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Abstract Metric learning has been widely studied in

machine learning due to its capability to improve the per-

formance of various algorithms. Meanwhile, multi-task

learning usually leads to better performance by exploiting

the shared information across all tasks. In this paper, we

propose a novel framework to make metric learning benefit

from jointly training all tasks. Based on the assumption that

discriminative information is retained in a common sub-

space for all tasks, our framework can be readily used to

extend many current metric learning methods. In particular,

we apply our framework on the widely used Large Margin

Component Analysis (LMCA) and yield a new model

called multi-task LMCA. It performs remarkably well

compared to many competitive methods. Besides, this

method is able to learn a low-rank metric directly, which

effects as feature reduction and enables noise compression

and low storage. A series of experiments demonstrate the

superiority of our method against three other comparison

algorithms on both synthetic and real data.

Keywords Multi-task learning � Metric learning � Low

rank � Subspace

1 Introduction

As an important topic in machine learning, metric learning

has been widely studied by many researchers [1–6]. A

metric is in general a measure that indicates the similarity

between any pair of data points. The purpose of metric

learning is then to learn a more proper measure from data

by incorporating certain side-information. On the other

hand, multi-task learning (MTL) has recently received

considerable attention [7–11] due to its ability to enhance

the performance of many supervised and unsupervised

machine learning problems. The basic idea of MTL is to

train multiple related problems jointly and benefit from the

propagation of discriminative information among tasks.

One example to illustrate MTL can be seen in speech

recognition [12]. Even when reading the same words, dif-

ferent persons pronounce differently depending on their

gender, accent, nationality or other characteristics. Each

individual speaker can then be viewed as an individual task

and they are closely related. The generalization perfor-

mance is better when they are jointly trained. This method

proves particularly effective especially when few samples

can be obtained for certain problems.

However, there are very few attempts to combine these

two methods and thus most of existing metric learning

methods are incapable of taking advantages of multi-task

learning. When the number of training samples is small,

traditional metric learning, that is, the single-task learning

usually fails to learn a good metric and hence cannot

deliver better classification or clustering performance.

One of such attempts called mtLMNN is presented in

[13], which is a multi-task extension for the Large Margin

Metric Learning (LMNN) model. Similar to the multi-task

SVM model [8], mtLMNN assumes that the distance

metric for each task is composed with a common
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component and a task-specific component. Then all tasks

are coupled with the common component, and this method

proves effective with experiments on two data sets. How-

ever, mtLMNN suffers from two shortcomings. (1) A low-

rank metric is unavailable with mtLMNN, which is critical

for denoising and resisting overfitting. If the low-rank

estimation of the metric with principal component analysis

(PCA) [14] is used instead, the performance is noticeably

decreased as observed in our experiments. (2) It is com-

putationally more complicated, especially in the case of

high dimension. Using t and D to denote the task number

and the data dimensionality, respectively, there are

(t ? 1)D2 parameters to be optimized in mtLMNN.

In this paper, we propose a general framework to

combine multi-task learning and metric learning based on

the assumption that the discriminative information across

all the tasks is retained in a low-dimensional common

subspace. The basic idea is to learn a common subspace

for all tasks and an individual metric for each task

simultaneously, where each individual metric is restricted

in the common subspace. Then all tasks are coupled with

the help of common subspace and estimated more

accurately.

The framework can be readily used to extend many

current metric learning algorithms to multi-task learning.

As an illustration, in this paper, we apply it on a popular

metric learning method called Large Margin Component

Analysis (LMCA) [5] and yield a new model multi-task

LMCA (mtLMCA). In addition to learning an appropriate

metric, this model optimizes directly on the transformation

matrix and demonstrates surprisingly good performance

compared with many competitive methods. One appealing

feature of the proposed mtLMCA is that we can learn a

metric of low rank, which can suppress noise effectively

and hence be more resistant to over-fitting. Besides, since

we optimize the transformation matrix instead of Maha-

lanobis matrix, our framework also benefits from fewer

parameters due to the low-dimensional assumption. In

contrast to D(D ? tD) parameters for mtLMNN, there are

merely d(D ? td) parameters in our method. Here

d � D represents the dimensionality of the common sub-

space. Finally, later experimental results show that our

proposed method consistently outperforms mtLMNN in

many data sets.

The rest of this paper is organized as follows. In Sect. 2,

after some necessary definitions, we show how the com-

mon subspace helps to combine different tasks with an

intuitive example and then introduce our novel framework

in details. In Sect. 3, we present the method and result of

our experiment evaluated on four data sets. Finally, we set

out the conclusion in Sect. 4. A short version has earlier

appeared in [15], while it is significantly expanded in this

paper.

2 Multi-task low-rank metric learning

In this section, we first present the notation and the prob-

lem definition. Then the assumption of common subspace

is illustrated with an example. After that we propose our

multi-task metric learning framework and its optimization

algorithm in detail.

2.1 Notation

For convenience, we firstly summarize all the notation and

symbols used in this papers. Assume that there are T related

tasks. X t denotes the training data set of the t-th task fxtk 2
R

D; k ¼ 1; 2; . . .;Ntg; where D and Nt are dimension and

the number of training samples, respectively. The function

ft : RD � R
D ! R denotes the distance metric of task-t. In

the context of low-rank metric learning, ft is assumed to be

defined based on a linear transformation Lt : RD ! R
d

(with d � D for obtaining a low rank) as

fLt
ðxti; xtjÞ ¼ x>t;ijL

>
t Ltxt;ij, ft;ij ð1Þ

where xt,ij = xti - xtj.

The sets of all the similar and dissimilar pairs in X t are

denoted as St and Dt, respectively, and a set of triplets

T t ¼ fði; j; kÞjði; jÞ 2 St; ði; kÞ 2 Dtg are used to define the

side-information [1]. For example, a simple kind of side-

information is ftðxti; xtjÞ � ftðxti; xtkÞ 8ði; j; kÞ 2 T t; which

enforces similar data pairs ðxti; xtjÞjði; jÞ 2 St to stay closer

than dissimilar pairs ðxti; xtkÞjði; kÞ 2 Dt with the new dis-

tance metric ft [16].

2.2 Problem definition

The basic target of multi-task metric learning is to learn an

appropriate distance metric ft for each task-t utilizing all

the side-information from the joint training set

fX 1;X 2; . . .;XTg.
The loss involved in task-t (defined as lt) is determined

by the distance function ft (or transformation Lt) and the

pairs appearing in St and Dt:

lt ¼ �tðLtÞ ¼ �tðfft;ijðLtÞgÞ; with ði; jÞ 2 St

[
Dt;

where �t is any available loss function. Hence, the overall

loss involved in all the tasks can be written as

lðfLtgÞ ¼
X

t

lt ¼
X

t

�tðLtÞ: ð2Þ

In order to utilize the correlation information among

tasks, we assume that the discriminative information

embedded in Lt can be retained in a common subspace

L0. We will introduce the concept of common subspace and

illustrate its utilization with an example in the following.
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2.3 Coupling multiple tasks with common subspace

In this section, we will show how to utilize the common

subspace to couple multiple tasks and improve the per-

formance. This also motivates our multi-task metric

learning framework. Note that when we have several

related tasks to be learned, although each task has an

individual classifier, the discriminative information across

them is often retained in a unique low-dimensional sub-

space. This phenomenon is illustrated with an example in

Fig. 1, and we will show how to make use of this property

to improve the performance of all tasks.

Assume that there are two classification tasks shown in

Fig. 1a where task-1 is to separate red and green points

while task-2 to separate blue and magenta points.

Figure 1b, c shows the separating hyperplane learned with

training samples of the single task-1/2 using the nearest

class mean algorithm, where circle and cross-points rep-

resent training samples and test samples, respectively.

Because there are too few training samples for each class to

represent its distribution, the result is worse than expected

where the accuracy is 79 % for task-1 and 74 % for task-2.

In another aspect, it is noticeable from Fig. 1a that for both

tasks, z-axis indeed contains nothing but noise and all

discriminative information is contained in the informative

subspace xy-plane. Thus, if the samples are projected into

this informative subspace, the noise on z-axis is removed

and we can get a better separating hyperplane as shown in

Fig. 1d, e. With such separating hyperplanes, the test

accuracy for task-1/2 is improved to 96 and 95 %.
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Fig. 1 Benefit of jointly

training multiple tasks. a Two

tasks share a common

informative subspace; b task-1

in original space (accuracy =

79 %); c task-2 in original space

(accuracy = 74 %); d task-1 in

common informative subspace

(accuracy = 96 %); e task-2 in

common informative subspace

(accuracy = 95 %)
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However, such an informative subspace is unavailable

with only the training samples of any single task. Having

noticed that the informative subspace of two tasks are

identical, in spite of their different classification hyper-

planes, we can learn the informative subspace more accu-

rately using samples of both the two tasks. Then, each task

benefits from the low-dimensional informative subspace

with less noise and better generalization.

2.4 Multi-task framework for low-rank metric learning

In this subsection, we present the mathematical description

of our multi-task metric learning framework that applies

the common subspace assumption to the basic framework

(2). In order to formulate the problem mathematically, we

first propose Theorem 1.

Theorem 1 Use fLt
ðxti; xtjÞ to denote the distance of

xti; xtj 2 R
D defined by transformation matrix Lt as (1).

Then, for any Lt 2 R
d�D where d \ D, there exists a d-

dimensional subspace St spanned by orthonormal basis

fpt1; . . .; ptdg with a metric defined by Rt 2 R
d�d so that

fLt
ðxti; xtjÞ ¼ fRt

ðx̂ti; x̂tjÞ;

where x̂ti ¼ P>t xti ¼ ½pt1 . . . ptd�
>xti 2 R

d is the coordinate

of the projection of xti in St with respect to basis Pt.

Proof Consider the singular value decomposition (SVD)

of Lt, we have

Lt ¼ UtStV
>
t

¼ ut1 . . . utd½ �
rt1 . . . 0 . . . 0

..

. . .
. ..

. ..
. ..

.

0 . . . rtd . . . 0

2
664

3
775

v>t1

..

.

v>tD

2
664

3
775

¼ ut1 . . . utd½ �
rt1 . . . 0

..

. . .
. ..

.

0 . . . rtd

2

664

3

775

v>t1

..

.

v>td

2

664

3

775

,Ut
~StP
>
t

ð3Þ

where ~St and Pt are the submatrices composed with the left

d columns of St and Vt, respectively.

Denote Pt ¼ ½vt1 . . . vtd� ¼ ½pt1 . . . ptd� and St ¼ span

fpt1 . . . ptdg. It is obvious that {pti} comprises an ortho-

normal basis of St due to the orthogonality of Vt. Thus,

x̂ti ¼ P>t xti gives the coordinate of the projection of xti in St

with respect to basis Pt.

Then denoting Rt ¼ Ut
~St and substituting (3) into (1),

we obtain

Lt ¼ RtP
>
t ð4Þ

and

fLt
ðxti; xtjÞ ¼ x>t;ijPt

~S>t U>t Ut
~StP
>
t xt;ij

¼ x̂>t;ijR
>
t Rtx̂t;ij

¼ fRt
ðx̂ti; x̂tjÞ ð5Þ

This completes the proof. h

Theorem 1 proves that for any metric defined in R
D by

transformation matrix Lt 2 R
d�D; there exists a d-dimen-

sional subspace St with a metric defined by Rt 2 R
d�d so

that the distance of any pair of points in R
D remains con-

stant if they are projected to St. Thus, a metric defined by Lt

has an equivalent formulation with explicitly decomposed

to a low-dimensional metric part Rt and a subspace part St;

or equivalently, Pt. Then our multi-task framework based

on common subspace assumption can be simply described

as to learn an individual metric Rt for each task in an

common subspace Pt = P, Vt. Using (4), it is expressed as

Lt ¼ RtP
>; 8t.

There is still a problem that the columns of P are

assumed to be orthonormal. However, we show that the

orthonormal assumption can be approximately discarded.

Assume that the SVD of P is

P ¼ UPSPV>P ¼ ~UP
~SPV>P ð6Þ

where ~UP 2 R
D�d is the first d columns of UP and ~SP 2

R
d�d is the first d rows of SP. Substitute (6) into (4), we

obtain Lt ¼ RtVP
~S
>
P

~U
>
P .

Then simply denote ~Rt ¼ RtVP
~S
>
P and ~P ¼ ~UP. We can

reformulate Lt ¼ ~Rt
~P
>

where the columns of ~P are ortho-

normal. Thus, we can formulate our multi-task metric

learning constraint as Lt = RtL0 where L0 is a

d 9 D matrix without additional constraints.

With the discussion above, we then would like to min-

imize the overall loss l defined in Eq. (2). The final opti-

mization problem of multi-task low-rank metric learning

can be written as follows:

min
L0;fRtg

lðL0; fRtgÞ ¼
X

t

�tðRtL0Þ

¼
X

t

�tðfft;ijðRtL0ÞgÞ; ði; jÞ 2 St

[
Dt;

ð7Þ

where ft;ijðRtL0Þ ¼ x>t;ijL
>
0 R>t RtL0xt;ij.

2.5 Relation with multi-task feature learning

It is notable that our method is different from simply

learning a metric in the low-dimensional space learned
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with multi-task feature learning method (denote as

MTFL?ML). The difference between them is shown in

Fig. 2. For MTFL?ML, only the common informative

subspace is used to learn a better metric for each task,

while the individual metrics have no effect on the infor-

mative subspace. In contrast, since we focus on the prob-

lem of defining a metric in sample space that naturally

determines the feature space, it is possible to entangle the

concept of common subspace into metric learning process

and obtain our framework.

In our framework, as shown in Fig. 2b, a low-

dimensional informative subspace is learned by jointly

training all tasks and used to help each task to learn a

better metric. Then the learned metrics furthermore help

to find the informative subspace more accurately. The

estimation of common subspace and individual metrics

are mutually interacted, and this implicitly strengthens

the information propagation between the individual

metrics.

2.6 Optimization

In the following, we try to adopt the gradient descent

method to solve the optimization problem (7). The gradient

of �t with respect to Lt is

o�t

oLt
¼
X

i;j

o�t

oft;ij
� oft;ij
oLt

� �
¼
X

i;j

o�t

oft;ij
� 2Ltxt;ijx

>
t;ij

� �

¼ 2Lt

X

i;j

o�t

oft;ij
� xt;ijx

>
t;ij

� �
: ð8Þ

Since
oft;ij
oL0
¼ 2R>t RtL0xt;ijx

>
t;ij; the gradient can then be

calculated using (8) as

ol

oL0

¼
X

t

o�t

oL0

¼
X

t

2R>t RtL0

X

i

o�t

oft;ij
� xt;ijx

>
t;ij

� � !

¼
X

t

2R>t RtL0Dt

� �

ol

oRt
¼ o�t

oRt
¼ 2Rt

X

i;j

o�t

oft;ij
� L0xt;ij

� �
L0xt;ij

� �>
� �

¼ 2RtL0DtL
>
0 ; ð9Þ

where

Dt ¼
X

i;j

o�t

oft;ij
� xt;ijx

>
t;ij

� �
: ð10Þ

With (8–10), we can easily use the gradient descend

method to optimize the L0 and Rt and hence obtain the final

low-rank metric for each task.

2.7 Special case

In this section, we show how to apply our multi-task low-

rank metric learning framework to a specific metric

learning method. We take the LMCA [5] as a typical

example and develop a multi-task LMCA model.1

In LMCA, for each sample, some nearest neighbors with

the same label are defined as target neighbors, which are

assumed to have established a perimeter such that differ-

ently labeled samples should not invade. Those differently

labeled samples invading this perimeter are referred to as

impostors and the goal of learning is to minimize the

number of impostors. The difference between LMCA and

LMNN is that LMCA optimizes the transformation matrix

Lt while LMNN optimizes the Mahalanobis matrix

Mt ¼ L>t Lt. Given n input examples xt1; . . .; xtn in R
D and

their corresponding class labels yt1; . . .; ytn; the loss func-

tion with respect to transformation matrix Lt is

�tðLtÞ¼ð1�lÞ
X

ði;jÞ2St

Ltðxti�xtjÞ
�� ��2

þl
X

ði;j;kÞ2T t

h Ltðxti�xtjÞ
�� ��2� Ltðxti�xtkÞk k2þ1
� �

;

ð11Þ

where h(s) = max(s,0) is the hinge function.

Minimizing �tðLtÞ can be implemented using the gradient-

based method. Define ~T t as the set of triples which trigger the

hinge loss:

ði; j; kÞ 2 ~T t iff Ltðxti � xtjÞ
�� ��2� Ltðxti � xtkÞk k2þ1 [ 0:

The gradient can then be calculated with

(a) (b)

Fig. 2 Difference between metric learning with multi-task feature learning and our method. a Multi-task feature learning ? metric learning;

b multi-task metric learning in common subspace

1 Note that it is straightforward to extend our framework to other

metric learning models that optimize the objective function with the

transformation matrix.
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o�tðLtÞ
oLt

¼ 2ð1� lÞLt

X

ði;jÞ2St

ðxti � xtjÞðxti � xtjÞ>

þ 2lLt

X

ði;j;kÞ2 ~T t

ðxti � xtjÞðxti � xtjÞ>
h

�ðxti � xtkÞðxti � xtkÞ>
i

ð12Þ

Substituting the transformation matrix of task-t with

Lt = RtL0 and the optimization item �t in (7) with (11), we

can obtain the objective function of multi-task LMCA as

lðL0; fRtgÞ ¼
X

t

�tðRtL0Þ

¼
X

t

(
ð1� lÞ

X

ði;jÞ2St

RtL0ðxti � xtjÞ
�� ��2

þ l
X

ði;j;kÞ2~T t

h

�
RtL0ðxti � xtjÞ
�� ��2

� RtL0ðxti � xtkÞk k2þ1

�)
:

The calculation of Dt is

Dt ¼ ð1� lÞ
X

ði;jÞ2St

ðxti � xtjÞðxti � xtjÞ>

þ l
X

ði;j;kÞ2 ~T t

h
ðxti � xtjÞðxti � xtjÞ>

�ðxti � xtkÞðxti � xtkÞ>
i
:

With Dt; the gradient can be calculated with Eq. (9).

3 Experiments

In this section, we first illustrate our proposed multi-task

method on a synthetic data set. We then conduct extensive

evaluations on four real data sets in comparison with three

competitive methods.

3.1 Illustration on synthetic data

In this section, we take the example of concentric circles in

[2] to illustrate the effect of our multi-task framework.

Assume there are T classification tasks where the samples

are distributed in the three-dimensional space and there are

Fig. 3 Illustration of the proposed multi-task low-rank metric learning method. The figure is best viewed in color
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ct classes in the t-th task. For all the tasks, there exists a

common two-dimensional subspace (plane) in which the

samples of each class are distributed in an elliptical ring

centered at zero. The third-dimension orthogonal to this

plane contains merely Gaussian noise. The samples of

randomly generated 4 tasks were shown in the first column

of Fig. 3. In this example, there are 2, 3, 3, 2 classes in the

4 tasks, respectively, and each color corresponds to one

class. The circle points and the dot points are, respectively,

training samples and test samples with the same distribu-

tion. Moreover, as the Gaussian noise will largely degrade

the distance calculation in the original space, we should try

to search a low-rank metric defined in a low-dimensional

subspace.

We apply our proposed mtLMCA on the synthetic data

and try to find an appropriate metric by unitizing the corre-

lation information across all the tasks. We project all the

points to the subspace which is defined by the learned metric.

We visualize the results in Fig. 3. For comparison, we also

show the results obtained by the traditional PCA, the indi-

vidual LMCA (applied individually on each task). Clearly,

we can see that for task 1 and task 4, PCA (column 3) found

improper metrics due to the large Gaussian noise. For indi-

vidual LMCA (column 4), the samples are mixed in task 2

because the training samples are not enough. This leads to an

improper metric in task 2. In comparison, our proposed

mtLMCA (column 5) perfectly found the best metric for each

task by exploiting the shared information across all the tasks.
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Fig. 4 Experiment results on wine quality data set. a on test samples:

5 % training samples used; b on training samples: 5 % training

samples used; c on test samples: 10 % training samples used; d on

training samples: 10 % training samples used; e on test samples:

15 % training samples used; f on training samples: 15 % training

samples used
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3.2 Experiment on real data

We evaluate our proposed mtLMCA method on four multi-

task data sets. Following many previous metric learning

methods, we use the category information to generate rel-

ative similarity pairs. For each sample, the nearest 2

neighbors in terms of Euclidean distance are chosen as

target neighbors, while the samples sharing different labels

and staying closer than any target neighbor are chosen as

imposers.

For each data set, we compare our proposed model with

PCA, single-task LMCA (stLMCA), and mtLMNN [13]. If

all tasks share a common label space, we furthermore

compare with uniform-task LMCA (utLMCA), which

means to gather the samples in all tasks together and learns

a uniform metric for all tasks.

In the experiment, we apply these algorithms to learn a

metric of different ranks with the training samples and then

compare the classification error rates on both the test

samples and training samples using the nearest neighbor

classifier. Since mtLMNN is unable to learn a low-rank

metric directly, we implement an eigenvalue decomposi-

tion on the learned Mahalanobis matrix and use the

eigenvectors corresponding to the d largest eigenvalues to

generate a low-rank transformation matrix. The parame-

ter l in the objective function is set to 0.5 empirically in

our experiment. The optimization is initialized with

L0 = Id 9 D and Rt ¼ Id; t ¼ 1; . . .; T; where Id 9 D is a
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Fig. 5 Experiment results on handwritten letter data set. a on test

samples: 5 % training samples used; b on training samples: 5 %

training samples used; c on test samples: 10 % training samples used;

d on training samples: 10 % training samples used; e on test samples:

15 % training samples used; f on training samples: 15 % training

samples used
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matrix with all the diagonal elements set to 1 and other

elements to 0. The optimization process is terminated if the

relative difference of the objective function is less than

g, which is set to 10-5 in our experiment. We run each

experiments five times and plot the average error, the

maximum error, and the minimum error for each data set.

3.2.1 Wine quality classification

The wine data set2 is about wine quality including 1,599

red wine samples and 4,898 white wine samples. The labels

are given by experts with grades between 0 and 10. Tasks

to predict the grade of these two kinds of wine are assumed

to be related. For each task, we randomly select 5, 10 and

15 % samples and learn a metric with them. Then the

remaining samples are used to test, and the error rates on

both test samples and training samples with different

dimensions of common subspace are shown in Fig. 4.

3.2.2 Handwritten letter classification

This data set3 contains handwritten words. It consists of 8

binary classification problems: c/e, g/y, m/n, a/g, i/j, a/o,

f/t, h/n. The features are the bitmap of the images of written
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Fig. 6 Experiment results on USPS digit data set. a on test samples:

5 % training samples used; b on training samples: 5 % training

samples used; c on test samples: 10 % training samples used; d on

training samples: 10 % training samples used; e on test samples:

15 % training samples used; f on training samples: 15 % training

samples used

2 http://archive.ics.uci.edu/ml/datasets/Wine?Quality. 3 http://multitask.cs.berkeley.edu/.
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letters. Each classification problem is regarded as one task

and 5, 10, 15 % of randomly selected samples are used to

train a metric while the remaining for test. The results on

both test samples and training samples are shown in Fig. 5.

3.2.3 USPS digit classification

The USPS digit data set4 consists of 7,291 16 9 16 gray-

scale images of digits 0–9 automatically scanned from

envelopes by the US Postal Service. The features are then

the 256 grayscale values. For each digit, we can get a two-

class classification task in which the samples of this digit

represent the positive patterns and the others negative

patterns. Therefore, there are 10 tasks in total and 5, 10,

15 % of randomly selected samples are used to train a

metric while the remaining for test. The results on both test

samples and training samples are shown in Fig. 6.

3.2.4 Insurance company benchmark data set

The insurance company benchmark (CoIL) data set5 con-

tains information on customers of an insurance company.

The data consist of 86 variables including product usage

data and socio-demographic data derived from zip area

codes. There are totally 5,822 training samples and 4000

test samples. We select out the 37, 38, 39, 40, 41th vari-

ables as categorical features and predict their values with

remaining features. Because all the selected variables are

about the information of income, these tasks are more

liable to be correlated with each other. We use randomly
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Fig. 7 Experiment results on

coIL data set. a on test samples:

5 & training samples used; b on

training samples: 5 & training

samples used; c on test samples:

10 & training samples used;

d on training samples: 10 &

training samples used; e on test

samples: 15 & training samples

used; f on training samples:

15 & training samples used

4 http://www-i6.informatik.rwth-aachen.de/*keysers/usps.html. 5 http://kdd.ics.uci.edu/databases/tic/tic.html.
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selected 5; 10; 15 & of the training samples to learn a

metric, and the test samples are given by the data set. The

results on both test samples and training samples are shown

in Fig. 7.

With these experiment results on test samples, we see

that on most dimensionalities, our proposed mtLMCA

model performs the best across all the data sets whatever

the percentage of training samples are used. This clearly

demonstrates the superiority of our proposed multi-task

framework. While on training samples, the performance of

our method is similar to the performance of single-task

method. This agrees with the motivation of multi-task

learning that is to improve the generalization performance.

Besides, our method is especially suitable to learn a low-

rank metric.

4 Conclusion

In this paper, we proposed a new framework capable of

extending metric learning to the multi-task scenario. Based

on the assumption that the discriminative information

across all the tasks can be retained in a low-dimensional

common subspace, our proposed framework can be easily

solved via the standard gradient descend method. In par-

ticular, we applied our framework on a popular metric

learning method called LMCA and developed a new model

called multi-task LMCA (mtLMCA). In addition to learn-

ing an appropriate metric, this model optimized directly on

a low-rank transformation matrix and demonstrated very

good performance compared to many competitive methods.

We conducted extensive experiments on one synthetic and

four real multi-task data sets. Experiments results showed

that our proposed mtLMCA model can consistently out-

perform the other three comparison algorithms.
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