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a b s t r a c t

Linear Discriminant Analysis (LDA) is an important dimensionality reduction algorithm, but its
performance is usually limited onmulti-class data. Such limitation is incurred by the fact that LDA actually
maximizes the average divergence among classes, whereby similar classes with smaller divergence tend
to be merged in the subspace. To address this problem, we propose a novel dimensionality reduction
method called Maxi-Min Discriminant Analysis (MMDA). In contrast to the traditional LDA, MMDA
attempts to find a low-dimensional subspace bymaximizing theminimal (worst-case) divergence among
classes. This ‘‘minimal’’ setting overcomes the problem of LDA that tends to merge similar classes with
smaller divergencewhen used formulti-class data.We formulateMMDA as a convex problem and further
as a large-margin learning problem. One key contribution is that we design an efficient online learning
algorithm to solve the involved problem, making the proposed method applicable to large scale data.
Experimental results on various datasets demonstrate the efficiency and the efficacy of our proposed
method against five other competitive approaches, and the scalability to the data with thousands
of classes.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Dimensionality reduction has been an important topic in
machine learning and pattern recognition. Principal Component
Analysis (PCA) (Gao, 2008) does not guarantee the discrimination
performance as it does not consider the label information. Linear
Discriminant Analysis (LDA), developed by Fisher in 1936, is
a popular method that has achieved great success in many
fields (Fukunaga, 1990). Under the homoscedastic Gaussian
assumption, LDA is equivalent to finding the maximum-likelihood
(ML) parameter estimates and leads to the optimal projection axis
used for two-category data (Campbell, 2008). When applied to
multi-category (e.g., c-category) data, LDA can still achieve good
performance inmany cases. Precisely speaking, Rao (1948) showed
that c − 1 dimensional subspace given by LDA, wherein c is the
class number, and is also guaranteed to be Bayes optimal in multi-
class homoscedastic case under the condition that the data features
d ≥ c . Fig. 1(a) is one example where LDA can find the good
projection axis for three-class separation.

However, LDA may fail to find good projection for other multi-
class data, especially when the category number is far larger than
the data features (Loog, Duin, & Haeb-Umbach, 2001), e.g., in
Chinese character recognition (with 3755 classes and merely
several hundred features). In this case, it is impossible to reduce
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the dimensionality to any number equal to or slightly smaller than
c − 1. Fig. 1(b) illustrates a typical example that LDA fails to find
a good projection when the dimensionality is reduced to 1 for a
three-class problem. Clearly, by LDA, the transformed data of class
1 and class 2 would overlap with each other heavily, leading to
worse performance for consequent classification. This problem of
LDA, or more clearly, the phenomenon that LDA tends to merge
similar or closer classes when the dimension of the projected
subspace is strictly lower than the class number minus one, is
called the class separation problem in the literature (Tao, Li, Wu, &
Maybank, 2009). In contrast, the dashed axis in Fig. 1(b), would be
a reasonable projection axis that can appropriately make the data
of each class well separated.

The criterion of LDA is trying to search a low-dimensional
subspace which canmaximize the between-class covariance while
minimizing the within-class covariance. Using Lemma 1 (provided
in Section 3.2), LDA actually exploits an average setting, i.e., LDA
tries to maximize the average divergences among different classes.
The divergence of any two classes is defined as the distance
between the mean vectors of the two classes in the whitening
space. To maximize the average divergence, LDA tends to find
the subspace preserving the larger divergences and ignoring the
smaller divergences, as illustrated in Fig. 1(b). This causes the
overlap of the similar classes, with smaller divergences, after data
transformation.

To address the class separation problem of LDA, there have
been several proposals in the literature. Loog et al. (2001)
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Fig. 1. Illustration of LDA for multi-class data.
developed a heuristic method called approximate Pairwise Accu-
racy Criterion (aPAC) that adds larger weights for similar classes
in the estimation of the between-class covariance. Lotlikar
and Kothari (2000) proposed the so-called Fractional-step Lin-
ear Discriminant Analysis (F-LDA) by heuristically and itera-
tively reducing dimension from a high-dimensional space to the
low-dimensional space. Recently, Abou-Moustafa, de la Torre, and
Ferrie (2010) designed the Pareto Discriminant Analysis (PDA) by
forcing the pairwise distance to be equal after transformation.
These methods usually deal with the class separation problem by
imposing different weights on classes, either iteratively or directly.
However, the weighting function is always ad-hoc and often needs
to be adapted in different applications. For PDA, the involved opti-
mization problem is non-convex, making its performance usually
limited in practice. More related work can be referred to Section 2.

Unlike previous approaches, in this paper, a novel worst-case
framework called Maxi-Min Discriminant Analysis (MMDA) is
proposed. More specifically, instead of maximizing the average
divergence among different classes, MMDA attempts to maximize
the minimal (worst-case) divergence. In this worst-case setting,
MMDA tries to push away each pair of classes with small
divergence as large as possible. This consequently avoids the
aforementioned problem and hence presents a more rigorous
method (comparedwith aPAC and F-LDA). Obviously, the proposed
MMDA method is still optimal for two-class problems under the
homoscedastic Gaussian assumption, since it is degraded to the
standard LDA when the class number is equal to two. Hence, the
proposed worst-case method can be seen as a more generalized
version of LDA for multi-class problems.

One important contribution of this paper is that we formulate
the MMDA problem as a convex programming problem, or more
precisely a Semi-Definite Programming (SDP) problem. Since SDP
is computationally intractable even for medium-size data, we first
transform the involved SDP problem to a large margin problem
and then present an efficient online learning algorithm to solve
it. The proposed online algorithm is important in that (a) it is
computationally more efficient by removing the constraint of
SDP, and (b) it has a nice convergence property. We note that
Bian and Tao (2010) and Yu, Jiang, and Zhang (2011) proposed a
similar model from the view point of distance metric learning or
dimensionality reduction. However, their models are basically SDP
problems and are hence intractable for large-scale data.

The paper is organized as follows. In Section 2, we detail
the related work. In Section 3, we present our novel worst-
case framework for dimensionality reduction in detail. The model
definition, the theoretical justification and practical optimization
will be discussed in turn in this section. In Section 4, we evaluate
our algorithm and report experimental results. Finally, we set out
the conclusion with some remarks.

A preliminary version of this paper has been early published
in Xu, Huang, and Liu (2010), which is however significantly
expanded both in theory and experiments in the current version.
2. Related work

There are a number of dimensionality reduction approaches
related to ourwork (Abou-Moustafa et al., 2010;He&Niyogi, 2003;
Loog et al., 2001; Lotlikar & Kothari, 2000; Sugiyama, 2006; Tang,
Suganthan, Yao, & Qin, 2005; Tao et al., 2009; Yan et al., 2007).

Sugiyama (2006, 2007) developed the Local Fisher Discriminant
Analysis (LFDA) method that combines the merits of Locality
Preserving Projection (LPP) (He & Niyogi, 2003) into LDA. This
method is shown to be very promising in many real datasets.
However, it is mainly designed for solving classification tasks
when classes distributions are multi-model and its performance
is limited in handling the class separation problem. Loog et al.
(2001) developed a method called approximate Pairwise Accuracy
Criterion (aPAC) that adds larger weights for similar classes in
the estimation of the between-class covariance. This method is
well motivated and partially solves the class separation problem.
However, it remains a problem how to select an optimal weighting
function. Tang et al. (2005) proposed a relevance weighted LDA
which incorporates the inter-class relationships as relevance
weights into the estimation of the overall within-class scatter
matrix in order to improve the performance of the basic LDA
method. The major problem is still how to select the optimal
weighting function. Another related approach called Fractional-
step Linear Discriminant Analysis (F-LDA) is proposed in Lotlikar
and Kothari (2000). F-LDA is a heuristic method, which can
generate better classification accuracy by iteratively reducing
dimension from a high-dimensional space to the low-dimensional
space. This improves the robustness of choosing the weighting
function. Its performance is limited in that a large number of steps
should be used to collapse each dimension and the choice of a
scaling parameter is always critical for the final result. Marginal
Fisher Analysis (MFA) (Yan et al., 2007) is also highly related
to our method. MFA characterizes the interclass compactness
by the neighboring points in the same class and characterizes
the interclass separability by the connection of marginal points.
However, graph construction based on the whole data-set is time-
consuming, which limits its application.

As a short summary, the above methods usually deal with
the class separation problem by imposing different weights on
classes, either iteratively or directly. However, the weighting
function is always ad-hoc and often needs to be adapted in
different applications. Recently, Pareto Discriminant Analysis was
proposed to address the class-separation problem (Abou-Moustafa
et al., 2010) by forcing the pairwise distance to be equal after
transformation. There are two shortcomings for the method. On
the one hand, it involves a non-convex programming problem;
on the other hand, the so-called Pareto optimal criterion may
essentially not be a good criterion because a bad local minimum
can be a Pareto optimal point as well. Yu et al. (2011) proposed
a similar criterion called minimal distance maximization for
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distance metric learning. After being recognized as an instance of
SDP, the problem is solved by many existing numerical packages.
However, due to the large computational complexity of SDP, this
model cannot be applied for large-scale datasets. Similarly, Bian
and Tao (2010) designed a sequential SDP relaxation to solve the
Maxi-Min criterion, which unfortunately has the large time cost
due to the involvement of SDP.

We summarize the contributions of our paper as follows.

– We present a systematic and elegant approach to deal with
the class separation problem. Maximization of the minimal
divergence naturally and directly pushes away the closer
classes and hence presents a more rigorous way to solve the
class separation problem than the weighting methods. This is
distinct with Loog et al. (2001), Lotlikar and Kothari (2000) and
Tang et al. (2005).

– We formulate the model as a convex programming problem
and further a large-margin learning problem. This is different
from the heuristic methods or non-convex approaches, e.g., in
Abou-Moustafa et al. (2010), Loog et al. (2001) and Lotlikar and
Kothari (2000).

– We develop a novel online learning algorithm to solve the
involved SDP problem. We also show that the designed
online algorithm has a nice convergence property, which
hence guarantees its learning performance. More importantly,
the proposed online learning algorithm enables our method
applicable to large-scale data, e.g., Chinese character data with
over 1 million samples. This is different from the work Bian and
Tao (2010) and Yu et al. (2011).

3. Framework of maxi-min discriminant analysis

In this section, we describe our novel dimensionality reduction
framework MMDA. We first present the notation and a two-step
view of LDA, and then introduce the detailed framework.

3.1. Notation

We first present the notation used in the paper. Let xi ∈ RD(i =
1, 2, . . . , n) be D-dimensional samples and ci ∈ {1, 2, . . . , c} be
their associated class labels, where n is the number of samples and
c is the number of classes. Let ni be the number of samples in the
class i,

l
i=1 ni = n. Let X = [x1, x2, . . . , xn] represent all samples

as a matrix. The purpose of linear dimensionality reduction is to
find a projectionmatrixW whichmaps aD-dimensional data space
to a d-dimensional subspace (d < D),W T

: RD
→ Rd, where W =

[w1, w2, . . . , wd]. Let Y = [y1, y2, . . . , yn] , yi ∈ Rm represent all
samples in the embedding space projected bymatrixW T , where yi
is given by yi = W T xi, i ∈ [1, n]. Let mi, m′i and Mi be the mean
of the class i in the original space, the whitening space, and the
low-dimensional space respectively. In addition, A ≽ 0 means the
matrix A is a positive semi-definite matrix and ∥A∥F indicates the
Frobenius norm of the matrix A.

3.2. Two-step view of LDA

Before we describe our novel MMDA framework, following
Fukunaga (1990), we present a two-step view of LDA. The
transformationmatrixW of LDA is usually given by the eigenvalue
decomposition of S−1W SB, where SW is the within-class covariance
and SB is the so-called between-class covariance. The solution of
LDA can be equivalently computed in two steps by whitening SW
first and then conducting Principle Component Analysis (PCA) in
the whitening space (Fukunaga, 1990).

Denote the eigenvectors of SW by the matrix P and the
eigenvalues by the matrix Λ1, then we have SW = PΛ1PT . The
first step of LDA is to transform SW to an identity matrix using a
whitening transformation matrix W1 = PΛ

−1/2
1 , i.e., W T

1 SWW1 =

I . Accordingly, SB is transformed to W T
1 SBW1 = S ′B. The second

step of LDA is to utilize the PCA transformation matrix W ′ on
class centers in the whitening space. This is equivalent to the
transformation that maximizes the average divergence among
all the classes in the whitening space. It is proved in Lemma 1.
Thus the final transformation of LDA is the combination of the
two steps, i.e., the whitening transformation W1 and the PCA
transformationW ′:
W = W1W ′ = PΛ

−1/2
1 W ′.

Lemma 1. Under the homoscedastic Gaussian assumption, the LDA
solution is a linear transformationmaximizing the average divergence
among all the classes in thewhitening space, or in particular, LDA finds
a projection matrix W ′ in the whitening space to satisfy the following
criterion:

max
W ′

 
1≤i<j≤l

Mi −Mj
2 . (1)

Proof can be see in Tao et al. (2009).
Maximizing the average divergencewill possibly lead to serious

overlap of those similar classes (as illustrated in Fig. 1(b)). In
the next subsection, we will show that our proposed worst-case
framework MMDA can solve this problem.

3.3. The MMDA model

To attack the class separation problem, we present a novel
method called MMDA that maximizes the minimal pairwise
divergence among the class centers. In this worst-case setting, the
closer classeswill be pushed further away and this hence alleviates
the overlap problem systematically.

Our approach, MMDA, also follows the two-step framework as
LDA. After applying the whitening transformation on the data, it
finds a projection matrixW ′ to satisfy the following criterion:

max
W ′


min

1≤i<j≤l

Mi −Mj
2 . (2)

The major difference from LDA is that, MMDA is maximizing
the minimal divergence, while LDA is maximizing the average
divergence (as proved in Lemma 1). Maximizing the average
divergence may lead some classes to overlap in the transformed
space, while maximizing the minimal divergence can avoid such
cases effectively.

Wenowshowhow to solve the optimizationproblemofMMDA.
Eq. (2) is equivalent to:
max
W ′,y

y s.t. Dij ≥ y, ∀i, j, 1 ≤ i < j ≤ l, (3)

where Dij =
Mi −Mj

2 and y > 0. As Dij can be rewritten as

Dij = tr

W ′T


m′i −m′j

 
m′i −m′j

T W ′
= tr


W ′W ′T


m′i −m′j

 
m′i −m′j

T
,

we can rewrite Eq. (3) as: tr

AS ′ij

≥ y,∀i, j, 1 ≤ i < j ≤ l, where

A = W ′W ′T and S ′ij is the scatter matrix between class i and class j
in the whitening space.

After adding a reasonable constraint to matrix A for avoiding
trivial solution, i.e., ∥A∥F = 1, our model can be rewritten as:

max
A

y s.t.

tr

AS ′ij

≥ y, ∀i, j, 1 ≤ i < j ≤ l

∥A∥F = 1
A ≽ 0.

(4)
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The problem of (4) forms a typical Semi-Definite Programming
(SDP) problem, which can be solved by some software packages,
e.g. Sedumi (Sturm, 1999) or CSDP (Borchers, 1999).

Once we obtain matrix A, the next problem is how to compute
W ′ from A. Here we apply the least square method to solveW ′:

J

W ′

= min

W ′

A−W ′W ′T
2 . (5)

It is easy to prove that the optimal W ′ is the first d largest
eigenvectors of A.

Therefore, the final transformation ofMMDA is the combination
of the whitening transformationW1 and W ′:

W = W1W ′. (6)

Remarks. To find the transformation matrix, the MMDA method
is needed to solve a typical SDP problem. This is similar to the
work in Bian and Tao (2010) and Yu et al. (2011). However, SDP is
computationally intractable for high dimensional and large-scale
data. To address this challenge, we propose an efficient online
learning algorithm which avoids the SDP problem but with a nice
convergence property. We will introduce the online algorithm in
the next subsection.

3.4. The MMDA online algorithm

In this subsection, we firstly transform the problem (4) into
a large margin optimization problem, and then relax it to a
soft-margin problem. After that, we discuss an efficient online
algorithm to solve the problem.

Lemma 2. The problem (4) is equivalent to the following largemargin
optimization problem:

min
Q

1
2
∥Q∥2F

s.t.

tr(QS ′ij) ≥ 1, ∀i, j, 1 ≤ i < j ≤ l
Q ≽ 0.

(7)

In the above, Q is proportional to the matrix A in (4), subject to a
constant factor, i.e., Q = kA, where k is a positive value.

Proof. We can rewrite A = A′

∥A′∥F
and remove ∥A∥F = 1. (4) is

equivalent to the following optimization problem:

max
A′

y2

s.t.

tr


A′

∥A′∥F
S ′ij


≥ y, ∀i, j, 1 ≤ i < j ≤ l

A′ ≽ 0.
(8)

Then, we have

max
A′

y2

s.t.

tr


A′

∥A′∥F · y
S ′ij


≥ 1, ∀i, j, 1 ≤ i < j ≤ l

A′ ≽ 0.
(9)

By defining A′

∥A′∥F y
= Q , then we have

min
Q

1
2
∥Q∥2F

s.t.

tr

QS ′ij


≥ 1, ∀i, j, 1 ≤ i < j ≤ l

Q ≽ 0. (10)

This completes the proof. �
Similar to other large margin methods, we can also introduce a
soft-margin problem:

min
Q

λ

2
∥Q∥2F +


ij

ξij

s.t.

tr

QS ′ij


≥ 1− ξij, ∀i, j, 1 ≤ i < j ≤ l

Q ≽ 0
ξij ≥ 0, ∀i, j, 1 ≤ i < j ≤ l.

(11)

Replacing the objective in Eq. (11) with Dmt = {m′i,m
′

j} yields:

f (Q ;Dmt) =
λ

2
∥Q∥2F + ξij, (12)

where ξij = min{0, 1− tr(QS ′ij)}.
The sub-gradient of the above objective can be given by:

∇fQ = λQ − ℓ

tr

QS ′ij


< 1


S ′ij, (13)

where ℓ

tr

QS ′ij


< 1


is the indicator function which takes a

value of one if its arguments is true and zero otherwise. We then
update Qt+1 ← Qt − ηt∇t using a step size of ηt = 1/ (λt):

Qt+1 ←


1−

1
t


Qt + ηtℓ


tr

QS ′ij


< 1


S ′ij. (14)

The final output Qt+1 is achieved after a predetermined number of
iteration. We can write the solving method in Algorithm 1.

Algorithm 1Online learning algorithm for Maxi-Min Discriminant
Analysis
1: INPUT: Predefined learning rate λ, training samples
2: Initialize Q0 = 0
3: for t = 1, . . . , T do
4: Receive a pair of training examplesmi,mj. (m′i ,m

′

j are center
of class i and class j after whitening.)

5: if (m′i −m′j)
TQt(m′i −m′j) < 1 then

6: Qt+1 =

1− 1

t


Qt + ηtS ′ij. (ηt = 1/ (λt))

7: else
8: Qt+1 =


1− 1

t


Qt .

9: end if
10: end for

Note that compared to the SDP solution, the proposed online
learning algorithm is advantageous in that (i) it is computationally
more efficient by avoiding solving an SDP problem and (ii) it has a
proved bound on the average instantaneous objective.

3.5. Convergence analysis

In this subsection, we analyze the convergence property of the
MMDAOnline algorithm. First, it is easy to verify that the proposed
algorithm converges when T goes to infinity, since Qt will stay
unchanged if T is sufficiently large. In the following, we will then
present an analysis to bound the average instantaneous objective
of MMDAOnline algorithm such that this average instantaneous
objective value given by the online algorithm will be tightly
bounded by the optimal objective value. After that, we provide
probabilistic analysis to show that the final solution terminated
at epoch t (t is sufficiently large) will usually lead to good
performance.

We first borrow a lemma from Hazan, Kalai, Kale, and Agarwal
(2006) and Shalev-Shwartz, Singer, and Srebro (2007).
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Lemma 3. Let f1, . . . , fT be a sequence of λ-strongly convex func-
tions. Let B be a closed convex set and define ΠB (ω) = argminω′∈Bω − ω′

. Let ω1, . . . , ωT+1 be a sequence of vectors such that ω1 ∈

B and for t ≥ 1, ωt+1 = ΠB (ωt − ηt∇t), where ∇t belongs to the
sub-gradient set of ft at ωt and ηt = 1/(λt). Assume that for all t ,
∥∇t∥ ≤ G. Then, for all u ∈ B we have

1
T

T
t=1

ft (wt) ≤
1
T

T
t=1

ft (u)+
G2 (1+ ln (T ))

2λT
. (15)

In the above, if f (w) − λ/2∥w∥2 is a convex function, then the
function f is calledλ-strong convex. Based on Lemma3,we are now
ready to provide the convergence property of the MMDAOnline
algorithm in Theorem 1.

Theorem 1. Assume the difference of any pair of means in the
whitening space is at most R, i.e., ∀i ≠ j, ∥m′i − m′j∥ ≤ R. Let f (Q )

be given by the original objective function of (11) and f (Q ;Dmt) be
defined by Eq. (12). Let Q ∗ = argminQ f (Q ) and let c = 4R4. Then
for T ≥ 3,

1
T

T
t=1

f (Qt;Dmt) ≤
1
T

T
t=1

f

Q ∗;Dmt


+

c (1+ ln (T ))

2λT
. (16)

Proof. The updating algorithm can be rewritten as:

Qt+1 = Qt − ηt∇t , (17)

where ∇t is defined in Eq. (13).
Based on the Lemma 3, Eq. (16) is established if we prove that

the following conditions hold:

1. f (Q ;Dmt) is λ-strongly convex.
2. ∥∇t∥ ≤ 2R2.

Proof of condition (1): It is clear that f (Q ;Dmt) is a λ-strongly con-
vex, since f (Q ;Dmt) =

λ
2 ∥Q∥

2
F + ξij is λ-strongly convex function

plus a convex function.

Proof of condition (2): The updating step can be rewritten as

Qt+1 =


1−

1
t


Qt −

1
tλ

vt , (18)

where vt = ℓ

tr

QS ′ij


< 1


S ′ij. Therefore, the initial weight of

each vi is 1/λi and then on rounds j = i+ 1, . . . , t , it will be mul-
tiplied by 1− 1/j. Thus the overall weight of vi in Qt+1 is

1
λi

t
j=i+1

j− 1
j
=

1
λt

(19)

which implies that we can rewrite Qt+1 as

Qt+1 =
1
λt

t
i=1

vi. (20)

From the above, we immediately have that ∥Qt+1∥ ≤ R2/λ

and
S′ij = m′i −m′j

2 ≤ R2. Recalling that ∇t = λQt − ℓ

tr

QtS ′ij


< 1

S ′ij, we can therefore get ∥∇t∥ ≤ 2R2. This completes

the proof. �

We start to obtain a bound on f (Qt), which is evaluated at a
single Qt . We borrow a lemma from Kakade and Tewari (2009).
Lemma 4 (Corollary 7 in Kakade and Tewari (2009)).Assume that the
conditions stated in Theorem 1 hold and that each pair of means are
sampled uniformly at random. Assume also that R ≥ 1 and λ ≤ 1/4.
Then, with a probability of at least 1− δ we have

1
T

T
t=1

f (Qt)− f

Q ∗

≤

21c ln (T/δ)

λT
. (21)

Furthermore, due to the convexity of f , we have the following
inequality:

f


1
T

T
t=1

Qt


≤

1
T

T
t=1

f (Qt) . (22)

Using the above inequality and Lemma 4, we can immediately
obtain Corollary 1.

Corollary 1. Assume that the conditions stated in Lemma 4 hold and
let Q̄ = 1

T

T
t=1 Qt . Then, with probability of at least 1− δ we have

f

Q̄

≤ f


Q ∗

+

21c ln (T/δ)

λT
. (23)

Corollary 1 states that the average of Qt can reach a sufficiently
good solutionwith a high probability for the involved optimization
problem, provided that T could be sufficiently large. In practice,
the final solution QT+1 obtained at the epoch T can often lead to
better performance. To show this, we now prove that by at least
half chance, QT+1 is good.

Lemma 5. Assume that the conditions stated in Lemma 4 hold. Then,
if t is selected at random from [T ], we have with a probability of at
least 1

2 that

f (Qt) ≤ f

Q ∗

+

42c ln (T/δ)

λT
. (24)

Proof. Define a random variable Z = f (Qt)− f (Q ∗) where the
randomness is over the choice of the index t . From the definition
of Q ∗ as the minimizer of f (Q ) we clearly have that Z is a
non-negative random variable. Thus, from Markov inequality
P [Z ≥ 2E [Z]] ≤ 1

2 , the claim now follows by combining the fact
that E [Z] = 1

T

T
t=1 f (Qt) − f (Q ∗) with the bound given in

Lemma 4. This completes the proof. �

From the above lemma, we know that the last hypothesis Qt+1
achieves an accurate solution in at least half of the cases by a
random termination during iteration. Therefore, it is reasonable
to evaluate the error of the last hypothesis at a random stopping
time. The above lemma tells us that we are likely to obtain a good
solution after two attempts on average.

4. Experimental results

We conduct extensive experiments to verify both the efficiency
and the efficacy of the proposed algorithm for dimensionality
reduction. We compare our algorithm to the following five
state-of-the-art algorithms, PCA, LDA, LPP (He & Niyogi, 2003),
LFDA (Sugiyama, 2006) and aPAC (Loog et al., 2001) on nine
datasets (including two illustrative datasets, five UCI datasets, and
two benchmark large-scale character datasets). Particularly, we
evaluate our model on a large-scale Chinese character data with
over 1million samples and 3755 classes. We call theMMDA solved
by SDP as MMDASDP, and the one solved by the online algorithm
as MMDAOnline. We set the maximum number of iterations for
our MMDAOnline to be 1000, and obtain the learning rate λ by
cross validation. All the algorithms are implemented and run using
Matlab on a PC with 3.0 GHz CPU and 2G RAM.



B. Xu et al. / Neural Networks 34 (2012) 56–64 61
a b

Fig. 2. Projection directions of different methods. In (a), all the methods show similar performance; in (b), our proposed MMDA can separate the classes correctly (the
projection axes given by MMDASDP and MMDAOnline coincide with each other), while the comparison approaches (generating horizontal projection axes) tend to merge
the closer classes, i.e., the green and red data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Images of similar Chinese characters. Each row shows 12 samples for each
character. The first 5 rows look very similar, while the last row is significantly
different.

4.1. Results on synthetic data

To validate the effectiveness of the proposed MMDA, we first
conduct experiments on a synthetic dataset. We generated 250
samples for each of the three classes (750 samples in total).
Moreover, the samples in each class were obtained from a two-
dimensional standard normal distribution. Each approach finds a
projection axis to separate different classes as much as possible.
The projection axes are shown in Fig. 2. In Fig. 2(a), all the
approaches successfully separate different classes: their projection
axes are all overlapped. However, when applied to (b) with similar
classes, only MMDA can separate classes correctly in the Fig. 2(b)
(the projection axes given by MMDASDP and MMDAOnline
coincide with each other). The other methods generate horizontal
projection axes and tend tomerge closer classes, i.e., the green and
reddata. This clearly shows the superiority ofMMDAover the other
approaches for multi-class problems.

4.2. Results on similar Chinese character data

In this experiment, in order to further illustrate the effec-
tiveness of our proposed MMDA model, we select six characters

from the benchmark Handwritten Chinese
character dataset CASIA-HWDB1.1 (details about the dataset can
be seen shortly in Section 4.5). As observed from these six charac-
ters, the first 5 look very similar, while the remaining one is very
different. These 6 classes have 1495 samples in total. Fig. 3 provides
some samples in this dataset.

The image samples were firstly normalized by the Line Density
Interpolation (LDI) (Liu & Marukawa, 2005) algorithm, then the
normalization-cooperated gradient feature (NCGF) (Liu, 2007)
were extracted. The gradient elements were decomposed into
8 directions and each direction was extracted 8 × 8 values by
Gaussian blurring. This leads to the final feature dimensionality as
512.

To better illustrate the effectiveness of different algorithms, we
apply each approach to reduce the dimensionality of the dataset
to 3. We then visualize the samples in Fig. 4. Clearly observed,
PCA generally cannot discriminate different classes, hence most
similar classes overlap with each other. LDA also tends to merge
similar characters due to its ‘‘average’’ setting. In comparison, our
proposed MMDA algorithm adopts a worst-case setting which can
better separate different classes. In addition, other algorithms,
e.g., LFDA, aPAC, LPP, can generate better performance than PCA,
but still mix several classes seriously.

4.3. Results on UCI data

After illustrating the effectiveness of our proposed model,
we conduct extensive experiments of the data classification on
the following five datasets from the UCI repository (Asuncion &
Newman, 2007): (1) Teaching, with 3 classes, 5 features and 151
instances; (2) Wine, with 3 classes, 13 features and 178 instances;
(3) Balance-scale, with 3 classes, 4 features and 625 instances; (4)
Sat-log, with 6 classes, 36 features, 4435 training instances and
2000 test instances; (5) optdigits, with 10 classes, 64 features,
3823 training instances and 1797 test instances. For simplicity, we
specify the reduced dimensionality as the c−1 in the experiments
on UCI data. After the dimensionality reduction, the k Nearest
Neighbor (k-NN) is then adopted as the classifier to evaluate
the performance of each approach. We compute the recognition
rate of 1, 3, 5, 7, 9 nearest neighbor, and record the best rate
classifier. The reported test accuracies are acquired using 10-fold
Cross Validation (CV) for the first 3 small- ormedium-size datasets.
For Sat-log and optdigits, the accuracies are calculated on their
specified test sets.

The recognition results are reported in Table 1. Clearly, MMDA
(including the batch model and the online version) demonstrates
overall best performance than the other methods, especially
when compared to LDA and PCA. aPAC also demonstrates good
performance. As discussed before, aPAC is also well justified
for solving the class separation problem. However, it needs to
define weighting functions beforehand, which is somehow ad-
hoc. We also perform the statistical test on Teaching, Wine and
Balance. The t-test results under the 5% significant level show the
superiority of our method. More particularly, although MMDA is
just marginally better in Teaching, it is significantly better than
the other comparison algorithms in Wine. Moreover, in Balance,
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(a) PCA projection. (b) LDA projection.

(c) LFDA projection. (d) MMDAOnline projection.

(e) aPAC projection. (f) LPP projection.

Fig. 4. Illustration of different algorithms. The proposed MMDA algorithm demonstrates the best separation ability.
Table 1
Classification rate on UCI data (mean± std-dev%).

Datasets MMDA MMDAOnline LDA LPP aPAC LFDA PCA

Teaching 96.6± 1.6 97.5± 0.2 96.5± 1.6 96.4± 1.8 96.6± 1.8 96.1± 1.9 96.4± 1.8
Wine 96.4± 1.5 96.7± 0.9 92.9± 1.9 87.3± 2.6 95.6± 1.7 95.8± 1.0 77.9± 3.2
Balance 98.3± 0.6 98.5± 0.4 97.7± 0.8 97.8± 0.5 97.8± 0.6 98.3± 0.7 72.1± 4.4
Sat 87.1 87.9 88.4 88.3 88.5 87.5 88.9
Opt-digits 96.0 96.5 95.7 95.4 95.0 95.8 95.3
MMDA shows performance similar to that of LFDA but it is
significantly better than the remaining algorithms.

To examine the learning efficiency of the proposed online
algorithm,we also plot the curves of its computational time of each
model, especially MMDAOnline against MMDASDP on different
datasets. The result is shown in Fig. 7(a). It is evident that the
proposed online algorithm overcomes the problem incurred by
SDP and significantly reduces the training time compared with
its batch version. It demonstrates comparable learning efficiency
against the other methods (see Fig. 5).
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(a) UCI dataset. (b) USPS dataset.

Fig. 5. Comparison on training time.
Table 2
Classification rate on USPS data.

Dimensionality MMDAOnline LDA LPP LFDA aPAC PCA

9 89.8 89.7 89.4 89.2 89.7 88.2
8 89.6 89.0 88.9 88.7 88.3 87.4
7 89.5 88.3 88.2 86.8 88.3 86.0
6 87.5 87.2 87.0 85.4 88.2 82.1
5 86.4 84.1 84.5 84.0 86.3 78.6
4 83.6 78.3 78.7 78.4 82.2 75.6
3 73.5 63.9 64.2 66.6 72.9 61.6

4.4. Results on USPS data

In this section, we report the experimental results of the pro-
posed algorithm using a well-known large-scale character recog-
nition dataset, the United States Postal Services (USPS) dataset,
in which there are 9298 handwriting character measurements di-
vided into 10 classes. The entire USPS dataset is divided into two
parts, a training set with 7291 measurements and a test set with
2007 measurements. Each measurement is a vector with 256 di-
mensions.

We apply different algorithms to the USPS dataset and report
the k-NN’s accuracy when the reduced dimensionality is set
from 3 to 9. As MMDASDP is generally an SDP problem and
hence cannot be applied on this large-scale data, we do not
report its accuracy. Table 2 shows the final results. As observed,
MMDAOnline demonstrates the best overall performance against
other comparison methods. When compared with LDA, its
performance is significantly better when the dimensionality is
equal to 5, 4, 3. This again shows the advantages of the proposed
method.

Meanwhile, to examine the learning efficiency of the proposed
online algorithm against SDP more carefully, we intentionally
train the MMDA on a different number of features, which are
gradually increased from 10 features to 160 features (by random
selection). The reduced dimensionality is fixed to 9 for simplicity.
We record the training time for each experiment. The results
are plotted in Fig. 7(b). As observed clearly, the training time of
the online algorithm remains almost unchanged, while the SDP
solving method MMDASDP is already very slow even when only
140 features are kept for training.When over 200 features are used,
MMDASDP crashes due to the out-of-the-memory problem. The
online algorithm presents one of the major contributions for this
paper.

4.5. Results on large-scale Chinese character data

In this section, we further examine the proposed MMDAOn-
line algorithm on the large-scale Chinese character dataset CASIA-
HWDB1.1 (Liu, Yin, Wang, & Wang, 2011). CASIA-HWDB1.1 is a
Fig. 6. Samples of CASIA-HWDB1H1.

new dataset of unconstrained Chinese handwritten characters col-
lected by National Laboratory of Pattern Recognition, Institute of
Automation, Chinese Academy of Sciences (CASIA). The handwrit-
ten data were generated using Anoto pen on paper such that both
online and off-line data can be obtained. We use the off-line iso-
lated handwritten characters dataset CASIA-HWDB1.1 as our eval-
uation data. CASIA-HWDB1H1 contains over 1 million samples
including a training setwith 897,758 training samples and a test set
with 223,991 test samples. There are 3755 classes in the dataset.
Fig. 6 illustrates some samples from the CASIA-HWDB1H1 dataset.

We use the same pre-processing method as mentioned in
Section 4.2 on the dataset. This finally leads to a 512-dimensional
feature for each sample. We apply different dimensionality
reduction algorithms to reduce the features of each sample to a
specified number. The transformed samples were then fed into the
classifier to measure the performance of different dimensionality
reduction algorithms. As k-NN is too slow for the large-scale
data, we adopt the popular Nearest Class Mean (NCM) (Fukunaga,
1990) and the Modified Quadratic Discriminant Analysis (MQDF)
(Kimura, Takashina, Tsuruoka, & Miyake, 1987; Xu, Huang, Zhu,
King, & Lyu, 2009) as the classifier. These two classifiers are
generally the state-of-the-art classifiers in Chinese character
recognition. For simplicity, we compare our proposed algorithm
merely with the two traditional algorithms, LDA and aPAC on
this database, as the other algorithms are widely recognized not
suitable for Chinese character classification in the literature.

We specify the reduced dimensionality from 160 to 20 grad-
ually and then report the classification performance accordingly.
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(a) MQDF classifier. (b) Nearest center classifier.

Fig. 7. Error rate on CASIA-HWDB1H1 dataset.
Fig. 7(a) shows the error rate with theMQDF classifier and Fig. 7(b)
reports the error ratewith theNCMclassifier. From the experiment
results, we can see that our algorithm performs consistently better
than LDAand aPAC for all the dimensionality. The difference is even
more distinct as the dimensionality is small. This clearly shows the
advantages of our proposed algorithm.

Moreover, to verify the effectiveness of dimensionality reduc-
tion, we also report the error rates of the MQDF and NCM classi-
fiers by the red dash line on the original dimensionality (without
dimensionality reduction) in Fig. 7(a) and (b) respectively. Obvi-
ously, after dimensionality reduction, both theNearest-center clas-
sifier and MQDF classifier can achieve a lower error rate than that
in the original data space.

5. Conclusion

LDA is one of the most important subspace methods in
machine learning research and applications; however, for a c-class
classification task, it tends to merge together nearby classes if the
dimension of the projected subspace is strictly lower than c − 1.
To address this problem, we proposed a novel criterion, MMDA,
based on the maximization of the minimal divergence among
the different classes. This solves the class separation problem of
LDA. More importantly, we presented an efficient MMDA online
algorithm, making our model applicable on very large-scale data.
Extensive experiments on seven datasets and two additional large-
scale datasets demonstrated the effectiveness and efficiency of
the MMDA algorithm over the five state-of-the-art comparison
methods.

There aremany issues deserving our attentions. First,wemainly
address the linear transforms for dimensionality reduction. The
extension of our approach to its non-linear version is one of our
focuses in the near future. Second, although we develop an online
algorithm which significantly speeds up the learning efficiency, it
still remains very interesting if our algorithm can be further sped
up, e.g., by implementing in the parallel style. Finally, it remains an
open problem regarding how to choose a suitable dimensionality
for reduction. In practice, we may have to use cross validation
in order to search for a good dimensionality, which is however
computationally expensive. We will leave this topic for future
work.
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