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Combination of Classification and Clustering
Results with Label Propagation

Xu-Yao Zhang, Peipei Yang, Yan-Ming Zhang, Kaizhu Huang, and Cheng-Lin Liu

Abstract—This letter considers the combination of multiple clas-
sification and clustering results to improve the prediction accuracy.
First, an object-similarity graph is constructed frommultiple clus-
tering results. The labels predicted by the classification models are
then propagated on this graph to adaptively satisfy the smoothness
of the prediction over the graph. The convex learning problem is
efficiently solved by the label propagation algorithm. A semi-su-
pervised extension is also provided to further improve the perfor-
mance. Experiments on 11 tasks identify the validity of the pro-
posed models.

Index Terms—Classification, clustering, label propagation.

I. INTRODUCTION

S UCCESSFUL classification algorithms (e.g. support
vector machines and artificial neural networks) and clus-

tering models (e.g. -means and spectral clustering) have
been proposed and widely used in practical applications. En-
semble learning of different models can further improve the
performance due to the diversity and heterogeneity. Classifier
ensemble (e.g. bagging [2], boosting [6], and error-correcting
output coding [4]) can yield higher accuracy than the best indi-
vidual classifier. On the other hand, for unsupervised learning,
clustering ensemble [5], [9], [11] can produce better partition
performance by combining different clustering algorithms.
Recently, the joint ensemble learning of multiple classifica-

tion and clustering models is proposed by [7], [8] and [10]. In
classification, the objects are usually classified one at a time
under the assumption of independent and identical distribution
(i.i.d.), therefore, the internal structure information among the
objects is actually discarded. Complementarily, the clustering
models can capture the object-relationship by partitioning them
into different clusters, and the objects in the same cluster are
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more likely to receive the same label. Therefore, via combina-
tion of the classification and clustering results, higher prediction
accuracy can be achieved.
To accomplish this goal, Gao et al. [7], [8] proposed a bi-

partite graph-based consensus maximization (BGCM) model
by embedding both objects and groups (defined as classifica-
tion and clustering results) into a fixed-dimensional cube. Ma
et al. [10] further proposed an unconstrained probabilistic em-
bedding (UPE) model by relaxing the constraint of embedding.
Both BGCM and UPE are based on the idea of object-group
embedding. In this letter, we propose a new model by first con-
structing an object-similarity graph from the multiple clustering
results. The graph accurately captures the internal relationship
among different objects. The labels (majority voting results)
predicted by the supervised classification models are then prop-
agated on this graph to adaptively improve the prediction ac-
curacy. This is based on the idea of manifold regularization,
and the manifold can be viewed as the object-similarity graph
which is constructed from the clustering results. By combining
all the information, we can achieve better performance than the
single models (either classification or clustering) and the en-
semble models (BGCM and UPE) consistently. To further im-
prove the ensemble performance, a semi-supervised extension
of our model is also proposed.
The rest of this letter is organized as follows: Section II de-

scribes the related works. Section III introduces our methods
including model definition, optimization method, and theoret-
ical analysis. Section IV reports the experimental results, and
Section V draws the concluding remarks.

II. RELATED WORK

Following [7] and [10], we first give a brief description of the
problem. Given a data set belonging to
classes. Suppose models provide the prediction results where
the first of them are classification and the remaining are clus-
tering results. The concept of group is defined as the “classes”
and “clusters” predicted by different models. For example, as-
sume that clustering algorithm partitions the data into
clusters, the total number of groups is .1

All the information can be displayed in an object-group
co-occurrence matrix [10] , where is the
number of times that object belongs to group . Table I
shows the co-occurrence matrix for a toy example used in [10]
( , ). The results are produced by two classifiers
and two clustering models. The first columns in contain

1In [7], the total number of groups is defined as , where
the class IDs given by different classifiers are viewed as different group.
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TABLE I
THE OBJECT-GROUP CO-OCCURRENCE MATRIX SHOWN IN [10]

the classification information (e.g. has been classified to
twice), while the last columns capture the clustering
relationship among objects (e.g. and are grouped into the
same cluster ).
The purpose is to combine all the information in to make

the final prediction. Given a matrix , we use to represent
the vector of row and to represent the -th element
of . The vector with all the elements being one is and the
identity matrix is .
1) BGCM: The purpose of BGCM [7], [8] is to jointly esti-

mate the conditional probabilities of each object and group be-
longing to the classes. Define and
as and . Let

denote the class labels where and
. The BGCM model is defined as:

(1)

The first term encourages close estimation of the conditional
probability if an object is assigned to group . The second
term constrains the deviation of the first groups from the ini-
tial class label. After the optimal is obtained, the objects can
be classified by .
2) UPE: BGCM is a constraint embedding onto the -di-

mensional cube. In the UPE model [10], the latent coordinate
for objects is and for groups is , where
can be any positive integer and no constraint is adopted on

and . The probability of an object belonging to a certain group
is determined by:

(2)

The coordinate of and are learned by maximizing the pos-
terior probabilities: . A
Gaussian prior with a zero mean and a spherical covariance
for distribution of and is also proposed as regularization.
After we get the optimal and , the prediction process is:

.

III. METHODOLOGY

Both BGCM and UPE are based on the idea of learning la-
tent embedding coordinates for objects and groups either in a
constrained or unconstrained way. In this letter, we propose a
new method to fuse the information in . The basic idea is to
construct an object-similarity graph from clustering results and

then propagate the classification results on this graph to adap-
tively improve the prediction accuracy.
The majority voting results of the classification

models can be obtained via

The purpose now is to learn the conditional probability matrix
of each object belonging to classes. First, the

prediction should agree with the base classification results, im-
plying that we should minimize the differences of .
Second, the objects in the same cluster are more likely to have
the same prediction. If and are in the same clustering group
, then else 0 (see Table I). Therefore, we can

minimize for to satisfy
the clustering constraints.

A. Object Similarity Graph

From the above analysis, we can define an object-similarity
graph based on the clustering results:

(3)

The adjacency matrix is an ensemble of different clustering
algorithms which helps to construct the neighborhood relation-
ship among different objects. To normalize the degree, a doubly-
stochastic similarity matrix is learned by mini-
mizing the relative entropy2 between and :

(4)

This convex problem can be efficiently solved by projecting
onto the constraints [3]. By initializing , the following
procedures should be repeated until convergence:

(5)

(6)

where (5) is for projecting onto and (6) is for pro-
jecting onto . In this way, a degree-normalized sym-
metrical object-similarity graph can be obtained.

B. The Learning Problem

The combination of classification and clustering results can
be formulated as an optimization problem:

(7)

2Relative entropy is better than Frobenius norm [12] in measuring the differ-
ence of doubly-stochastic matrices.
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Here is a balance between classifier consistence and
clustering consistence. Because and , we
can transform the second term of (7) as:

where is the normalized graph Laplacian. Therefore,
(7) is equivalent to

(8)

The first term is to constrain the deviation of the prediction from
the results of majority voting, while the second term is a graph-
basedmanifold regularization to constrain the smoothness of the
prediction over the graph. After we get the optimal , the final
prediction is: .

C. Optimization

The problem (8) is a convex quadratic programming problem
and can be solved by the label propagation algorithm [13]. By
initializing , the following updating is repeated until
convergence

(9)

The constraints and are naturally satisfied in the
iteration, since satisfies this constraint and constructed by
(4) is a degree-normalized symmetrical matrix. Following [13],
we can prove the following theorems:
Theorem 1: The iteration of (9) will converge to:

(10)

Proof: From the iteration of Eq. (9), we get:

where is the initialization. Because is the normalized
graph and , we have .
Moreover, . We get

.
Theorem 2: Eq. (10) is the optimal solution for model (8).
Proof: Because (10) is the convergence of (9), it satisfies

the constraints in (8). Let , we get:

Hence, we have .
In the label propagation process of (9), the majority voting

result is propagated to different objects according to the ob-
ject-similarity graph to adaptively satisfy both the classifica-
tion and the clustering results.

D. Incorporating Labeled Information

In previous sections, the true labels of all the objects are
unknown. In practice, the labeled information can be used to
further improve the accuracy in the sense of semi-supervised
learning [7]. Suppose we have additional labeled objects at
the last rows of . Their ground truth is given as
(0-1 matrix indicating the true labels). Similar to , we can
now define a bipartite graph between the unlabeled objects and
the labeled objects as:

Since is a bipartite graph, we can normalize it to have unit
row-degree. Let be a diagonal matrix with

. The normalized bipartite graph is now .
Now we should seek a balance between the original objective

(8) and the consistence of the clustering relationship between
the labeled objects and the unlabeled objects, which leads to a
semi-supervised extension of (8):

(11)

where is a tradeoff parameter. A simple modification
of (9) can be used to solve (11):

(12)

In this process, the prediction is adaptively propagated to satisfy
the classification results , clustering constraint , and the
given ground truth of some labeled objects.

IV. EXPERIMENTS

We evaluate the proposed methods on the datasets from [7]
and [10], including 11 classification tasks from three real world
applications: 20 Newsgroups categorization, Cora research
paper classification, and DBLP network. The classification
models include logistic regression and SVM models while the
clustering models are -means and min-cuts. All the classifica-
tion and clustering results can be displayed in the object-group
co-occurrence matrix and the purpose is to fuse the infor-
mation to make the final prediction.
On each of the 11 tasks, the test set is partitioned into two

parts. One part is used to evaluate prediction accuracy and an-
other part is used for semi-supervised models (i.e., their ground-
truth is given as described in Section III-D). The experiments
are repeated 50 times with random partition of test set. The
models for comparison include: two classification and two clus-
tering models (denoted by M1 to M4), BGCM and semi-super-
vised BGCM models [7], [8], UPE model [10], C3E model [1].
The proposed model of (9) is denoted as LP and (12) is de-
noted as semi-LP. We also give the results of the baselines in
[7] including clustering ensemble models of MCLA [11] and
HBGF [5].
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TABLE II
PREDICTION ACCURACY (%) OF DIFFERENT MODELS. THE BEST RESULTS FOR EACH TASK ARE IN BOLDFACE

Fig. 1. (a) The sensitiveness of . (b) The accuracy w.r.t. . (c) The objective function w.r.t. . (d) The sensitiveness of .

Table II summarizes the classification accuracies of all the
baselines and the proposed methods on 11 tasks. We only show
the standard deviation for semi-LP model in Table II. The
highest accuracy of each task is bolded. The average accuracies
over the 11 tasks are shown under the “Average” column, and
the average ranks of different models are shown under the
“Rank” column. We can find that: the two single classifiers (M1
and M2) and the two single clustering models (M3 and M4)
usually have low accuracy. The clustering ensemble methods
(MCLA and HBGF) can improve the performance over each
single model. The accuracies of the classification and clustering
ensemble models (BGCM, semi-BGCM, C3E, UPE, LP, and
semi-LP) are significantly better than the base models and clus-
tering ensembles. This demonstrates the power of combining
classification and clustering results in accuracy improvements.
Moreover, the proposed LP model shows superior performance
consistently to the other models. By incorporating a small
portion (around 10%) of labeled objects, the semi-LP model
further improves the performances and shows significantly
higher accuracy.
The hyper-parameters used in the proposed models are the

trade-off price in (8) and the number of iteration used for
(9). In our experiments, we set and for all the
eleven tasks empirically. We now conduct experiments to ana-
lyze the sensitiveness of the parameters. We report the exami-
nation result on the data set of Cora, while the results are simply
omitted on the other data sets due to the highly similar phenom-
enon. First, we fix and change from 0 to 1 with 0.05
as interval, the accuracy w.r.t. can be found in Fig. 1(a). We
can observe that the LP algorithm is not sensitive to . When

, LP reduces to the majority voting model; when ,
the clustering information is incorporated to adaptively adjust
the classification results. We can see even when ,
the accuracy is greatly improved, which indicates the benefit of
combining clustering results into classification models. When

, the performance does not change too much.
When , the accuracy is decreased, since the clustering
results dominate the base classification models. Second, we fix

and show the accuracy w.r.t. in Fig. 1(b), the objec-
tive function in (8) w.r.t. in Fig. 1(c). It is observed that the
accuracy and objective function are almost not changed after

. This indicates the LP algorithm (9) is a good method to
find the optimal solution of model (8).
In the semi-LP model of (11), we have another hyper-param-

eter to tradeoff between the unlabeled data and labeled
data.When fixing , , we show the accuracy w.r.t
in Fig. 1(d). We can find that the accuracy is not sensitive when

. However, the improvement when is not signif-
icant. Therefore, for the semi-LP model, we search the best ,
from for each task via cross-validation. Specif-

ically, for each task we randomly partition the dataset into two
parts (one for evaluation and the ground-truth of another one is
given). Then the average accuracy of 10 times random partition
is used to select the best and for each task. After that, with
the selected and being fixed, we report the average accuracy
and standard deviation (Table II) of another 50 times random
partition of data.

V. CONCLUSION

By combining the outputs from multiple classification and
clustering models, we can take advantage of the complementary
information to derive a consolidated prediction. In this letter, a
degree-normalized symmetrical object-similarity graph is con-
structed from multiple clustering results, and the classification
results are then propagated on this graph. A semi-supervised
propagation model is also proposed by incorporating a small
portion of labeled objects. Experimental results on real applica-
tions identify the benefits of combining classification and clus-
tering results, and the proposed models outperform other ex-
isting alternatives.
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