of features. The
variation of robot’s end-effector and the variation of image
features are related by

∆s = Ls∆r (2)

where∆s is the change of image features,∆r is the motion
of the end-effector of robot andLs is the image Jacobian
matrix. In this paper, the whole micro-vision system consists of
three microscope vision equipments, as shown in Fig. 1. Two
vertical microscope vision systems which are used to view the
opposite end side of the cylindrical object provide two ellipses
projections. One horizontal microscope vision system which is
used to view the profile side of the cylindrical object provides
two irregular edges and two lines projections. Lines, ellipses
and edges features exist in cylindrical target. Therefore,the
followings are the theoretical derivation of the image Jacobian
sub-matrices of line, ellipse and edge.

Firstly, an ellipse can be expressed tose = (xc, yc, a, b, θ),
with its center, axes and rotation angle.xc, yc are the center
of ellipse, a, b are the length of ellipse axes andθ is the
ellipse rotation angle. The image Jacobian matrix of ellipse
corresponding to the robot’s motion is given by

Le = [ LT
xc LT

yc LT
a LT

b LT
θ ]

T (3)

whereLT
xc, L

T
yc, L

T
a , L

T
b , L

T
θ are the row vectors of the image

Jacobian matrix based on the ellipse features vectorse and the
robot’s motion in camera coordinate system. Here the Jacobian
sub-matrixLe describes the relationship between the errorse−
s∗e as shown in formula (4) in image space and the motion of
target in Cartesian space.

se − s∗e =





xc−x∗

c

yc−y∗

c

a−a∗

b−b∗

θ−θ∗



 (4)

Secondly, the line can be represented by vector(ρ, α)

x cosα+ y sinα− ρ = 0 (5)

where(x, y) is the point on the line,ρ is the distance from
the coordinate origin to the line andα is the angle between
the normal direction of line and theX-axis positive direction.
For the line, the image Jacobian matrix corresponding to the
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robot’s motion is defined by

Ll = [ LT
ρ LT

α ]
T (6)

where LT
ρ , L

T
α are the row vectors of the image Jacobian

matrix based on the line features vectorsl and the robot’s
motion in camera coordinate system. Here the Jacobian sub-
matrix Ll describes the relationship between the errorsl − s∗l
as shown in formula (7) in image space and the motion of
target in Cartesian space.

sl − s∗l =
[

ρ−ρ∗

α−α∗

]

(7)

where the value ofα − α∗ is brought back in the interval
[−π, π].

Thirdly, for the irregular edges, the changes of the edges’
center (x0, y0) approximately express its changes in image
space. So the Jacobian sub-matrixLd can be defined by

Ld = [ LT
x0 LT

y0 ]
T (8)

whereLT
x0, L

T
y0 are the row vectors of the image Jacobian

matrix based on the point features vectorsd and the robot’s
motion in camera coordinate system. The Jacobian sub-matrix
Ld describes the relationship between the errorsd − s∗d as
shown in formula (9) in image space and the motion of target
in Cartesian space

sd − s∗d =
[

x0−x∗

0

y0−y∗

0

]

(9)

Correspondingly, if the valuable image features of one
cylinder target include two ellipses, two lines and edges center,
the Jacobian matrix of the whole vision system can be stacked
by each sub-matrix of the microscope vision equipments. It is
expressed in

Ls =









LT
e1

LT
e2

LT
l1

LT
l2

LT
d









=















































LT
xc1

LT
yc1

LT
a1

LT
b1

LT
θ1

LT
xc2

LT
yc2

LT
a2

LT
b2

LT
θ2

LT
ρ1

LT
α1

LT
ρ2

LT
α2

LT
x0

LT
y0















































(10)

As described above, the solution of Jacobian matrix needs
the depths of features, which are difficult to determine in
monocular microscope vision. Yet the ranges of motion of
the target keep at the level of millimeter in microscope vision
system. For example, in this paper the translation ranges of
target positioner alongX-, Y -, Z-axis directions are±50mm
and the rotation ranges aroundX-, Y -, Z-axis are±3◦. In
addition, the object is most likely to remain in the small depth-
of-field and the field-of-view of micro-vision system during
the visual control task. The workspace of positioner is so
narrow that the positioner can only move within a small range.

Fig. 2. Image-based visual control architecture

Fig. 3. The coordinate system of three-microscope vision

Therefore, static estimation of image Jacobian matrix based
on exploratory motion is practical for visual control without
calibration [4]. The goal of exploratory motion is to gain the
necessary information about the robot goal-reaching motions
in the feature space as well as to maintain accurate estimation
of the image Jacobian matrix. The motion vector∆r can
be acquired by systematically moving small displacements.
Here on condition that the target is not out of the field-of-
view, in order to capture all possible movements of the end-
effector, the end-effector of robot is moved regularly along
the direction of every degree of freedom. The feature vector
∆s can be obtained by the corresponding feature extraction in
image space.

The useful image features of cylinder in image space are
ellipses and lines. The cylindrical target motion determines
the size of the motion vector∆r. Here six DOFs on pose are
taken for example. So∆s and∆r can be expressed as follows.

∆s =





∆se1
∆se2
∆sl1
∆sl2
∆sd



 =































∆x1

∆y1

∆a1

∆b1
∆θ1
∆x2

∆y2

∆a2

∆b2
∆θ2
∆ρ1

∆α1

∆ρ2

∆α2

∆x0

∆y0































, ∆r =







∆tx
∆ty
∆tz
∆θx
∆θy
∆θz






(11)

where∆xi,∆yi,∆ai,∆bi,∆θi(i = 1, 2) are the changes of
ellipses features in image space,∆ρi,∆αi(i = 1, 2) are the
changes of line features,∆x0,∆y0 are the changes of edges’
center,∆tx,∆ty,∆tz,∆θx,∆θy,∆θz are the pose changes
of cylinder in Cartesian space, here for the cylindrical target,
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∆s is a 16 × 1 matrix and∆r is a 6 × 1 matrix. In order
to uniquely control the robot end-effector, the features space
dimension must be greater than or equal to the configuration
space dimension. Aftern steps motions,∆s and∆r can be
respectively composed by configuration space displacements
∆sn and feature space displacements∆rn, which are16× n
and6× n matrices as shown in (12)

∆sn =































∆x11 ∆x12 ∆x1n

∆y11 ∆y12 ∆y1n

∆a11 ∆a12 ∆a1n

∆b11 ∆b12 ∆b1n
∆θ11 ∆θ12 ∆θ1n
∆x21 ∆x22 ∆x2n

∆y21 ∆y22 ∆y2n

∆a21 ∆a22 ... ∆a2n

∆b21 ∆b22 ∆b2n
∆θ21 ∆θ22 ∆θ2n
∆ρ11 ∆ρ12 ∆ρ1n

∆α11 ∆α12 ∆α1n

∆ρ21 ∆ρ22 ∆ρ2n

∆α21 ∆α22 ∆α2n

∆x01 ∆x02 ∆x0n

∆y01 ∆y02 ∆y0n































, ∆rn =







∆tx1 ∆tx2 ∆txn

∆ty1 ∆ty2 ∆tyn
∆tz1 ∆tz2 ∆tzn
∆θx1 ∆θx2 ... ∆θxn

∆θy1 ∆θy2 ∆θyn
∆θz1 ∆θz2 ∆θzn







(12)
So the image Jacobian matrixLs can be solved according to
(2) by using the pseudo-inverse of the matrix∆rn. Ls is a
16× 6 matrix, shown as follows.

Ls = ∆sn∆r+n

=































∆x11 ∆x12 ∆x1n

∆y11 ∆y12 ∆y1n

∆a11 ∆a12 ∆a1n

∆b11 ∆b12 ∆b1n
∆θ11 ∆θ12 ∆θ1n
∆x21 ∆x22 ∆x2n

∆y21 ∆y22 ∆y2n

∆a21 ∆a22 ... ∆a2n

∆b21 ∆b22 ∆b2n
∆θ21 ∆θ22 ∆θ2n
∆ρ11 ∆ρ12 ∆ρ1n

∆α11 ∆α12 ∆α1n

∆ρ21 ∆ρ22 ∆ρ2n

∆α21 ∆α22 ∆α2n

∆x01 ∆x02 ∆x0n

∆y01 ∆y02 ∆y0n





































∆tx1 ∆tx2 ∆txn

∆ty1 ∆ty2 ∆tyn
∆tz1 ∆tz2 ∆tzn
∆θx1 ∆θx2 ... ∆θxn

∆θy1 ∆θy2 ∆θyn
∆θz1 ∆θz2 ∆θzn







+

(13)

where∆r+n is the pseudo-inverse of the matrix∆rn.
In [4], when the robot moves a new step, the new vec-

tors will be substituted the first column vector of matrices
∆sn,∆rn. And the new pair includes the most accurate
information about the current Jacobian matrix. Then the Ja-
cobian matrix is updated dynamically with the changing of
matrices∆sn,∆rn. Considering the narrow workspace of the
microscope vision and the stability in visual control procedure,
the Jacobian matrix is treated to be approximately constant.
According to the estimation off-line of image Jacobian matrix
Ls based on exploratory motion, the new pose errors of
cylindrical target can be solved by the pseudo-inverse of whole
system’s Jacobian matrix.

[∆tx ∆ty ∆tz ∆θx ∆θy ∆θz ]
T
=

L+
s [∆x1 ∆y1 ∆a1 ∆b1 ∆θ1 ∆x2 ∆y2 ∆a2 ∆b2 ∆θ2 ∆ρ1 ∆α1

∆ρ2 ∆α2 ∆x0 ∆y0]
T (14)

where parameters∆tx,∆ty,∆tz,∆θx,∆θy,∆θz are the new
pose errors,∆x1,∆y1,∆a1,∆b1,∆θ1,∆x2,∆y2,∆a2,∆b2,
∆θ2,∆ρ1,∆α1,∆ρ2,∆α2,∆x0,∆y0 are the new changes of
image features andL+

s = (LT
s Ls)

−1LT
s . So far the relative

motions of robot end-effector on six degrees of freedom are
known, which can be used as the input of controller.

In order to obtain accurate Jacobian matrix, the target will

traverse the whole range of motion in directions of six degrees
of freedom. In practice, in some cases some target motions
will cause very small image motions, that is to say, the
motions have low perceptibility. Moreover, not every relative
motion contributes equally to estimate Jacobian matrix. Hence,
a decaying mechanism is applied to reflect the decreasing
confidence in measurements [3], [21]. The condition number
of LsL

T
s reflects the ratio between the major and minor

axes of the confidence ellipsoid, in other words, between
the most represented and the under-represented directions.
As the confidence ellipsoid departs from the shape of ann-
dimensional sphere, the condition number increases. Another
exploratory motion needs to be introduced only if the condition
number ofLsL

T
s goes beyond a certain threshold. So after the

solution off-line of the image Jacobian matrix, its correspond-
ing condition number will be calculated in order to determine
its singularity. This helps avoiding the use of singular image
Jacobian matrix in the visual control procedure, which is more
practical for three-microscope vision system.

B. Control System Design for IBVC

From the previous section, the robot pose errors
∆tx,∆ty,∆tz,∆θx,∆θy,∆θz between the current and the
desired ones are known. The control objective is to minimize
the errors by choosing an appropriate control output vectorat
each sampling time. The control scheme for eliminating the
pose deviations of the end-effector is the discrete incremental
PI controller. The linear control law is given by










∆utx (k)

∆uty (k)

∆utz (k)

∆uθx (k)

∆uθy (k)

∆uθz (k)











= Kp

















∆tx(k)
∆ty(k)
∆tz(k)
∆θx(k)
∆θy(k)

∆θz(k)









−









∆tx(k−1)
∆ty(k−1)
∆tz(k−1)
∆θx(k−1)
∆θy(k−1)

∆θz(k−1)

















+Ki









∆tx(k)
∆ty(k)
∆tz(k)
∆θx(k)
∆θy(k)

∆θz(k)









(15)
where parameters ∆utx(k),∆uty (k),∆utz (k),∆uθx(k),
∆uθy(k),∆uθz(k) are the output of the PI controller at the
k-th control cycle,∆tx(k),∆ty(k),∆tz(k),∆θx(k),∆θy(k),
∆θz(k) are the pose errors at thek-th control cycle.Kp is
proportional factor, which is a diagonal matrix.Ki is integral
factor, which is also a diagonal matrix. The Ziegler-Nichols
method is employed to tune the PI parameters.

The control structure is shown in Fig. 2. The pixel co-
ordinates of images features from each microscope vision
system are obtained. Then the errors of images features
between the current and desired ones are calculated. The pose
errors of robot∆tx,∆ty,∆tz,∆θx,∆θy,∆θz are obtained
by the pseudo-inverse of the Jacobian matrix, which are
treated as the input of the PI controller. Finally the output
∆utx ,∆uty ,∆utz ,∆uθx ,∆uθy ,∆uθz are used to be as the
input of the robot itself controller.

III. POSITION-BASED V ISUAL CONTROL

A. The Coordinate System of Three-Microscope Vision

A new calibration technique of coordinate transformation
with a small sphere based on three-microscope vision system
is proposed. Each microscope vision system has one virtual
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clear imaging plane, which is constructed by using a high-
precision positioning robot with a calibration sphere. The
calibration sphere is moved accurately alongX-, Y -, Z-axis
directions within the depth of field of each microscope vision
system. Three virtual planes called clear imaging planes of
three-microscope vision system can be formed, which showed
the workspace of each microscope. In essence, the three
microscope coordinate systems are associated with each other
by the robot coordinate system. In addition, the calibration
technique overcomes the limitation of the orthogonality of
the multi-optical axes. Each microscope vision system can
be treated as planar vision and three ones provide a 3D
micromanipulation scene, which can avoid complicated depth
estimation. The coordinate system of three-microscopes vision
system is established as shown in Fig. 3.XeYeZe is the robot
coordinate system.Xe1Ye1Ze1, Xe2Ye2Ze2 and Xe3Ye3Ze3

are the reference coordinate systems of three microscope
vision. Specifically,the directions alongXe1, Xe2, Xe3-axis are
parallel to the direction alongZe-axis, the directions along
Ye1, Ye2, Ye3-axis are parallel to the direction alongXe-axis
and the directions alongZe1, Ze2, Ze3-axis are parallel to
the direction alongYe-axis. Xw1Yw1Zw1, Xw2Yw2Zw2 and
Xw3Yw3Zw3 are the coordinate systems on the clear imag-
ing planes. Furthermore,Xe1Ye1Ze1 is the world coordinate
system of three-microscope vision.

B. Position Adjustment

Two vertical microscope vision systems provide two ellipses
projections. The horizontal microscope vision system provides
two irregular edges and two lines projections. Because of
without any marker on end sides of the cylindrical target,
one rotation of the cylindrical target around its axis cannot
be measured. The images features including two ellipses, two
irregular edges and two lines can be applied to estimate the
position of the cylindrical target.

Here the cylindrical target’s position can be solved by the
Cartesian coordinates of the ellipses centers on the cylindrical
end sides. So the position along theXw-, Yw-, Zw-axis can
be represented by

Px = (x1+x2)/2, Py = (y1+ y2)/2, Pz = (z1+ z2)/2 (16)

where(x1, y1, z1), (x2, y2, z2) are the Cartesian coordinates of
two ellipses’ centers.

Each image plane and the corresponding clear imaging
plane of three microscopes are parallel approximately. In
addition, the workspace of the whole vision system is so
narrow that the robot moves within a small range. Therefore
the relationship between the point(xwi, ywi, zwi) on the clear
imaging plane of each microscope vision system and its image
projection point(ui, vi) could be related by the homography
matrix H ′

i(i = 1, 2, 3), as shown in (17).

s′
[

ui
vi
1

]

= H ′

i

[

xwi
ywi

1

]

(17)

where H ′

i is a 3 × 3 matrix and is defined up to a scale
factor. Usually, it is normalized toHi. The technique based on
maximum likelihood criterion can be employed to estimate the
matrix Hi [22]. As described above, the coordinate systems

of three microscopes are related to each other by the robot
coordinate system. Therefore, the world coordinates of points
P1, P2 can be calculated by the ellipses centers and the edges
centers.

Here the solution ofP1 world coordinates is taken for
example. Firstly, theP1 coordinates alongXw1- andYw1-axis
directions in the coordinate system of clearing imaging plane
are calculated by (18)

[ xw1
yw1

1 ]
T
= H−1

1 [ u1 v1 1 ]
T (18)

Secondly, the coordinates ofP1 are transformed from the
Xw1Yw1Zw1 to theXe1Ye1Ze1 by (19)

[

xe1
ye1
ze1
1

]

=

[

cos θ1 0 sin θ1 0
0 1 0 0

− sin θ1 0 cos θ1 0
0 0 0 1

] [

xw1
yw1

0
1

]

(19)

whereθ1 is the angle between the1st clear imaging plane and
the coordinate planeXe1Oe1Ye1, which is obtained by (20)

θ1 = arccos(C/
√

A2 +B2 + C2) (20)

whereA,B,C are the parameters of the1st clear imaging
plane equationAx+By+Cz = 1. So far the world coordinates
of P1 alongXe1- andYe1-axis directions have been calculated,
which arex1 = xe1, y1 = ye1.

The world coordinate ofP1 alongZe1-axis direction can be
solved by the center pixel coordinates of two irregular edges
in the 2nd microscope vision system. Assuming(u2, u2) are
the pixel coordinates of the edge center of one cylindrical
end side. Firstly, similar to formulae (18) (19), the edge
center coordinates are transformed from theXw2Yw2Zw2 to
the Xe2Ye2Ze2. Secondly, the transformation between the
Xe2Ye2Ze2 and theXe1Ye1Ze1 is constructed through two
origins of coordinatesOe1, Oe2. Finally the world coordinate
of P1 along Ze1-axis direction in theXe1Ye1Ze1 can be
obtained by (21), which isz1 = e1ze2.

[ e1xe2
e1ye2
e1ze2

1

]

=

[

1 0 0 e1txe2

0 1 0 e1tye2

0 0 1 e1tze2
0 0 0 1

]

[

xe2
ye2
ze2
1

]

(21)

where e1txe2, e1tye2 and e1tze2 are the translation distances
between the first calibration point on the1st clear imaging
plane and the one on the2nd clearing imaging plane. In
summary, theP1 coordinates in the whole vision system
are P1 = (x1, y1, z1) = (xe1, ye1,

e1ze2). However, due
to the optical axis are not orthogonal absolutely, this is an
approximate estimation. The solution ofP2 world coordinates
are the similar to the above.

C. Orientation Adjustment

Many methods are used to represent the orientation of a
rigid target in three-dimensional space, such as the rotation
matrix, the triple of Euler angles, the unit quaternion and
the axis-angle representation. However, certain functions of
Euler angles have singularities and they are less accurate than
unit quaternion when used to integrate incremental changesin
rotation [23]. As an alternative to Euler angles and the unit
quaternion, the rotation vector and angle are adopted, which
lack both the singularities of the Euler angles and the quadratic
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Fig. 4. Orientation adjustment based on two rotational DOFsbased on three-
microscope vision coordinate system

constraints of the unit quaternion. The axis-angle represen-
tation is employed and the axis-angle representation(f, θ)
parameterizes a rotation by an unit vectorf = (fx fy fz),
wheref2

x + f2
y + f2

z = 1, indicating the direction of an axis
and an angleθ describing the magnitude of the rotation around
the axis, which is also known as the exponential coordinates
of a rotation.

In this paper orientation adjustment based on two rotation
DOFs is discussed, which is defined as the orientation vector
adjustment and a transformation from the one orientation
vectorv1 to another vectorv2. The vectorf can be treated as
the axis of the rotation transformation, which is calculated by
the cross product between vectorv1 andv2. The angleθ can
be obtained from the dot product between ones, as shown in
following formula.

f = fxi+ fyj + fzk = v1 × v2

θ = arccos

(

v1 · v2
|v1| |v2|

)

(22)

Then the rotation transformation can be treated as the com-
mon result of multiple sub-procedures. The matrixRot (f, θ)
is derived by the multiplication of multiple sub-matrices
Rot (f, dθ), wheredθ = θ/n, n is a constant integer. Because
dθ is approximate to zero, the following formula can be
obtained.

Rot (f, dθ) =





1 −fzdθ fydθ
fzdθ 1 −fxdθ
−fydθ fxdθ 1



 (23)

Therefore, the differential transformation of the orientation can
be obtained by [24]

∆R = [Rot (f, dθ)− I] =
[

0 −fzdθ fydθ

fzdθ 0 −fxdθ
−fydθ fxdθ 0

]

=

[

0 −∆θz ∆θy
∆θz 0 −∆θx
−∆θy ∆θx 0

]

(24)

where∆θx,∆θy,∆θz are three sub-vectors aroundX-, Y -, Z-
axis. The rotation transformation from the orientation vector
v1 to the orientation vectorv2 can be divided into multiple
sub-transformations, where each differential increment in each
sub-transformation can be expressed by∆θx = fxdθ,∆θy =
fydθ,∆θz = fzdθ.

D. Control System Design for PBVC

The PBVC structure is shown in Fig. 5. The target pose are
obtained via the position calculation of the feature pointsin
the three-microscope vision system. Then the robot position
errors ∆tx,∆ty,∆tz and orientation errors∆θx,∆θy,∆θz

Fig. 5. Position-based Visual Control Architecture

Fig. 6. Experimental system

can be obtained by the coordinate transformation between
the three-microscope vision coordinate system and the robot
coordinate system. As discussed in formula (15), the discrete
incremental PI controller is employed to eliminate the position
and orientation errors of the end-effector. Finally the output
∆utx ,∆uty ,∆utz ,∆uθx ,∆uθy ,∆uθz are used to be as the
input of the robot itself controller; meanwhile, its limiting
values are set. Similarly, the Ziegler-Nichols method is also
employed to tune the PI parameters.

IV. EXPERIMENT AND ANALYSIS

A. Experiment System

Two vertical microscopic views and one horizontal micro-
scopic view provided a 3D micromanipulation scene, which
could avoid complicated depth estimation. The images in
horizontal direction and the images in vertical direction were
integrated to feedback the information of the target. Therefore,
three images were simultaneously employed for the position-
ing and tracking of 3D object. The experimental configuration
was shown in Fig. 6.

The image system included Navistar lens and Point Grey
GRAS-50S5M-C. The working distance of1st and the3rd
lens were51mm; the2nd was113mm. The depth of field of
the1st and the3rd were0.43mm and the2nd was1.73mm.
The maximum resolution of the CCD was2448(H)×2048(V )
in pixel. In order to maintain the same imaging direction with
the3rd vision system, the1st vision system was operated by
horizonal flip. The micro-manipulator was a six-link parallel
robot named PI-M810. Three DOFs on translation and three
DOFs on rotation were achieved accurately.

Due to the high positioning precision of the robot in the
experiment, which was at level of several microns, such as the
repeatability are±2µm,±2µm,±0.5µm on translation direc-
tions and±3µrad,±3µrad,±15µrad on rotation directions,
the initial and desired poses of robot could be considered asthe
reference for evaluating the performances of different visual
control schemes. In order to verify the performances of the
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proposed method, the point-to-point motions were carried out,
in which the initial point coordinates were set to be same. Then
the errors between the coordinates after convergence and the
desired ones showed the performances of different algorithms.

B. Position Adjustment Based on Three DOFs

In the first experiment, the IBVC with Jacobian ma-
trix was employed to handle the target on three trans-
lation DOFs. Firstly, the robot was driven to the initial
position PA(0.7, 0.3, 0.1)mm and the desired position was
PB(−0.6,−0.1, 0.3)mm. Correspondingly, the initial and de-
sired image coordinates of the cylindrical target’s features
were recorded. The parameters values of the incremental
PI controller were{0.08, 0.56}, {0.08, 0.52} and{0.06, 0.42}
along theXe-, Ye-, Ze-axis directions. The position adjustment
would finish when the errors were less than 10µm along
the Xe-, Ye-, Ze-axis directions. The Jcaobian matrix was
estimated with the method in the section II.A; importantly,
only three robot DOFs were used in the Jacobian matrix
estimation, listed in (25).

Ls =





























−39.43 −12.48 6.572
−295.2 −93.49 49.20
−0.455 −0.144 −0.076
−15.25 −4.832 2.543
−9.121 −2.888 1.520
−48.91 −15.49 8.153
−255.6 −80.95 42.61
3.110 −0.9849 −0.5183
1.182 0.374 −0.196
1.122 0.355 −0.187
−175.9 −55.69 29.31
−0.211 −0.038 −0.020
−179.4 −56.82 9.151
−0.0055 −0.0017 0.0009
−0.0055 −0.0017 9.150
−178.2 −56.44 29.70





























(25)

It only needed 8 steps to converge to the desired position
and the position of robot converged to(−0.593,−0.099,
0.306)mm. The experiment results were shown in Fig. 7. The
position errors were calculated by matrixLs and the changes
of image features used in the IBVC could represent fully the
movement on translation direction, shown in Fig. 7(a),7(b).
It could be found that the position errors converged within
10µm, which were decreased fast and steadily. The image
trajectories of target was demonstrated in Fig. 7(c).

As a comparison, the PBVC algorithm was conducted in
the same point-to-point control procedure. The initial, desired
poses of robot and the stopping condition were the same as
described above. Different from the above, the initial and de-
sired position of the cylindrical target in the three-microscope
vision system were calculated and recorded. Therefore, by
comparing in the experiment conditions of these two methods,
the similarities were the same robot position in the initialand
desired states; the differences were that the desired ones were
the image features in the former and the target position in the
latter. The parameters values of the incremental PI controller
were {0.08, 0.6}, {0.06, 0.7} and {0.08, 0.6} alongXe-, Ye-
, Ze-axis directions. The normalized homography matrices
Hi(i = 1, 2, 3) between the clear imaging plane of each
microscope vision system and its image plane were calibrated,
as shown in formula (26). The calibration sphere and three
virtual clear imaging planes of three-microscope vision were
given in Fig. 8(a). It could be seen that the sphere was on the

three calibration planes of the three microscope vision systems,
respectively.

H1 =
[

322.014 8.225 597.515
8.604 −322.408 1617.161
0.0006 0.0008 1

]

H2 =
[

198.598 2.351 1665.285
1.278 −199.560 1376.913

−0.0006 −0.0002 1

]

H3 =
[

284.812 −5.353 654.692
−6.033 −287.255 1565.978
−0.006 0.0001 1

]

(26)

whereH1, H2, H3 were the normalized homography matrices
in the 1st, 2nd and3rd microscope vision systems.

It needed 10 steps to converge to the desired position
(−0.592,−0.094, 0.297)mm. The target position errors in
robot coordinate system were shown in Fig. 8(b). Fig. 8(c)
displayed the image trajectory in three image spaces. Since
the Cartesian error was defined with respect to the stationary
desired target frame, the ideal end-effector Cartesian trajectory
was expected to be a straight line from the initial to the desired
one when the robot dynamics was ignored. In practice, due to
the effects of the robot dynamics and joint coupling, the exact
straight-line Cartesian trajectory might not be achieved.

Fig. 9. Initial and desired pose of the cylindrical target

C. Pose adjustment based on five DOFs

The initial robot pose was set at(0.7mm, 0.3mm, 0.1mm,
0◦, 0◦, 0◦) and the desired one was set at(−0.6mm,
−0.1mm, 0.3mm, 0.3◦, 0◦,−0.6◦), which were obtained from
the robot controller. The corresponding images of the initial
and desired pose were shown in Fig.9.

In the first experiment the IBVC with Jacobian matrix
was employed to control three translational and two ro-
tational DOFs from the initial pose to the desired one.
In this procedure, the parameters values of the incre-
mental PI controller were set to{0.05, 0.6}, {0.06, 0.7},
{0.05, 0.8}, {0.06, 0.8}, {0.07, 0.45} on the five DOFs direc-
tions. The pose adjustment would finish when the errors were
less than 15µm along theXe-, Ye-, Ze-axis and0.02◦ around
theXe- andZe-axis. The Jacobian matrix was estimated with
the method in the section II.A; importantly, only five robot
DOFs were used in the Jacobian matrix estimation, listed in
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Fig. 7. Image errors, position errors and image trajectory based on IBVC by the constraints on three translational DOFs.(a) Image errors of some features
which represent the target motions well. (b) Position errors of the target in robot coordinate system. (c) Trajectoriesof image features including ellipses and
edges centers in three image spaces.
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Fig. 8. Three virtual clear imaging planes, position errorsand image trajectory based on PBVC by the constraints on three translational DOFs. (a) The
calibration sphere and three virtual clear imaging planes of three-microscope vision. (b) Position errors of target inrobot coordinate system. (c) Trajectories
of image features including ellipses and edges centers in three image spaces.

(27).

Ls =





























−25.89 −10.79 4.316 6.47 −12.94
−226.9 −94.54 37.82 56.72 −113.45
0.2200 −0.092 0.0367 0.055 −0.11
−15.35 −6.399 2.559 3.84 −7.679
−11.44 −4.768 1.907 2.86 −5.722
−40.27 −16.78 6.712 10.06 −20.13
−181.5 −75.63 30.25 45.37 −90.76
3.68 1.534 −0.614 −0.092 1.84
1.78 0.744 −0.297 −0.044 0.893

−0.7192 −0.299 −0.119 −0.179 −0.359
−123.44 −51.43 20.57 30.86 −61.72
−0.4359 −0.181 0.072 −0.108 −0.217
−127.1 −52.96 21.19 31.78 −63.56
−0.3180 −0.132 0.053 0.079 −0.159
−73.99 −30.83 12.33 18.49 −36.99
−132.37 −55.15 22.06 33.09 −66.18





























(27)

Since the changes of some features were not obviously during
the target movement, not all features which were adopted in
the Jacobian matrix estimation played the same roles in the
representation of the motions. In the whole vision coordinate
system, the features of ellipses projections represented the
target translations along theXe-,Ze-axis directions and the ro-
tation around theYe-axis well; the center of edges projections
represented the target translation along theXe-,Ye-axis direc-
tion well; and the features of lines projections represented the
target rotation around theZe-axis direction well. Therefore,
the Jacobian matrix of the cylinder in the three-microscope
vision system should integrate all image features which could
represent the motions in all DOFs. And the image errors of
some features which represented the motions on translation

directions well were revealed in Fig. 10(a). The angle of
line represented the rotation well, shown in Fig. 10(b). The
translation and rotation errors in robot coordinate systemcould
converge within15µm and0.02◦, as shown in Fig. 10(c),10(d),
which exhibited the quick convergence and high precision.
The steps to converge to the desired pose were within 10
steps. The actual robot pose could arrive at(−0.591mm,
−0.095mm, 0.29mm, 0.294◦, 0◦,−0.602◦) in robot coordi-
nate system.

Similarly, in the second experiment the same point-to-
point motion was applied and the PBVC was employed
to control the target to converge to the desired pose from
the current one. The initial, desired poses of robot and the
stopping condition were the same as described above. The
parameters values of the incremental PI controller were set
to {0.08, 0.43}, {0.06, 0.67}, {0.08, 0.52}, {0.04, 0.45} and
{0.08, 0.33}. The homography matrices between each clear
imaging plane and its image plane were the same to the
formula (26). Experiment results showed that pose errors
could converge to within15µm along theXe-, Ye-, Ze-axis
directions and0.02◦ around theXe-, Ze-axis directions within
12 steps shown in Fig. 11(a), 11(b). The actual robot pose
could arrive at(−0.592mm,−0.095mm, 0.292mm, 0.286◦,
0◦,−0.588◦) in robot coordinate system. After a series of ex-
periments, the PBVC showed steady and robust performance.
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Fig. 10. Image errors, pose errors and image trajectory based on IBVC by the constraints on three translational and two rotational DOFs. (a) Image errors of
some features which represent the target motions on translation directions well. (b) Angle errors of line features which represent the target motions on rotation
direction well. (c) Position errors of the target in robot coordinate system. (d) Orientation errors of the target in robot coordinate system. (e) Trajectories of
image features including ellipses and edges centers in three image spaces.
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(c)

Fig. 11. Pose errors and robot trajectory based on PBVC by theconstraints on three translational and two rotational DOFs. (a) Translation errors of the robot
alongX-, Y -, Z-axis directions in robot coordinate system. (b) Rotation errors of the robot aroundX- andZ-axis directions in robot coordinate system. (c)
Trajectory of the robot in robot coordinate system.

Both in IBVC and PBVC schemes, the pose errors of robot
that were obtained from its controller in robot coordinate
system were different from the pose errors of the robot that
were calculated by the three-microscope vision system. For
example, the initial translation errors alongYe-axis direction
that were0.53mm in Fig. 10(a) and0.57mm in Fig.11(a)
were greater than the initial error0.4mm in robot coordinate
system. The reason was that the end of the robot linked to the
target by means of a connecting rod. The rotational center
of the robot coordinate system was not the origin of the
world coordinate system of three-microscope vision. In the
experiments, the changes of target’s orientation induced bigger

changes of the robot’s pose, which behaved in the initial error
alongYe-axis direction. Yet owing to the PI controller, the pose
error along this direction could converge to a small range.

In addition, both in the IBVC and PBVC, the selection of
target features had great influence on convergence accuracy. In
the three micro-microscope vision systems, each microscope
had its sensitive DOFs to motions. The parallel microscope
vision systems1st, 3rd were sensitive to the motions along
the Xe-, Ze-axis directions and around theYe-axis direction.
And the perpendicular vision system2nd was sensitive to the
motions alongXe-,Ye-axis direction and around theZe-axis
direction. Therefore, both in the Jacobian matrix estimation
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and the 3D pose solution, selecting the features represented
the motion well was necessary.

D. Position Adjustment with the Disturbances

In order to verify that the PBVC scheme had the better
performance on resisting disturbances, the external distur-
bances had been imposed by human. The cylindrical target was
removed several times along different directions near the con-
vergence position. Here the experiment based on PBVC by the
constraints on three translational DOFs was conducted. Specif-
ically, the initial, desired poses of robot and the stoppingcon-
dition were the same as described above. The robot was driven
to the positionD1(−0.306,−0.250, 0.449)mm after the first
convergence then the positionD2(−0.847, 0.046, 0.154)mm
after the second convergence. The position errors of the target
and the actual positions of the robot in robot coordinate system
were shown in Fig. 12. The actual positions of robot could
arrive at (−0.592,−0.107, 0.309)mm under the first distur-
bance and(−0.605,−0.099, 0.292)mm under the second dis-
turbance. The similar experiments based on the IBVC scheme
were also carried out. The results demonstrated the proposed
algorithms had the strong capacity of anti-interference.
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Fig. 12. Position errors and actual positions of robot basedon PBVC with
the disturbances. (a) Position errors of the target in robotcoordinate system.
(b) Actual positions of robot in robot coordinate system.

E. Comparative Analysis Between PBVC and IBVC

In the point-to-point visual control procedure, the robot
trajectories based on IBVC and PBVC by the constraints on
three translational DOFs were demonstrated in Fig. 13(a). Two
visual control schemes had similar performances on adjust-
ment on translational DOFs, while the IBVC had the better
performance on convergence speed. The robot trajectories by
the constraints on three translational and two rotational DOFs
were shown in Fig. 13(b). In the PBVC scheme, the world co-
ordinates of the cylindrical target were reconstructed in three-
microscope vision coordinate system; the robot trajectorywas
more smooth.

The analysis on sensitivity, precision and robustness were
applied to evaluate the performance of two visual control
algorithms [25], [26].

On the one hand, the IBVC algorithm with the Jacobian
matrix demonstrated the better performances on sensitivity and
precision. It had a quicker convergence speed and the position
and orientation deviations could converge to a smaller range.
Because the relationship of different microscope vision’scoor-
dinate systems was integrated into the image Jacobian matrix,
for the certain point-to-point motion, the solution of robot pose
errors based on the Jacobian matrix was more accurate. In
addition, it took full advantage of the cylinder features and
reduced the complex calculation, especially in face of multi-
sensor vision fusion. The accuracy of IBVC was determined
by the accuracy of the Jacobian matrix estimation. Different
objects had different geometries, which determined the dif-
ferent forms of the Jacobian matrix even the arrangements
of microscopes. When the workspace of microscope vision
became larger, it was necessary to improve Jacobian matrix
estimation in order to avoid the singularity and guarantee
robustness of visual control algorithm, such as the dynamic
Quasi-Newton method. Within small range motion on point-
to-point the Jacobian matrix estimation based on exploratory
motions showed more practical, better stability and higherpre-
cision. The PBVC needed a well calibration on the relationship
between different microscope vision’s coordinate systemsand
the sensitivity to calibration errors was probably the main
drawback. Coarse calibration would introduce perturbations on
the trajectory but would also have an effect on the accuracy
of the pose reached after convergence. Yet based on the small
field-of-depth of microscope vision, the world coordinatesof
the cylindrical target were reconstructed by the homography
matrix between the image plane and the clear imaging plane,
which was an approximate solution under the condition that
no large-scale movement occurred on the target.

On the other hand, the PBVC scheme showed the better
performances on stability and robustness. In the PBVC scheme
the coordinate system of three-microscopes vision was estab-
lished, the cylindrical target’s pose in the world coordinate
system could be calculated at each sampling time, which han-
dled the target more intuitively. However, in the IBVC scheme
the coordinate relationship was hidden in Jacobian matrix and
the origin of coordinate system existed, but unknown. The
deviations between the current image features and the desired
ones were used in the visual control procedure; yet the desired
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pose of the target was hardly to be determined. Importantly,
for the unknown and random motions, the robot pose errors
solved by the image Jacobain matrix became inaccurate and
unstable.

As known from above, two schemes had advantages and
disadvantages on the visual control performances. However,
for the certain and known point-to-point motion, the IBVC
with the image Jacobain matrix was more favorable for multi-
microscopes vision environment.
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Fig. 13. Comparison of robot trajectories based on different control algorithms
in robot coordinate system. (a) Robot trajectories based onPBVC and IBVC
by the constraints on three translational DOFs. (b) Robot trajectories based on
PBVC and IBVC by the constraints on three translational and two rotational
DOFs.

V. CONCLUSION

In this paper, the main contribution is that new positioning
and adjustment techniques including IBVC and PBVC for
cylindrical target based on three-microscope vision system
are presented. In the IBVC scheme, the image Jacobian
matrix is stacked based on three microscope vision systems
and estimated based on exploratory motions, in which the
corresponding condition number is calculated in order to avoid
singular. Then the incremental PI controller is applied to make
image features converge to the desired ones. In the PBVC
scheme, based on the establishment of world coordinate sys-
tem in the three-microscope vision system, the target position
and orientation are reconstructed; then the controller drives
the target to the desired pose. Visual control experiments

by the constraints on translational and rotational DOFs are
conducted. Experiment results show the feasibility of the
proposed schemes in three-microscope vision environment.By
the comparative experiments, the IBVC scheme demonstrates
the better performance on sensitivity and precision, whilethe
PBVC scheme exhibits the better performance on stability and
robustness. In future, other control methods will be developed
to remove the perturbations as fast as possible.
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