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Abstract The segmentation of touching characters is still
a challenging task, posing a bottleneck for offline Chinese
handwriting recognition. In this paper, we propose an effec-
tive over-segmentation method with learning-based filter-
ing using geometric features for single-touching Chinese
handwriting. First, we detect candidate cuts by skeleton and
contour analysis to guarantee a high recall rate of charac-
ter separation. A filter is designed by supervised learning
and used to prune implausible cuts to improve the precision.
Since the segmentation rules and features are independent of
the string length, the proposed method can deal with touching
strings with more than two characters. The proposed method
is evaluated on both the character segmentation task and the
text line recognition task. The results on two large databases
demonstrate the superiority of the proposed method in deal-
ing with single-touching Chinese handwriting.

Keywords Single-touching strings - Chinese handwriting -
Over-segmentation - Learning-based filtering -
Geometric features

L. Xu (X) - F. Yin - Q.-F. Wang - C.-L. Liu
National Laboratory of Pattern Recognition, Institute
of Automation of Chinese Academy of Sciences,

95 Zhongguancun East Road, Beijing 100190,
People’s Republic of China

e-mail: Ixu@nlpr.ia.ac.cn

F. Yin

e-mail: fyin@nlpr.ia.ac.cn
Q.-F. Wang

e-mail: wangqf @nlpr.ia.ac.cn

C.-L.Liu
e-mail: liucl@nlpr.ia.ac.cn

1 Introduction

To deal with the ambiguity of character segmentation, hand-
written text recognition is usually accomplished by integrated
segmentation and recognition [1]. An effective approach is
to over-segment the text line (character string) into primitive
segments each being a character or a part of character, com-
bine adjacent primitive segments into candidate characters
and evaluate candidate characters using a character recog-
nizer and contexts. The over-segmentation of touching char-
acters, which occur frequently in handwritten documents, is
a challenging task and is crucial to the string recognition
performance [2—6].

There have been many over-segmentation algorithms for
dealing with touching characters, but most of them are based
on heuristic rules [2,6—17]. This makes them hard to gen-
eralize from one application problem to another. Even if
using problem-specific rules, there still remain many over-
segmentation failures (under-segmentation errors) (cf. the
experimental results in [3]). On one hand, we need to devise
splitting algorithms to improve the recall rate of cut (sep-
arating line) detection. On the other hand, it is demanding
to design a learning-based over-segmentation algorithm to
improve its robustness [18], specifically, to better balance
the recall rate and precision. The cut classification algorithm
of Bayer and Kressel [19] can be viewed as a learning-based
one, but classification on each column of string image is too
computationally demanding. A more promising strategy is to
over-generate candidate cuts using heuristic shape analysis
and then filter out redundant cuts using a classifier [20]. In
either cut detection or filtering, the considered geometric fea-
tures or rules are hoped to be independent of the string length
(number of characters in the string image) because the string
length is unknown a priori. However, some previous meth-
ods have assumed known string length (e.g., character pair)
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or use features depending on the string length (e.g., [21]).
These methods are hard to generalize to touching strings of
variable length.

In Chinese handwriting, character segmentation is dif-
ficult due to the large category set, complex character
structure and writing style variability [3,22-24]. The seg-
mentation of touching characters in Chinese and Japanese
handwriting has drawn considerable attention but is still a
bottleneck that hinders high performance in text line recog-
nition [3]. To detect touching points with a high recall rate
can guarantee that different characters are mostly separated
in over-segmentation. However, a high recall rate is usu-
ally accompanied with many redundant cuts (false positives),
which make the segmentation-recognition candidate path
evaluation and search in string recognition complicated and
may deteriorate the recognition performance. We thus have
been exploring over-segmentation algorithms for achieving
high detection rate of touching points while compressing
false positives.

To enable fair evaluation of Chinese touching character
segmentation algorithms, we recently released a touching
character database called CASIA-HWDB-T [25], compiled
from the Chinese handwriting database CASIA-HWDB [26].
The database reveals that single-touching strings (in which
two adjacent characters are touched with one connected
stroke) are the dominant type (more than 95 %) among all
touching samples. The focus of this work is thus to deal with
this majority type of single-touching. Figure 1 shows some
examples of single-touching strings and multiple-touching
ones. In our previous work [27], we developed a foreground
skeleton-based segmentation algorithm which can detect
most touching points with a moderate ratio of redundant cuts.
This work extends the previous method and improves the
handwritten text line recognition performance mainly in two
aspects. First, we refine the cut detection steps to improve the
recall rate with moderate computation. Second, we design a
supervised learning-based filter for reducing redundant cuts
and balance the recall rate and precision. The used geomet-
ric features and rules in cut detection and filtering are inde-
pendent of string length and so are applicable to strings of
variable length. Our experimental results on the touching
character database CASIA-HWDB-T demonstrate the effec-
tiveness of the proposed method and its benefit to text line
recognition.
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Fig. 1 Examples of a single-touching pair, b single-touching string
with more than two characters, ¢ multiple-touching pair, and d touch-
ing string with more than two characters including at least a multiple-
touching pair [25]
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The rest of this paper is organized as follows. Section 2
reviews related works in Chinese handwriting segmentation;
Sect. 3 gives an overview of our over-segmentation method;
Sect. 4 describes the algorithm for candidate cut generation;
Sect. 5 describes the learning-based filter using geometric
features; Sect. 6 describes the postprocessing step; Sect. 7
presents the experimental results and Sect. 8 concludes the

paper.

2 Related works

Character segmentation in Chinese/Japanese handwriting for
character string (text line) recognition has been studied in
different application scenarios: bank check reading [9,12],
mail address interpretation [2,8,13-16,21,28] and handwrit-
ten text recognition [10,11,17,27]. Some of the methods
are aimed for segmentation-then-recognition, and some are
aimed for integrated segmentation-recognition. The latter
case is over-segmentation with the objective of separating
characters with as less redundant cuts as possible. In either
case, the splitting of touching characters is the main task,
as the separation of non-touching characters can be easily
achieved by connected component analysis. In the follow-
ing, we briefly review some existing segmentation methods
in Chinese/Japanese handwriting recognition.

Tseng and Chen [10] proposed a segmentation method
based on stroke extraction. They extract eight types of strokes
by run scanning in binary image. The highly horizontally
overlapped strokes are heuristically merged into primitive
segments, which are partitioned into characters by dynamic
programming incorporating character-like geometric prop-
erties. By this method, touching characters can be separated
in stroke extraction of different types, but the segmentation
performance is influenced by the accuracy of stroke extrac-
tion. A similar stroke extraction-based method was presented
by Wang et al. [16]. The segmentation method of Tseng
and Lee [11] is recognition-based. They generate nonlin-
ear separating lines (cuts) by probabilistic Viterbi search on
equally sampled vertical positions of string image and filter
out redundant cuts by heuristics such as overlapping ratio of
adjacent cuts. Separating lines passing through foreground
strokes can split touching characters. The final segmentation
of characters is determined by shortest path search in a graph
of candidate segmentation incorporating character recogni-
tion confidence and character-like geometric features.

Suwa [15] proposed a recognition-based touching char-
acter segmentation algorithm, using a graph to represent the
skeleton of character image with each node denoting a corner
or fork point and each edge denoting a stroke segment. For
splitting touching characters, potential edge cuts are selected
using empirical rules about the node type, the length and
slant of edge. The optimal segmentation result is found on
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the candidate character lattice with character recognition
confidence. The recognition-based segmentation method of
Yamaguchi et al. [13, 14] similarly represents the foreground
skeleton as a graph. They use valleys of projection profile
and stroke crossing counts to prune redundant skeleton fork
or corner points, and form candidate cuts from the remain-
ing fork and corner points. Further, a heuristic based on the
overlapping width of two adjacent candidate characters and
the angle of virtual corner is used to filter out unnecessary
cuts. Finally, touching pattern image is over-segmented at
candidate separating lines. Graph-based segmentation well
exploits the stroke structure of touching characters, but the
proper selection of edge cuts is not trivial.

The method of Liu et al. [2] detects candidate cuts in poten-
tial touching patterns (which are connected components of
large width or width-to-height ratio) by local contour analy-
sis in single-stroke regions (horizonal positions with single
vertical stroke crossing and limited run length). For detecting
touching point, they match the local contour shape with seven
empirically defined touching types, extended from those of
Ikeda et al. [7]. After splitting based on touching type detec-
tion, a postprocessing step based on projection profile is
applied to generate extra cuts on components which are still
wide enough. This method has shown promise in Japanese
mail address reading [2] and recently in Chinese handwrit-
ten text recognition [3]. The remaining under-segmentation
errors are mainly due to the failure of touching point detec-
tion in single-stroke regions.

The segmentation method of Zhao et al. [21] uses the
skeletons of both the foreground and the background of
binary image. On potential touching patterns, they extract
stroke segments from the foreground skeleton, detect candi-
date segmentation points from fork and corner points and
form nonlinear separating lines incorporating both fore-
ground and background skeleton information. They then ver-
ify the separating lines using a trained fuzzy decision tree
classifier with geometric features (e.g., the width ratio of left
and right parts). Some of the geometric features assume char-
acter pairs and so are not suitable for touching strings with
more than two characters. On the other hand, the background
thinning in this method consumes considerable computation
and may generate many spurious branches to complicate sep-
arating line detection. The method of Liang and Shi [28]
similarly detects separating lines from foreground and back-
ground skeletons, but verifies them using a mixture density
probability model.

The previous works evaluated the performance of charac-
ter segmentation in different metrics, some in the character
string recognition performance (string-level or character-level
accuracy), some in the percentage of correctly segmented
characters and some from the viewpoint of segmentation
point (cut) detection (recall rate, precision and F-measure).
Some focus on touching characters or even touching char-

acter pairs only, and some count on character strings con-
taining both touching and non-touching characters. Among
the works, Suwa [15] reported a correct segmentation rate of
93.8 % on one hundred touching Japanese Kanji characters.
Yamaguchi et al. [14] reported a correct segmentation rate
of 83.0% on 456 touching patterns from handwritten mail
address images. Zhao et al. [21] evaluated their segmentation
method on one thousand handwritten Chinese mail address
strings, and as well, on 1,960 touching characters reported
52.1 % segmentation correct rate. Liu et al. [2] reported only
string recognition rates on handwritten Japanese mail address
images. Wang et al. [3] show that on the test text lines of data-
base CASIA-HWDB, the over-segmentation method of [2]
remains 4.46 % under-segmentation errors. These results are
not directly comparable since these methods were evaluated
on different datasets, and some methods utilized character
recognizer while some not.

Along with Chinese character segmentation, there have
been many segmentation methods proposed in handwritten
digit segmentation [29-33] and other scripts. Some impor-
tant separating techniques based on contour, stroke and
background skeleton analysis were firstly proposed for hand-
written digits and then accustomized to Chinese characters
(e.g., [21,28]).

3 Overview of our over-segmentation method

Our over-segmentation method for handwritten Chinese text
line recognition is aimed for separating characters with as less
primitive segments as possible, and particularly for touching
characters, finding the separating lines with high recall rate
and precision. The block diagram of the method is shown in
Fig. 2. By the method, the input character string image (in
horizontal orientation) is first segmented into connected com-
ponents (CCs). After merging highly horizontally overlapped
CCs, we treat the resulted components with large width or
width-to-heightratio as candidate touching patterns. To judge
the width, the string image height, denoted as S Iheignt, is esti-
mated as the mean of height of bounding box of every pair of
consecutive components [2]. Then, a component is taken as
candidate touching pattern if its width exceeds 61 X SIheight
or the width-to-height ratio exceeds 6,. 61 and 6 are empir-
ically set as 0.6 and 0.8, respectively, such that nearly all
the touching characters are detected. Each candidate touch-
ing pattern is then processed in four steps: construction of
candidate separating lines, verification of separating lines by
heuristics and by learning-based filtering and postprocessing.

Candidate separating lines are generated based on the fore-
ground skeleton of string image (after thinning) and contour
information (before thinning). To save computation, we do
not skeletonize the background area. On tracing the skele-
ton image both from the upper side and from the lower side,
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Fig. 2 Block diagram of our proposed over-segmentation method

the common skeleton (called common stroke) in both upper
and lower traces is analyzed to detect characteristic points,
including fork points, corner points and smooth touching
points. Candidate separating lines are constructed on these
characteristic points by connecting corresponding points in
the upper and lower contours of the string image (see Sect. 4).
Redundant separating lines are filtered out using some simple
rules and a learning-based filter with geometric features (see
Sect. 5). The postprocessing step is to separate the remain-
ing components which are sufficiently wide to generate extra
separating lines by projection analysis (see Sect. 6). After
separating the touching patterns at the detected and verified
separating lines, the resulted primitive segments are fed into a
character string (text line) recognition system. Figure 3 gives
an illustrative example of the over-segmentation steps.

4 Construction of candidate separating lines

Candidate separating lines are constructed in two steps: char-
acteristic point detection and candidate separating line gen-
eration.

4.1 Characteristic point detection

In single-touching Chinese characters, the touching points
are mostly lying on the common skeleton traced from upper
side and from lower side. We hence detect candidate sepa-
rating points only from the foreground skeleton, unlike some
previous methods that skeletonize both foreground and back-
ground. A similar scheme analyzing common skeleton was
adopted for separating touching digits [33].

First, we skeletonize the binary image of touching pattern
using a thinning algorithm [34]. If the touching pattern con-
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Fig. 3 Example of the over-segmentation steps. a Character string
image; b components after connected component analysis; ¢ a candidate
touching pattern; d characteristic points detected on the common skele-
ton; e candidate separating lines generated from d; f verified separating
lines after simple rules; g verified separating lines after learning-based
filtering; h primitive segments after over-segmentation

tains multiple CCs, we select the widest CC for foreground
skeleton tracing. The pixels of skeleton are traced from left
to right clockwise in the upper side and counter-clockwise in
the lower side. The left end and right end are denoted as the
start point (S) and the end point (E), respectively. On the com-
mon part of the upper and lower traces, the fork points (those
have more than two eight-connected branches) are marked
as characteristic points. The skeleton segment between two
adjacent fork points is a common stroke.

In addition to fork points, a corner point on common skele-
ton can also be a touching point. We detect corner points from
each common stroke in two steps: corner detection according
to the local maximum of turning angles using the algorithm
of Rosenfeld and Johnston [35] and polygonal approximation
on each segment between two corner points using the algo-
rithm of Ramer [36]. This scheme has been used in stroke
extraction [37]. Both the corner points and the vertices of
polygonal approximation are taken as characteristic points.
Figure 4 shows an example of common skeleton and charac-
teristic points.

In addition to the fork points and corner points on common
skeleton, characters may touch on a smooth stroke without
corners, such as the case in Fig. 5. We call this case as smooth
touching, which is generally lying on a long common stroke
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common strokes

(a) (b)

common skeleton

Fig. 4 a A skeleton image with common skeleton displayed in bold
and common fork points marked by squares; b characteristic points
contain five fork points (a, b, d, e, f) and two corner points (c, g)

57
(b) (c)

Fig. 5 a Anexample of smooth touching; b fork points on the common
skeleton; and ¢ smooth touching point detected (marked by a green
circle) (color figure online)

with nearly horizontal direction. We detect smooth touching
strokes according to three conditions as below:

1. The horizontal width of the common stroke is greater
than Tyyoke—len, Where Tygoke—len 1S €mpirically set as
one-quarter of the string image height (S Ihejgnt)-

2. Its direction is near horizontal, say, the angle with the
x-axis is within +45°.

3. Itoverlaps with at least a single-stroke region in the string
image.

We denote the total overlapping width of a common stroke
with all the single-stroke regions as homo-length. The single-
stroke region is defined in [2] as a horizontal region with only
one vertical stroke crossing. An example is shown in Fig. 6a.
The homo-length is also useful for separating line generation
as will be described later.

common stroke homo-length

. a->b 0
- b->c¢ 5
c->d 16
e->f 0
f>¢g 0
g->E 6
(a) (b)

Fig. 6 a Three single-stroke regions indicated by the filled regions
in the bar below; b the homo-length values of the common strokes in
Fig. 4b

4.2 Candidate separating line generation

Each characteristic point (fork, corner or smooth touching
point) indicates a candidate cut for separating touching char-
acters. From a characteristic point, a separating line can be
formed by connecting one point from the upper contour and
one from the lower contour of the touching pattern image. It
is observed in Chinese handwriting that most touching char-
acters can be separated by vertical lines. Thus, we consider
only vertical separating lines for simple implementation.

First, the upper contour and lower contour are traced from
left to right clockwise and counter-clockwise, respectively.
To generate a separating line for each characteristic point, we
need to find two suitable terminal points, one on the upper
contour and one on the lower contour.

Since a corner point or a smooth touching point lies
between fork points and is distant from other strokes, we can
simply search a separating line with minimum weighted dis-
tance in the neighborhood. The weighted distance is defined
asd = di + 0.4 x d, where d is the vertical length of the
separating line (distance between the paired points in upper
and lower contours) and d is the horizontal distance between
the separating line and the characteristic point. The neigh-
borhood is empirically confined to be within one-tenth of
the string image height, horizontally from the characteristic
point.

For a fork point, we need to decide on which common
stroke (left or right side) to generate the separating line. The
fork point is related to the common skeleton in two possible
cases:

1. The fork point is a terminal of one common stroke on
either left or right side, e.g., the fork a in Fig. 4b;

2. The fork point is shared by two common strokes on both
left and right side, e.g., the fork b in Fig. 4b.

In the first case, it is clear that the separating line should
be on the side of the single common stroke. For the second
case, we design a simple and effective criterion for selecting a
common stroke based on single-stroke region analysis. To do
this, we divide the touching pattern image into single-stroke
region(s) and multiple-stroke region(s), as shown in Fig. 6a.
Then the homo-length value of each common stroke is cal-
culated as the total overlapping width between the common
stroke and all the single-stroke regions. Figure 6b shows the
homo-length values of the common strokes in Fig. 4b. The
selection criterion is based on the fact that most touching
points lie on or near a single-stroke region, according to our
investigation on a large database of touching characters (see
Sect. 7.1). Thus, we select the common stroke with larger
value of homo-length to generate the separating line. If the
two adjacent common strokes have equal homo-length, we
generate a separating line on both sides. Again, the separating
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Upper contour

Lower contour

Skeleton

Fig. 7 TIllustrative example: separation line (P; P») generation corre-
sponding to a fork point (Pp), in a neighborhood with horizontal length
(Un gb)

line on acommon stroke is on a pixel with minimum weighted
distance d = dj + 0.4 x d; from the fork point, in a neigh-
borhood with horizontal length (INgb) empirically set as one-
tenth of the string image height. Figure 7 shows an illustrative
example of separating line generation for a fork point.

5 Verification of candidate separating lines

The generated candidate separating lines (cuts) contain gen-
uine ones that separate characters at touching points, and
redundant ones that lie within characters. The objective of
cut verification or filtering is to prune redundant cuts while
keeping genuine ones as much as possible. The filtering can
be seen as a two-class classification problem, which is both
imbalanced (there are much more redundant cuts than gen-
uine ones) and cost-sensitive (rejecting a genuine cut is more
costly than detecting a redundant one) [20].We perform cut
filtering in two steps using simple rules in the first step and
a learning-based filter (linear classifier) in the second step.
The flowchart of filtering is depicted in Fig. 8. The combi-
nation of nonlinear rules and linear classifier provides good
trade-off between classification performance and computa-
tional complexity.

We use the following notations for characterizing a can-
didate separating line (Line;), formed by a pair of upper
contour point (x;, y¥') and lower contour point (x;, yf ).

e myp(i): index of upper contour point of the ith separat-
ing line on the upper contour traced from the left end of
touching pattern image;

e 1),(i): index of lower contour point of the ith separating
line on the lower contour;

e L;: length of the ith separating line in number of pixels,
ie., yf — yi + 1 for a vertical separating line;

@ Springer

‘ ’ RULET1: Too long length ‘
‘ ‘ RULE2: Small foreground pixel ratio ‘ :

§ ‘ RULE3: Near left or right bound ‘ !

i Learning-based filter v

RULE(4: Filter of each separating line by a
classifier using geometric features

v

RULES: Filter of neighboring separating lines
by comparing their classifier output

e e

Fig. 8 Flowchart of candidate separating line filtering

° Lif : number of foreground pixels on the ith separating
line.

5.1 Filtering by simple rules

We first apply three simple heuristic rules to remove the sep-
arating lines that are apparently redundant. Denoting the
height of the touching pattern image as H, the rules are
described below.

e RULEI: If the length of a separating line is too long, i.e.,
L; > Ty, itis judged as a redundant one. The threshold
T; is empirically set as four times of estimated stroke
width.

e RULE2: If the foreground pixel ratio of a separating line
is small, i.e., Lif/Li < T, it is judged as a redundant
one. T, is empirically set as 0.9.

e RULES3: If aseparating line is very close to the left or right
bound of the touching pattern image along the contour,
ie., myp() < T3 and (i) < T3 or wyp(i) > (Nup — T3)
and mo(i) > (N — T3), it is judged as a redundant one.
Nyp and Ny, are the number of pixels in the upper contour
and the lower contour, respectively. T3 is empirically set
as one-seventh of H.

The above thresholds are selected such that only those
separating lines that are apparently redundant are removed.
And the remaining separating lines are to be evaluated by the
learning-based filter. Figure 3f shows an example of verified
separating lines after filtering by three simple rules.



An over-segmentation method

97

Bb.,
Bb] oft B bcommon right

\
\ \v
= -

H oy dy]

b Y

%O)CH

(a) (b)

Fig. 9 Illustration of binary properties after separating a touching pat-
tern at the leftmost separating line of Fig. 3f. a Extracted CCs; b left and
right segments after splitting with bounding boxes Bbjefe and Bbyigh,
and their overlapping area with common bounding box Bbcommon

5.2 Learning-based filtering

The classification performance of learning-based filtering
largely depends on the extracted features as well as the train-
ing data. While the training data is specified in the experi-
mental section, the geometric features are described below.

5.2.1 Geometric features of candidate separating line

From each candidate separating line, we extract nine geo-
metric features which are independent of the string length
(number of characters in the string image). The features can
be grouped into two categories depending on whether they
characterize an individual separating line (unary features) or
the adjacent image segments after splitting at the separating
line (binary features). Figure 9 gives an example showing
some binary geometric features.

The four unary features ( f1 — f4) and five binary features
(fs — fo) are listed in Table 1, where the column “Norm”
indicates that the feature is normalized by the image height
H, the column “Ref” gives the references that the feature is
adapted from. We present the feature f4 based on the obser-
vation that a certain type of touching is likely to take place in a
stable vertical position. The feature f7 refers to Fig. 9, where
the foreground pixel in the left segment nearest to the center
of the separating line is on the upper part of the right bound.
When the left and right segments are overlapped, a small dy
implies a low likelihood that the candidate separating line
should be a genuine one. This feature was presented in [14]
for being complementary to the horizontal overlapping width
ox. When the left and right segments are not overlapped, we
setox = 0and dy = 0.

5.2.2 Learning-based filter

The verification of candidate separating lines is a two-class
classification problem: classify to positive class w1 (genuine
cut) or negative class wg (redundant cut). Using a learning-
based filter has two benefits: optimize the combination of fea-

tures via supervised learning, flexible balance of the recall
rate and precision of cut detection via adjusting only one
threshold. We use a linear classifier to combine the fea-
tures, and specifically, have tested two linear classifiers: lin-
ear discriminant function (LDF) [39] and linear support vec-
tor machine (SVM) [40]. We have also tested nonlinear SVM
but do not observe significant performance gain. On a feature
vector X, the output of two-class linear classifier is

fx) =wlx+b, 1)

where w, b are the vector of linear weights and the bias of
the classifier, respectively. The weights and bias are estimated
in different ways, i.e., assuming equal-covariance Gaussians
by LDF and minimizing margin-regularized hinge loss by
SVM. For decision, f(x) > 0 indicates that the input sample
(candidate cut) is positive, and f(x) < O indicates that the
candidate cut is negative (redundant). The classifier output is
often transformed to probability by the sigmoidal function:

1
1 +exp[— (af (x) + BT’

Prob(w|x) = (2)

where « and B can be simply set as 1 and 0, respectively. By
this transformation, we can select a threshold for the proba-
bility from (0, 1).

Based on the classifier output, we can make a decision on
an individual candidate cut or on two neighboring cuts. The
decision on an individual cut is below.

e RULE4: If Prob(w(|x) > Pur, X € wp; otherwise,
X € w.

Pnr € (0, 1) can be adjusted to investigate the trade-off
between the recall rate and precision of genuine cut detec-
tion. A default threshold is Py = 0.5. Figure 10b shows
an example of removing two redundant separating lines by
RULEA4.

If two separating lines are close to each other, it is very
likely that only one of them is genuine. So, we have a decision
based on two neighboring candidate cuts:

e RULES: If two separating lines are neighboring, the one
with lower probability is judged as in wy.

The neighboring condition for two adjacent separating lines
(Line; and Line;) is dc;j < Ty, where dc;; denotes the
contour distance defined as max{|myp (i) — mwup ()1, [710 (@) —
mo(7)1}. Tac is empirically set as one-third of H. Figure 10c
shows an example of removing four redundant separating
lines by RULES.
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Table 1 Geometric features used in learning-based filtering
No. Feature description Norm Ref.
N Vertical length of separating line Y [21]
h Vertical projection value at the x position of cut Y [28]
f3 Vertical crossing count at the x position of cut [19]
fa y Coordinate of the center of separating line Y
/s Horizontal overlapping width (ox) of two bounding boxes of the left and right segments Y [13,30]
fe Vertical overlapping distance (0y) of two bounding boxes of the left and right segments Y [30]
f1 Vertical distance (dy) between the center of separating line and the nearest foreground pixel Y [30]

on right bound of Bbjesy when the center is on left bound of Bb¢ommon, Or the nearest

foreground pixel on left bound of Bbyjgne when the center is on right bound of Bbcommon
f3 Foreground pixel ratio in the common bounding box [38]
fo Square root of the area of the common bounding box Y [38]

(e
(a) (b) (© R | e

Fig. 10 Anexample of learning-based filtering. a Candidate separating
lines before filtering, b separating lines after filtering by RULE4 with
Pinr = 0.5; ¢ separating lines after filtering by RULES

6 Postprocessing

The postprocessing step is adapted from the forced splitting
rule of Liu et al. [2]. To make this paper self-contained, we
outline here the technique and show an example. Though
carefully designed, the above separating line detection and
verification techniques may fail to split some touching
characters which have unusual touching shape. The forced
splitting rule utilizes the segmentation ability of projection
profile: a minimum of vertical projection is likely to cor-
respond to a touching point. The method of [2] combines
the projection profile weighted with vertical crossing count
and the horizontal distance from the center of touching pat-
tern into a characteristic function and locates the x position
of minimum characteristic function as a splitting point. The
separating line at the point is simply the vertical line at the x
position. Figure 11a shows a touching pattern that is failed to
split by skeleton-based separating line detection. Figure 11b
shows that it is correctly separated by forced splitting in post-
processing.

7 Experimental results
We evaluated the over-segmentation performance of the pro-

posed method and its effect on string recognition on the
touching character database CASIA-HWDB-T [25].
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(a) (b)

Fig. 11 a A touching pattern image (the touching region shown in a
red circle); b a correct separating line generated in postprocessing step
(color figure online)

7.1 Databases and comparison methods

The Chinese handwriting database CASIA-HWDB [26] con-
tains three datasets of isolated characters (DB1.0-1.2) and
three datasets of handwritten texts (DB2.0-2.2), produced
by 1,020 writers. There are 5,091 pages of handwritten
texts which contain about 1.35 million character samples.
The database CASIA-HWDB-T contains touching charac-
ter images collected from CASIA-HWDB. One subset in
the database, CASIA-HWDB-ST, contains 54,651 single-
touching strings, including 48,536 single-touching pairs and
6,115 single-touching strings with more than two characters.
The database provides the ground-truth information of the
touching point’s location, character class, estimated stroke
width (SW) and estimated text line height (string height).
We further partition the single-touching subset into three
sets for training, validation and testing, respectively. The
training set contains 9,904 single-touching pairs from the
training set of DB2.1. All the candidate separating lines gen-
erated by our method on the training set are used to train
the linear classifier. A candidate separating line is treated
as a positive sample if the chessboard distance between its
center and a labeled touching point is smaller than a thresh-
old (2 x SW), otherwise a negative sample. The training
set has 55,067 candidate separating lines, including 8,665
positive samples and 46,402 negative samples. The valida-
tion set contains 1,905 single-touching pairs from the test set
of DB2.1. The test set is made up of the remaining 36,727
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single-touching pairs and all the single-touching strings with
more than two characters. In implementing the learning-
based filter, we used the LibSVM package [41] for training
the linear SVM classifier.

We investigated the locations of touching points in all
single-touching pairs from CASIA-HWDB-ST, and observed
that 76 % of touching points lie in one of the single-stroke
regions (cf. Fig. 6a). The percentage increases to 91 % if we
allow a touching point to lie near one of the single-stroke
regions within a small horizontal threshold (SW). This indi-
cates that it is reasonable to use homo-length to assist the
generation of candidate separating lines in Sect. 4.2.

To evaluate the effect of the proposed over-segmentation
method on string recognition, we conducted experiments of
string recognition on the single-touching strings in the test
set of CASIA-HWDB-ST, using the text line recognition sys-
tem of [3] only with a character classifier on the primitive
segments produced by over-segmentation. We did not use a
language model since a touching string normally contains
only two or three characters. The second dataset is made up
of 1,542 handwritten text lines with nearly 43,000 characters,
selected from the test set of DB2.0. Each text line selected
has at least one single-touching string. For this dataset, the
string recognition system uses both a character classifier and
a tri-gram language model on the primitive segments.

We compare the segmentation performance of our pro-
posed method with other three segmentation methods in the
literature:

1. The over-segmentation of Liu et al. [2], which has applied
successfully to handwritten Japanese mail address recog-
nition and also handwritten Chinese text line recognition;

2. The method of Zhao et al. [21];

3. Our previous method based on heuristics [27];

We implemented the method of [21] as the source codes from
the authors are not available. We did not use the fuzzy deci-
sion tree classifier for filtering because the filter was designed
for touching character pairs while we consider touching
strings of variable length.

We implemented the algorithms in C++, and experi-
mented on a personal computer with Intel Core 15-2400 CPU
3.1GHz, 4GB of RAM and Windows7 professional 64bit.
The algorithms of Liu et al. [2], Zhao et al. [21], our pre-
vious method [27] and the current proposed method, spend
about 0.1, 4, 2 and 1.6 ms on a single-touching string image
of 70 x 128 pixels, respectively.

7.2 Results on character segmentation task
For evaluating the over-segmentation performance with-

out character recognition, we use the chessboard distance
between the center of the detected separating line and that of

Table 2 Over-segmentation performance on the test set of CASIA-
HWDB-ST

Algorithm R (%) P (%)
Liu et al. [2] 71.7 69.0
Zhao et al. [21] 78.5 31.7
Our previous method [27] 88.6 47.4
Our proposed method (SVM) 74.8 69.6

Bold values indicate the best results obtained in each column under the
current parameter setting

the labeled separating line (touching point) to judge whether
the detected separating line is correct or not. We decide a cor-
rect separation when the chessboard distance is less than a
threshold (2 x SW empirically). If there are multiple detected
separating lines within a distance threshold from a labeled
touching point, only the nearest one is considered correct.
The performance of over-segmentation is measured by the
recall rate R and the precision P, defined below:

#correct detected separating lines

— x 100 %, 3)
#labeled separating lines

#correct detected separating lines

#detected separating lines x 100%. @)
R is also called as correct segmentation rate in [4,13, 14].
The results of the proposed method and three compari-
son methods on the test set of CASIA-HWDB-ST are shown
in Table 2, where the learning-based filter in the proposed
method takes a threshold Py = 0.76 so as to well balance
the recall rate and precision. We can see that the proposed
method can outperform the method of [2] in both recall rate
and precision. Compared with the method of [21] (without
verification by fuzzy decision tree classifier), the proposed
method yields a little lower recall rate but much higher pre-
cision. Our previous method in [27] outperforms the one of
the [21] in both recall rate and precision. To compare the
proposed method with the one in [27], we turn to view the
precision—recall curve by varying the decision threshold Py,
in Fig. 12. We can see that at certain threshold, the proposed
method can yield both higher recall rate and higher precision.
Figure 12 shows the precision—recall curves of two clas-
sifiers in filtering (LDF and linear SVM) and their variations
without simple rules (RULE1-RULE3) or neighboring prun-
ing rule RULES. It is seen that the two classifiers perform
comparably with variable thresholds, and with proper thresh-
olds, both outperform the previous methods of Liu et al. [2],
Zhao et al. [21] and Xu et al. [27]. The learning-based filter
has a further advantage that the trade-off between recall rate
and precision can be flexibly tuned according to the needs of
different applications.
We investigated the impacts of two levels of filtering (i.e.,
simple rules and learning-based filter). On one hand, we plot
the performance curve of our proposed method (SVM) with-
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Fig. 12 Precision—-recall curves of the proposed over-segmentation
method with LDF/SVM filtering, SVM filtering without simple rules
(w/o Simple), compared with filtering with only simple rules (Simple),
LDF/SVM filtering without RULES (w/o RS5), SVM filtering without
simple rules and RULES (w/o Simple+RS5), previous methods of Liu
et al. [2], Zhao et al. [21] and Xu et al. [27]. The latter three methods
and “Simple” have only single points of precision—recall trade-off. The
default settings of LDF/SVM filtering use all the rules RULE1-RULES.
All the methods have postprocessing

out filtering by simple rules, denoted as “SVM (w/o Simple)”
in Fig. 12. Compared with the proposed method (SVM), it
is shown that simple rules help improve the performance
slightly, and thus, are complementary to the learning-based
filter. On the other hand, we give the performance of our pro-
posed method without the learning-based filter (i.e., filtering
with only simple rules), denoted as “Simple” in Fig. 12. It is
shown that the three simple rules can only filter out a small
portion of obvious redundant cuts while keep most of the
genuine ones. In contrast, the learning-based filter can fil-
ter out more redundant cuts while sacrifice some genuine
ones to improve the precision. In learning-based filtering, it
is inevitable to prune some genuine cuts because some of
them are very similar to redundant cuts in local shape.

In Fig. 12, we also give the precision—recall curves
of LDF/SVM filtering without neighboring pruning rule
RULES (w/o RS5). Compared to the default settings of
LDF/SVM filtering with RULES, it is shown that RULES5
decreases the recall rate abruptly when the precision is low.
When increasing the precision, however, RULES gives bet-
ter precision—recall trade-off than filtering without RULES.
This justifies the effectiveness of RULES in pruning redun-
dant cuts.

In order to judge the effectiveness of each stage of our
proposed method (SVM with Py, = 0.76), we show the
intermediate results in Table 3. After the step of candidate
cuts generation (before RULE1), most of touching points
are detected (high recall rate) with many redundant can-
didate cuts (low precision). After filtering by simple rules
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Table 3 Over-segmentation performance of each filtering stage of our
proposed method (SVM with Py, = 0.76) on the test set of CASIA-
HWDB-ST

Filtering step R (%) P (%)
Before RULEI 96.5 13.9
After RULEL 96.4 14.7
After RULE2 96.4 14.8
After RULE3 96.3 15.5
After RULE4 55.6 56.0
After RULES 53.3 75.1

Postprocessing was not used in this experiment
Bold values indicate the best results obtained in each column under the
current parameter setting

RULEI1, RULE2 and RULE3, some obvious redundant cuts
are removed (a small increase in precision), with most gen-
uine ones kept. After SVM filtering (RULE4), most redun-
dant cuts are removed (precision increased 40.5 %) while
many genuine ones are also wrongly filtered out (recall
rate decreased 40.7 %). The filtering step of RULES fur-
ther improves the precision by 19.1 % with the recall rate
decreased only 2.3 %. Finally, by re-generating some cuts
in postprocessing step, we obtained the result reported in
Table 2, with recall rate increased 21.5% and precision
decreased 5.5 %.

For the learning-based filter, we also evaluated the
effects of different geometric features. We adopt a wrapper
method [42] with LDF to select feature subsets sequen-
tially (sequential forward search on training data by five-
fold cross validation). As a result, the order of features being
selectedis { fs, fo, fe, f5. fa, f7. f2, f1, f3}. The precision—
recall curves using nine subsets comprising one to nine
ordered features are shown in Fig. 13. It is shown that classi-
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Fig. 13 Precision-recall curves of LDF filtering using ordered feature
subsets with one to nine features denoted as D1, D2,..., D9. The curve
of D9 is the same as that of LDF in Fig. 12
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fication with all the nine features gives the best performance.
The feature f3 is last selected implying least effective but
still helps improve the performance slightly. This result indi-
cates that all the nine geometric features are effective for
filtering candidate separating lines. The convergence of all
the nine curves to a unique point (R = 60.9 %, P = 75.8 %)
is due to the effect of postprocessing that re-generates many
separating lines even if the learning-based filter prunes all
the candidate cuts at threshold Py, = 1. Our later results
in Sect. 7.3 show that a moderate threshold Py, for higher
recall rate than postprocessing only is beneficial for text line
recognition.

7.2.1 Segmentation error analysis

Figure 14 shows some examples of separating lines generated
by the proposed method (SVM with Py = 0.5) and three
previous methods. We can see that the proposed method can
correctly over-segment all the three touching images while
the method of Liu et al. [2] fails mainly for the failed matching
of empirically defined touching types. This contributes to an
increase in recall rate. Compared with the methods of [21,
27], the proposed method produces less redundant separating
lines. This contributes to the improvement of precision.

The over-segmentation errors (failure of touching point
detection) can be categorized into three types. The first type
is the failure of candidate touching pattern detection, i.e.,
touching pattern is not processed by the splitting procedure
because of small width and width-to-height ratio. Figure 12
shows that the highest recall rate is about 92 %, while among
the remaining 8 % segmentation errors, about half (4 %) are

fb*f RN
S
AdpEH

Fig. 14 a Labeled touching points (marked with arrows) and the
detected separating lines (in red) by the method of Liu et al. [2];
b separating lines detected by the method of Zhao et al. [21]; ¢ sep-
arating lines detected by the method of Xu et al. [27]; d separating lines
detected by our proposed method (color figure online)

(a)

(b)

(c)

(@)

gt B B,
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Fig. 15 Three types of over-segmentation errors (marked with an
arrow). a Failure of touching pattern detection; b misclassification by
filter; ¢ lower probability compared with neighboring redundant cut

due to the failure of touching pattern detection. The second
type results from the misclassification of a genuine separating
line as redundant one by the filter when Py, = 0.5. The third
type is caused by the fault of RULES5 based on comparing the
probabilities of neighboring candidate cuts: the probability
of a genuine cut may be smaller than a neighboring redundant
one. Figure 15 shows examples of three types.

7.3 Results on text line recognition task

Using a text line recognition system with character classi-
fier and linguistic context, we evaluated the effects of over-
segmentation in terms of the string recognition performance
on the test sets of touching strings in CASIA-HWDB-ST and
text line images containing touching characters in CASIA-
HWDB2.0. On segmenting the string image into primitive
segments, consecutive segments are combined into candi-
date character patterns subject to the maximum number of
segments and constraint of character width. The candidate
characters form a candidate segmentation lattice (an exam-
ple shown in Fig. 16), where each path is evaluated by fus-
ing character classification scores and linguistic model, and
the optimal path gives the final result of character segmen-
tation and recognition. The string recognizer uses a modi-
fied quadratic discriminant function (MQDF) classifier [43]
for character classification and character tri-gram language
model, as in [3].

Fig. 16 Example of candidate segmentation lattice for a single-
touching pair [25]
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Table 4 String recognition performance on the test set of single-
touching string database CASIA-HWDB-ST

Table 5 String recognition performance on 1,542 text lines containing
touching strings from CASIA-HWDB2.0

Algorithm AR (%) CR (%) Algorithm AR (%) CR (%)
Liu et al. [2] 52.3 63.0 Liu et al. [2] 89.4 90.0
Zhao et al. [21] 30.1 62.1 Zhao et al. [21] 88.7 90.5
Our previous method [27] 37.5 69.9 Our previous method [27] 90.1 91.6
Our proposed method 54.5 66.7 Our proposed method 91.0 92.2
Postprocessing only 49.4 57.4 Postprocessing only 88.5 89.2

Bold values indicate the best results obtained in each column under the
current parameter setting

The string recognition performance is measured by two
character-level criteria: accuracy rate (AR) and correct rate
(CR) asin [3,24]. CR represents the percentage of characters
correctly recognized while AR further considers the number
of incorrect characters inserted due to over-segmentation.

In string recognition, we compared our proposed over-
segmentation method with the ones of Liu et al. [2], Zhao
et al. [21] and our previous method [27]. Since the post-
processing step of Liu et al. [2] alone gives fairly high
precision and recall rate as shown in Fig. 13, we also evalu-
ated this step for over-segmentation in string recognition.
The string recognition results on single-touching strings
are shown in Table 4. It is seen that our proposed method
yields the best performance in terms of AR compared with
the previous over-segmentation methods. Though our pre-
vious method [27] has higher recall rate of touching point
detection, the number of over-segmented primitive segments
complicates the path evaluation in candidate segmentation
lattice and finally deteriorates the string recognition per-
formance, particularly, the low AR indicates high percent-
age of over-segmentation. The proposed method can flexibly
adjust the trade-off between the recall rate and precision of
touching point detection, and at certain threshold Py, it can
yield both higher AR and CR in string recognition than the
other methods. The previous method of Liu et al. [2] per-
forms fairly well for its balanced recall rate and precision.
Using the postprocessing step only for over-segmentation,
the obtained string recognition performance is inferior to that
of the method of Liu et al. [2], because the low recall rate
prevents some characters from being correctly segmented.

The recognition results on 1,542 text lines contain-
ing touching strings from CASIA-HWDB2.0 are shown in
Table 5. For our proposed method, we set the default thresh-
old Py = 0.5 which allows splitting of most touching points
with a moderate ratio of over-segmentation. In this case of
realistic text line recognition, the string recognizer uses lin-
guistic model (character tri-gram) as well as the character
classifier. We can see in Table 5 that our proposed method
performs best (highest AR and CR) among the comparison
methods in string recognition on realistic text line images.
Since linguistic context was used on these long text lines
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Bold values indicate the best results obtained in each column under the
current parameter setting

(on average, over 20 characters per line), the correct rates
AR and CR are much higher than those on short touching
strings (Table 4). And since the realistic text lines have a
low proportion of touching characters, the difference of over-
all performance between different over-segmentation meth-
ods is small. In this case, using the postprocessing step only
for over-segmentation again yields inferior string recognition
performance to the method of Liu et al. [2]. This indicates
that the trade-off between the recall rate and precision of
over-segmentation is important for string recognition.

8 Conclusion

We proposed an effective over-segmentation method with
learning-based filtering for splitting Chinese handwritten
characters of single-touching, which is the dominant touch-
ing type in Chinese handwriting. After detecting touching
points and generating candidate separating lines (cuts) with
ahigh recall rate, we prune redundant cuts using some simple
rules and a linear classifier using geometric features extracted
from candidate cut and the pair of separated image segments.
The geometric features are independent of the string length
(number of characters) such that the proposed method is
applicable to touching strings of variable length. Our experi-
ments on a database of single-touching strings show that the
proposed method is able to yield good trade-off between the
recall rate and precision of cut detection. The extracted nine
geometric features are shown to perform well in filtering with
alinear classifier. Experiments of character string recognition
on short touching strings and on long text lines containing
touching strings show that the proposed over-segmentation
method leads to improved string recognition performance.
The splitting of the remaining under-segmentation errors
on single-touching strings and the separation of multiple-
touching strings are to be addressed in our future work.
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