Pattern Recognition 47 (2014) 1904-1916

journal homepage: www.elsevier.com/locate/pr

Contents lists available at ScienceDirect PATTERN
RECOGNITION

Pattern Recognition

Minimum-risk training for semi-Markov conditional random fields

@ CrossMark

with application to handwritten Chinese/Japanese text recognition

Xiang-Dong Zhou **!, Yan-Ming Zhang ", Feng Tian ¢, Hong-An Wang ¢, Cheng-Lin Liu”

@ Intelligent Media Technique Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR

China

b National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguan East Road, Beijing 100190, PR China
€ Beijing Key Lab of Human-Computer Interaction, Institute of Software, Chinese Academy of Sciences, Beijing 100190, PR China

ARTICLE INFO

Article history:

Received 6 July 2013

Received in revised form

24 October 2013

Accepted 2 December 2013
Available online 12 December 2013

Keywords:

Semi-Markov conditional random fields
Minimum-risk training

Character string recognition

ABSTRACT

Semi-Markov conditional random fields (semi-CRFs) are usually trained with maximum a posteriori
(MAP) criterion which adopts the 0/1 cost for measuring the loss of misclassification. In this paper, based
on our previous work on handwritten Chinese/Japanese text recognition (HCTR) using semi-CRFs, we
propose an alternative parameter learning method by minimizing the risk on the training set, which has
unequal misclassification costs depending on the hypothesis and the ground-truth. Based on this
framework, three non-uniform cost functions are compared with the conventional 0/1 cost, and training
data selection is incorporated to reduce the computational complexity. In experiments of online
handwriting recognition on databases CASIA-OLHWDB and TUAT Kondate, we compared the perfor-
mances of the proposed method with several widely used learning criteria, including conditional log-
likelihood (CLL), softmax-margin (SMM), minimum classification error (MCE), large-margin MCE (LM-MCE)
and max-margin (MM). On the test set (online handwritten texts) of ICDAR 2011 Chinese handwriting

recognition competition, the proposed method outperforms the best system in competition.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the large character set and the ambiguity of character
segmentation, handwritten Chinese/Japanese text recognition (HCTR)
is generally accomplished by an integrated segmentation and recog-
nition approach based on character over-segmentation [1]. The input
string (text line image for offline data or pen-tip trajectory for online
data) is over-segmented into a sequence of components according to
the overlapping between strokes (Fig. 1(a)), with each component
(consisting a block of strokes) being a character or part of a character.
Subject to constraints of character width, consecutive components
are combined to generate candidate characters, which constitute the
segmentation candidate lattice (Fig. 1(b) and (c)). On assigning each
candidate character a number of candidate classes using a character
classifier, we construct the segmentation-recognition candidate lat-
tice (referred to as lattice for brevity). Each path in the lattice
corresponds to a segmentation-recognition hypothesis, which is
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evaluated by a parameterized function combining the character
recognition score, geometric and linguistic contexts, and the string
recognition result is obtained by searching for the optimal path with
maximum score.

The performance of integrated segmentation-recognition of
character strings (handwritten texts) largely relies on the parame-
terized path evaluation function. Although many function forms
have been proposed, which are usually the heuristic approxima-
tion of posterior probability for a segmentation-recognition path
(see [1], for a review), only several papers address the problem of
parameter learning [2-4]. In our previous work [5], a semi-Markov
conditional random field (semi-CRF) [6] based approach has been
proposed for HCTR. A semi-CRF outputs a segmentation S of the
observation sequence X, together with the label sequence Y
assigned to the segments (sub-sequences) of X. In other words,
unlike the linear-chain CRF [7] which models P(Y|X), the semi-CRF
explicitly estimates P(S,Y|X). For HCTR, if X is the component
sequence after over-segmentation, the segments will be the candi-
date characters (cf. Fig. 1). Semi-CRFs have the advantages that they
allow the use of segment features and between-segment depen-
dencies. This attribute is important for HCTR, since the state-of-the-
art Chinese character classifiers, such as the modified quadratic
discriminant function (MQDF) [8], usually take the holistic character
features as input. The semi-CRF model for HCTR is defined on the
lattice to directly estimate the a posteriori probability of a
segmentation-recognition hypothesis, in which the information of
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Fig. 1. Generation of segmentation-recognition candidate lattice. (a) Component sequence, (b) candidate characters, (c) segmentation candidate lattice, where each node
denotes a candidate segmentation point, each edge corresponds to a candidate character, and the bold lines indicate the desired segmentation and (d) candidate classes of

the desired segmentation path.

character recognition, geometric and linguistic contexts are defined
as feature functions [5]. This model provides principled tools for
both parameter learning and decoding under the maximum a
posteriori (MAP) criterion and enables the fusing of high-order
features (long range context, such as the trigram language model).

According to the Bayesian decision theory [9], the optimal
decision should be made by minimizing the overall risk associated
with a cost function measuring the loss of misclassification. When
the 0/1 cost is adopted in the Bayes decision rule, we get the
popular MAP criterion. The 0/1 cost simply assigns no loss to a
correct prediction and a unit loss to an error. Consequently, for
HCTR, it aims to minimize the string error rate rather than the
character error rate. For example, a hypothesized path (cf. Fig. 1)
containing one or more character-level errors, or a totally different
path, as compared to the correct, will incur the same amount of
loss. However, the performance of HCTR is usually measured in
terms of character errors (insertions, deletions and substitutions)
[2,5,10], instead of the errors of whole sentence or text line. So, for
HCTR, the use of 0/1 cost will lead to a mismatch between
classifier training and performance evaluation.

For structured prediction on sequence labeling problems, various
discriminative learning techniques have been proposed for training
hidden Markov models (HMMs) and CRFs (see Section 2 for a review).
Generalization ability is one of the key issues in discriminative
training, since the learned models will be finally tested on the unseen
data. According to statistical learning theory [11], the test-set error rate
is bounded by the sum of the empirical error rate on the training set
and a generalization term associated with the margin. Traditional
discriminative learning methods, such as maximum mutual informa-
tion (MM, an instance of MAP criterion) [12], minimum classification
error (MCE) [13] and minimum phone/word error (MPE/MWE) [14],
focus more on reducing the empirical error rate rather than decreasing
the generalization term [15]. Many attempts have been made to
incorporate the principle of large margin into the training of HMMs
or CRFs to further improve the generalization abilities [16-18].
However, the performances of these training criteria have not been
comprehensively evaluated on HCTR tasks.

In this paper, based on our previous work on HCTR [5], we
propose a lattice-based minimum-risk (MR) estimation framework
for parameter learning of semi-CRFs. By incorporating the non-
uniform (non-0/1) misclassification cost, this criterion is more
directly related to the character error rate in contrast to the MAP
rule which aims at minimizing the string error rate. With this
method, the cost functions initially used for training HMMs in
speech recognition can be conveniently applied to HCTR. We also

investigate edge selection in MR training, attempting to improve
the generalization ability and reduce the computational complex-
ity. Further, we compare the proposed method with several
prevalently used learning criteria, including conditional log-
likelihood (CLL) [19], MCE [13], max-margin (MM) [17,18], and
margin-based extensions of CLL and MCE. We believe that it is the
first work that evaluates these training techniques on HCTR tasks.
In experiments on three online handwriting databases, the pro-
posed MR training method has yielded superior string recognition
performances compared to the state-of-the-art methods.

This work is an extension of a conference paper [20]. The
extension includes the comparison with other training criteria, the
details of derivations, the effects of edge selection, extensive
experimental results and discussions. The remainder of this paper
is organized as follows: Section 2 reviews the related work.
Section 3 gives a brief introduction to the semi-CRF model defined
on the candidate lattice. Section 4 details the minimum-risk
training framework for semi-CRFs. Section 5 describes the learning
criteria for comparison. Section 6 presents our experimental
results and Section 7 draws concluding remarks.

2. Related work

In speech recognition, it has been shown that discriminative
learning of HMMs is able to produce consistent improvements in
performance compared to the conventional maximum likelihood
training criterion, which aims at modeling the data distribution
instead of directly separating class categories [21]. In contrast,
discriminative learning typically bypass the stage of building the
joint-probability model while directly managing to minimize the
classification errors. A central issue in the development of dis-
criminative learning methods is the construction of objective
function (learning criterion). Popular discriminative learning tech-
niques for HMMs are MMI [12], MCE [13] and MPE/MWE |[14].
MMI estimation tries to maximize the a posteriori probability of
the training utterances, whereas in MCE training, an approxima-
tion to the sentence error rate on the training data is minimized. In
contrast to MMI and MCE, which are typically designed to
optimize the string-level errors, MPE/MWE aims at performance
optimization at the substring pattern level, such as phones and
words. Traditional discriminative training aims to find classifica-
tion boundaries that minimize empirical error rates on training
sets, which may not be well generalized to test sets [16]. Many
attempts have been made to incorporate the principle of large-
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margin into the training of HMMs to improve the generalization
abilities (see [16] for a review). Do and Artiéres [22] also applied
large-margin learning of HMMs to handwriting recognition. In
[23], the modified MMI/MPE criteria are prosed, which allow
large-margin training in speech recognition using the same
optimization algorithms as the conventional MMI and MPE cri-
teria. Similar extensions for MCE can be found in [24].

MAP training for CRFs is usually accomplished by minimizing
the conditional log-likelihood (CLL) loss [19]. Starting from CLL,
several discriminative training criteria have been proposed for
parameter learning of CRFs, and superior recognition performances
have been observed in contrast to MAP. Like modified MMI [23],
softmax-margin CRF [25] is an extension of traditional CRF by
incorporating a task-specific cost function into the CLL loss, and has
been demonstrated to perform significantly better than CLL and
max-margin on named-entity recognition problem. A similar
method, which is referred to as large margin cost-sensitive learning
of CRFs, is proposed in [26]. Analogous extension to semi-CRF for
HCIR is proposed in our former work [5]. Inspired by MCE [13],
Suzuki et al. [27] proposed a framework for training CRFs by
optimizing approximated non-linear measures, and the maximum
labelwise accuracy criterion proposed in [28] aims to maximize the
per-label predictive accuracy on the training set. Stoyanov and
Eisner [29] tried to minimize the empirical risk, i.e., the average
task-specific loss on training data. Considering that in many cases
the test performance only depends on the quality of marginal
distribution, rather than a joint conditional distribution, Kakade
et al. [30] proposed the average single-time prediction cost. Altun
et al. [31] investigated different loss functions and optimization
methods for discriminative learning of sequence labeling problems.
Large-margin framework has been used in parameter learning of
structured linear classifiers to improve the generalization ability
[17,18,32]. Specially, this technique is applied to parameter estima-
tion of semi-Markov models for phonetic recognition [33] as well as
human action segmentation and recognition [34].

Risk minimization has been used for parameter learning of
HMMs in the community of speech recognition. The overall risk
criterion [35], whose calculation is based on the Levenshtein
distance between the correct transcription and the N-best recog-
nized transcriptions, can consistently decrease the recognition
errors when compared to the standard maximum likelihood
training. Minimum phone/word error (MPE/MWE) training [14]
can be interpreted as an instance of minimum-risk training where
the set of all possible phone/word sequences forms the hypothesis
space. Use of this criterion has been shown to outperform the MMI
criterion (the MAP rule) on several speech recognition tasks [14].
Heigold et al. [36] pointed out that MMI is vulnerable to label
noise (i.e., incorrectly labeled training examples), while MPE/MWE
tends to be less sensitive to outliers than MMI. In [37], several
objective functions based on the MPE/MWE criterion are com-
pared on the task of broadcast news recognition, and the results
show that the most promising technique is the minimum phone
frame error rule, which is a frame-level version of MPE/MWE.
Gibson and Hain [38] evaluated different error approximation
strategies based on the frame error metric and demonstrated that
significant improvements can be observed on a large vocabulary
speech recognition task when the symmetrically normalized
frame error (SNFE) is adopted. In natural language processing,
Smith and Eisner [39] trained log-linear models by risk minimiza-
tion where the distribution over output variables is defined on
N-best lists, and Li and Eisner [40] applied the expectation
semiring to minimizing risk using dynamic programming. Xiong
et al. [41] proposed a minimum tag error criterion for discrimina-
tive training of linear-chain CRFs, which is an average of the raw
tag accuracy over all possible label sequences weighted by their
likelihood. However, to the best of our knowledge, such risk

minimization technique has not been applied to semi-CRFs, whose
inference algorithms and parameter learning techniques need
more computation than linear-chain CRFs. For HCTR, the only
work exploiting this idea is the maximum character accuracy
method [2], which takes the N-best list as the hypothesis space
when calculating the risk. In contrast, the use of a lattice to
represent the hypothesis space is favored because it is a more
compact representation of usually many segmentation-recognition
paths. Moreover, lattice-based training can directly take advantage
of the inference algorithms of semi-CRFs.

Among the above mentioned training techniques, only several are
used to learn HCTR models [2,3,5]. In our experiments, MR training is
compared with several typical learning criteria on HCTR tasks, and
their performances are evaluated on three public data sets.

3. Semi-CRFs for string recognition

In our previous work [5], a semi-CRF based approach for HCTR
is proposed, in which the semi-CRF model is defined on the lattice
(cf. Fig. 1) to directly estimate the a posteriori probability
PS,Y|X;A) of a hypothesized segmentation-recognition path
(S, Y) given the string X:

#H YeX, Y A)

PSYIXA) = g T
> Ce

1
=meXP{—E(X=5,Y,A)}, (M
where S denotes a segmentation (character sequence) of X and Y
denotes a label sequence of S. ¥(X, Y¢;A) is the potential function
on maximal clique c (consecutive characters with fixed length in
the lattice):

K
YeX,YeA)= exp{’ ;l A Xe, Yc)} 2

fiXe, Ye) is the k-th feature function defined on clique ¢, which
models character recognition, geometric or linguistic context. We
also refer to Y. as a labeling of clique c. A = {A4;|k=1, ...,K} are the
weighting parameters to be learned. E(X,S,Y;A) is the energy
function:

K
EX.S.Y;N=—-3F ¥ AfiXc,Yo). 3)
ceSk=1
Z(X;A) is the partition function defined as the summation over all
the paths in the lattice:
ZX:N= Y I PeX. YA (C)]
S.YyyeS
Given N training samples: {(X',S",Y))|i=1,...,N} (strings with
segmentation points and character classes labeled), following the
standard MAP estimation, the conventional training criterion is to
minimize the conditional log-likelihood (CLL) loss with L-norm
regularization:

1N S C
L) =~ X log PS.YIX:A) 4511417 ®)
1=

where C is a positive constant balancing the loss term against the
regularization term.

Given a test string X, we first over-segment it into a component
sequence and construct the segmentation-recognition candidate
lattice (cf. Fig. 1). The Viterbi-like decoding tries to find the optimal
path with maximum a posteriori probability:

(S*,Y*)=arg max P(S, Y| X;A)
)

=arg min E(X, S, Y;A). (6)
SY)
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Table 1
Definitions and explanations of frequently used terms.

Component: A component, consisting a block of strokes, is hoped to be a character or part of a character after over-segmentation of the text line (cf. Fig. 1(a))
Candidate character: The candidate characters are generated by combining consecutive components, subject to constraints of character width (cf. Fig. 1(b))
Candidate class: Each candidate character in the lattice is assigned several candidate labels (classes) of high probability by a character classifier

Edge: Each character-label pair (a candidate character coupled with one of its candidate label) in the lattice is referred to as an edge

Sub-path: A sequence of consecutive edges in the lattice is referred to as a sub-path

Sub-segmentation path: A sequence of consecutive characters in the lattice is referred to as sub-segmentation-path
Maximal clique: A maximal clique is usually a sequence of m consecutive characters (sub-segmentation path) in the lattice, where m is called the maximal clique size and

is predefined

In practice, to accelerate the recognition process, approximate
decoding, such as beam search is usually adopted [2-5].

4. Minimum-risk training

Before introducing the minimum-risk training framework for
HCTR, we first summarize the definitions of some frequently used
terms in Table 1. For more details of these definitions, refer to [5].

In contrast to the CLL loss (cf. Eq. (5)) which aims to maximize
the posterior probability on the training set, the minimum-risk
(MR) criterion is to minimize the expected cost

N . o

Lyr(A) =% Y X PSYIXEAAESY), S, YY), (7)
i=16SY)eH

where the summation space 7 is the entire lattice. #((S, Y), (S, Y'))

signifies the cost when recognizing string X as (S, Y) instead of the

ground-truth (S', Y), which is nonnegative and has the following

property:

(S, Y),(SL,Y) >0 if (S,Y)# (S, Y g
2(S,Y),(S,Y) =0 if (S,Y)=(S, Y ®)
As the commonly used evaluation measures of HCTR systems
are derived from the Levenshtein distance (cf. Section 6.2), one
would ideally like to take this metric as cost function in MR
training. However, to calculate the Levenshtein distance between
each path in the lattice (which usually encodes many paths) and
the reference label sequence is computationally expensive. Hei-
gold et al. [42] also demonstrated that it is not evident that more
accurate error approximation during model estimation can lead to
improved model generalization. In Eq. (7), to avoid explicitly
enumerating numerous paths in the lattice, we consider the cost
functions that can be decomposed onto each character along the
hypothesized path

(S Y), (S, Y = zsf«q, Yo). (5L YY), 9)
qe

where 7((q, Yq), (S',Y") is the cost for an edge (character-label pair)
(q.Yq) on path (S, Y).

With the above defined cost function, the minimum-risk loss
can be rewritten as

1N . o
LirM)=5 Y ¥ P@YqlX5A)2((q,Yq). (S, YY), (10)
NiZ @y en

where P(q,Yq 1X’; A) denotes the marginal probability on (q, Yo):

P(q,YqI X' A) = P(S, Y| X' A). an
S.Y) e H:(q.Yg) € (SY)

A detailed derivation of Eq. (10) is provided in Appendix A. It can
be seen from Eq. (10) that, to optimize the objective function with
gradient descent, we should first calculate the derivatives of the
marginal probabilities. Note that Egs. (7) and (10) are actually
regularized as in Eq. (5). We drop the regularization terms for
succinct representation.

a b
7N O\ \//\/\/
c d

VN

- N~

Fig. 2. Illustration of the relationships between a maximal clique (red) and a
candidate character (black). The clique size is 2. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version
of this article.)

4.1. Derivatives of marginal probabilities

The partial derivatives of P(q, Yq\Xi;A) with respect to the
weighting parameters can be computed by

oP(q, Yq| X' A ;
FEUTD - 3 fedvo
k ©Yo)eH
x(P(¢, Ye, q, Yq| X5 A) = P(c, Ye| X5 PG, Yq X5 A)),

(12)

where ¢ denotes the maximal clique (cf. Section 3). The detailed
derivation of Eq. (12) can be found in Appendix B. The inference
algorithms for calculating the marginal probabilities can be found
in [5]. Here (q,Yq) is relaxed to be an arbitrary sub-segmentation
path (character sequence) and its labeling, i.e., Eq. (12) is actually
applicable to any sub-paths in the lattice. In Eq. (12), to avoid
summing over all clique-labeling pairs in the lattice, we adopt the
approximation that if c and q are disjoint (Fig. 2(a)), i.e., there is at
least one character between them, (c, Y) and (q, Yq) are condition-
ally independent:

P(c,Yc,q, Yql X'; A) = P(c, Y| X' A)P(G, Yq | X5 A). (13)

The assumption is reasonable because the constrains between
disconnected handwritten characters are weak. With the above
approximation, the summation space in Eq. (12) is reduced to
those cliques that adjoin (Fig. 2(b)) or overlap (Fig. 2(c) and (d)) q.
Note that P(c,Y.,q,Yq 1X%; A) is the marginal probability that both
(c,Y¢) and (g, Yq) are on a hypothesized path, so if c and q overlaps
but there is at least one common component whose label is
different in Y. and Yg, P(c,Yc,q.Yq |Xi;A) will be zero. Another case
that makes P(c, Y, q, Yq 1X': A) zero is that the overlapping part of ¢
and q does not form common character(s) of them (Fig. 2(d)),
considering that a segmentation path should be composed of
concatenated characters (cf. Fig. 1(c)).

4.2. Cost functions

To facilitate lattice-based training (the summation space in
Eq. (7) is the entire lattice), we select the cost functions which can
decompose the errors along the hypothesized path (cf. Eq. (9)). In
our experiments, three cost functions initially used for training
HMMs in speech recognition are investigated, including the MPE
cost [14], the Hamming distance (HD) cost (also called frame error
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Fig. 3. Illustration of the calculation of cost functions.

in [43]) and the SNFE cost [38]. Unlike the 0/1 cost which
characterizes whether a transcription is identical to the ground-
truth or not, the non-uniform cost functions measure the
character-level errors according to how many characters or com-
ponents are incorrectly recognized. All the three cost functions are
correlated with the Levenshtein distance [38], thus the minimiza-
tion of the expected cost will lead to the reduction of character
errors (substitutions, insertions and deletions) on the training set.
In the following, we will detail the three cost functions and Fig. 3
illustrates the calculation process.

4.2.1. MPE cost

The MPE cost is derived from the accuracy function proposed in
[14] for measuring the gains of classifying the genuine path (S, Y')
as a hypothesized path (S, Y)

A(S.Y), (S, YY) = ZSA«q, Yo, (S, YY), (14)
qe

where (q.Yq) is an edge on path (S, Y), and the edge accuracy
A((q, Yq),(S', YY) is defined as

{ —1+2e(q.q) if Yo=Y

A((G, Yq),(S', Y')) = max 15)

ges | —1+e(q,q) otherwise

Here (q/, Yil,) is an edge on genuine path (S',Y'), and e(q,q) is
defined as the common component number between ¢ and ¢/,
divided by the component number of q'. With the above accuracy
function, the MPE cost is defined as

£mpe((S, Y), (S, YY) =

where |Y/| denotes the number of characters in the correct
transcript. The per-edge cost (cf. Eq. (9)) can be written as

1Y —A(S.Y), (S, YY), (16)

Pr(@. Yo, S, vy = 191

A Yg). (5L YY), 17)
where |g| and |S'| denote the length (in components) of g and S,
respectively. Actually, considering that |Y'| is a constant, by
substituting Eq. (16) into Eq. (7), we can derive that, when using
the MPE cost, the learning criterion is equivalent to minimizing
the following loss function:

LurN) = — Z ¥ P YqIX5 MA@, Yo), (SLY). (18)
l_ 1@qY9eH

In [14], to avoid the need for a dynamic programming align-
ment when calculating the Levenshtein distance, A((S, Y), (S, Y!)) is
used to approximate the true accuracy (the number of characters
in the correct transcript minus the Levenshtein distance to the
reference). Using the finite state transducer, Heigold et al. [42]
proposed a training criterion aiming at minimizing the expected
exact Levenshtein error, however, no significant differences in

recognition performance are observed compared to the MPE/MWE
criterion.

4.2.2. Hamming distance cost o
The Hamming distance between two paths (S, Y) and (S',Y") is
defined as the number of components at which the labels differ

Cup((S.Y), (S, YD) = X(1—8(Ya, Y1), (19)

where Y, and Y,/ are the labels of component u on the hypothe-
sized path (S, Y) and on the genuine path (S', Y'), respectively. The
label of a component on a path is identical to the label of the
character containing it. Inspired by the work on minimum time
frame error rate decoding [44], by substituting this cost function
into Eq. (7), the risk loss can be rewritten as

Lur(A) = Z S —P(Y,1X5A)), (20)

1 =1u
where P(YL|X‘;A) is the marginal probability to observe YL at
component u and can be calculated by summing over the prob-
abilities of all edges overlapping component u and having identical
label as Yy;:

P(Yy X5 A) = z

(q.Yg)e Hueqn YL =Yg

P, Yq X3 A). 21

in which (q,Y,) denotes an edge in the lattice. The detailed
derivation of Egs. (20) and (21) are provided in Appendix C. Note
that Eq. (19) can also be transformed into the form formulated in
Eq. (9) by decomposing the errors onto each edge of (S, Y).
However, instead of summing over all the lattice edges as in
Eq. (10), the summation space in Eq. (20) is decomposed onto each
component, and from Eq. (21) we can see that at each component,
among the edges overlapping it, only those having identical label
as the genuine component label are considered.

4.2.3. SNFE cost

In [38], limitations of the MPE cost are discussed, including the
overestimation and the asymmetry (for two paths (S, Y) and (S, Y"),
A(S,Y), (S, YY) #A(S.,Y).(S.Y)) in error approximation, which
causes an undesirable insertion to deletion bias. The SNFE cost
[38] is also an approximation to the exact character errors. In
contrast to the MPE cost, it is symmetric as the Levenshtein
distance and yields more accurate approximations for the deletion
and insertion errors. The SNFE cost between a hypothesized path
(S, Y) and the reference (ground-truthed) path (S', Y') is defined as

Zsnre((S, Y), (S, YY) = ZS 2 (g, Yo, (@, Yo (22)
qesqes

where (q,Y,) and (¢.Y}) are edges on (S, Y) and (S',Y"), respec-
tively. I((q,Yq). (q', Y’ ) 1s defined as the number of overlapping
components between g and q’ at which Yg and Y; differ, divided by
the smaller component number of g and q'. If no overlap exists
between q and ¢, I((q, Yq). (¢, Yfz,)) is defined as zero. From Eq. (22),
we can derive the per-edge cost (cf. Eq. (9)):

Zonee((@. Yol (S, YD) = X 1@, Vo). (', Yo ). (23)
qeSs

4.3. Edge selection

Reconsidering the derivatives of P(q,Y4IX;A) (cf. Eq. (12)),
where (q,Y,) denotes an edge in the lattice, Appendix D proves
that when P(q, Yq|Xi;A) approaches the boundaries (0 or 1), its
derivatives w.r.t. A will become close to zero. This means that
when optimizing the MR criterion with gradient descent, Eq. (12)
actually carries out an implicit edge selection, i.e., when updating
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the model parameters, more contributions are donated by the
confusing characters than those with almost definite decisions. To
avoid calculating the derivatives on all lattice edges, we can also
perform explicit edge selection, that is, only when P(q, Yq|Xi;A)
satisfies the following condition, we calculate its derivatives:

e<P(q,YqIX5A) < 1—e, (24)

where 0 <&e<0.5 is pre-defined. Otherwise, the derivatives are
directly set as zero. For the three cost functions introduced in
Section 4.2, the HD cost considers only the edges having identical
labels as the overlapped components on the reference (ground-
truthed) path (cf. Eq. (21)), while the MPE cost and the SNFE cost
take all edges into account. Edge selection is equivalent to setting
the per-edge cost Z((q, Yq),(Si,Yi)) (cf. Eq. (10)) to zero when
P(q, Yq\Xi;A) violates the condition formulated in Eq. (24).

For discriminative training of acoustic models in speech recog-
nition, Chen et al. [45] investigated utterance-level, phone-level
and frame-level data selection in an attempt to reduce the time
consumed in training. They pointed out that data selection is
analogous to margin-based approaches, such as [15,46,47], which
select the training samples (or fragments) close to the decision
boundaries for better model discrimination and generalization.
The counterparts for utterances, phones and frames in HCTR are
strings, edges and components, respectively. From Eq. (21) we
know that component-level selection can be accomplished by
edge-level selection. In contrast to string-level selection, which
may discard an entire text line, edge-level selection can utilize the
training data more sufficiently.

5. Criteria for comparison

We compare the proposed method with several typical and
widely used learning criteria, including CLL [19], MCE [13], max-
margin (MM) [17,18], and the margin-based generalizations of CLL
and MCE, which are referred to as softmax-margin (SMM) [25] and
large-margin MCE (LM-MCE) [24], respectively. For margin-based
methods (MM, SMM and LM-MCE in our experiments), the separa-
tion margin between the genuine path (S, Y") and a hypothesized
path (S, Y) is chosen to scale with the error (cost) of choosing (S, Y)
over the desired (S, Y'). The cost #((S,Y),(S',Y')) should have the
property formulated in Eq. (8). Here, like [17,25,26,33,47], we adopt
Hamming distance (cf. Section 4.2.2) as the cost function. In contrast
to CLL, SMM and MR, the optimization of MCE, LM-MCE and MM
need to incorporate a decoding process to search for the most
rival path.

5.1. CLL and softmax-margin criteria

Conditional log-likelihood (CLL, cf. Eq. (5)), which provides an
upper bound on the empirical zero-one error rate [32], is the most
commonly used objective for training CRFs under the MAP criterion.
The convexity and differentiability ensure that gradient-based
optimization procedures will not converge to suboptimal local
minima of the objective function. However, considering the nature
of 0/1 misclassification error, there is no guarantee that the
parameters obtained by CLL training will lead to the best per-label
predictive accuracy, even on the training set [28].

Softmax-margin CRFs [25] extend the CLL criterion by incor-
porating the margin concept into the loss function. The intuition is
the same as that in max-margin learning (cf. Section 5.3): high-
cost outputs should be penalized more heavily. This technique has
also been applied to the training of HMMs in [47] and [23]. For
HCTR, it is used for parameter learning of semi-CRFs in [5]. Gimpel
and Smith [25] pointed out that SMM is a convex upper bound on
CLL, risk and max-margin. Following [5], to introduce the margin

concept into the CLL loss, we define the margin-posterior
P(S, YIX'; A)

exp{—EX.S,Y;: A)+£((S,Y), (S, YY)

= i o v Y i vivg (25)
Y5y eXp{—EX", S, Y A)+£((S,Y), (S, Y)}

Compared with the posterior formulated in Eq. (1), the margin-
posterior includes a margin term exp(Z((S,Y),(S', Y")), in which
£((S,Y), (S, Y") here adopts the Hamming distance between the
genuine path (S',Y) and the rival path (S, Y). By replacing
P, YIXY) with Pp(S,Y'X) in Eq. (5), we achieve the SMM
criterion. Benefiting from the summation form of Hamming
distance, the margin-based training criterion can take advantage
of the same optimization algorithms as the conventional CLL-
based training [5].

5.2. MCE and large-margin MCE criteria

The MCE criterion [13], which has been applied to HCIR in [3],
minimizes an empirical loss corresponding to a smooth approxima-
tion of the string-level classification error rate. Following [3], we
adopt 1-best MCE, which considers only the genuine path and the
most competing path. For each training sample (X, S', Y'),i=1,...,N,
the misclassification measure d(Xi,Si, Yi;A) is defined as the energy
difference between the genuine path and the most rival path:

dX, S, YA =EX, S, Y;A)—  min  EX.,S,Y;A). (26)

(S.Y) # (.Y
Note that d(X',S",Y';A)>0 indicates misclassification of string X'
under the 0/1 cost. Thus, the minimization of the string error rate can
be rewritten as the minimization of averaged 0/1 losses on the
training data:

10X i Gi yi
Lyice(A) =N ‘g:] 1dX', S, Y A) > 0). (27)

However, the indicator function 1(-), which takes value 1 when the
condition in the parentheses is satisfied, otherwise takes value 0, is
not appropriate for optimization since it is discontinuous w.r.t. the
parameters A. A typical choice is to approximate the indicator
function with a sigmoidal function which is differentiable:

(28)

10N 1
e =y Z § +exp(—&dXL, S| YE Ay
Via the smoothing parameter &, the MCE loss function can be made
arbitrarily close to the binary classification error. Like the CLL
criterion (cf. Eq. (5)), Eq. (28) is actually regularized.

Large-margin MCE (LM-MCE) extends the conventional MCE
loss by incorporating a non-zero sigmoid bias, which can be
interpreted as a soft margin [24]. Here, the bias term is chosen
to be the error when predicting the genuine path as the most rival
path:

dm(X',S', Y A) =EX, S, Y A)

— min {EX.,S,Y;A)—2(S,Y), LYY (29)
SY) # (S',Y’)

By replacing d(X',S', Y A) with dn(X',S',Y';A) in Eq. (28), we
achieve the LM-MCE loss. Like MCE, the objective function of
LM-MCE is not convex and the training is subject to the local
minimum problem. As has been pointed out in [16], LM-MCE bears
the same weaknesses as MCE, i.e.,, both methods optimize the
sentence error rate on the training set. Stochastic gradient descent
is generally used to optimize MCE and LM-MCE, and the most rival
path in Eqgs. (26) and (29) can be found by N-best based beam
search [5].
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5.3. Max-margin criterion

The max-margin learning framework for training structured
prediction models inherits the merits of support vector machines
(SVMs), which exhibit good generalization ability on unseen data.
A popular implementation of this framework is the margin scaling
method [17,18], which tries to ensure that the score of the correct
labeling is separated from the score of the predicted by a margin in
proportion to the error caused by the prediction. Kim et al. [33]
apply this framework to discriminative training of semi-Markov
models for phonetic recognition. Following [33], the goal of max-
margin training for semi-CRFs is to find the parameter vector A
such that the difference in energy of a predicted path (S, Y) from
the correct path (S, Y') is at least £((S, Y), (S, Y')). Formally, this can
be formulated as a convex programming problem

min AP+ L % &
AE 2 N
st AEX,S.Y:A) > £(S.Y).(S.Y) - &,

VS Y)#ESLYY, i=1,...,N,
51‘20, i:],...,N, (30)

where AEX.S,Y;A)=EX.S,Y;A)—EX.,S,Y;A) and C>0 is a
constant that controls the tradeoff between margin maximization
and training error minimization. Considering the nonnegativity of
£((S,Y), (S, Y)) (cf. Eq. (8)), the optimization problem formulated
in Eq. (30) can be rewritten as an equivalent but unconstrained
form [33], with the following loss function:

Coin 1T X icv. i vi
L) =3I+ 3 max { ~ AEK'S, ViA)+A(SY), (5. Y}
31

Due to the hard-max operation, Eq. (31) is not differentiable with
respect to A. As [33], stochastic subgradient descent [48] is
adopted to optimize this convex objective function. N-best
based beam search [5] is used to find the most competing path
in Eq. (31):

(S*,Y*) = arg min{E(X', S, Y; A)—£((S, Y), (S, Y)))}. (32)

SY)eH

In contrast to LM-MCE, the most competing path in MM could be
the genuine path itself. Note that the SMM criterion can be
obtained by approximating the hard-max with soft-max in
Eq. (31), considering that soft-max is a tight upper bound of
hard-max [25,26,47].

6. Experiments

We first evaluated the proposed method on unconstrained
online handwritten text lines of a Chinese handwriting database
CASIA-OLHWDB [49] and a Japanese handwriting database TUAT
Kondate [4]. The test sets contain 10,510 text lines (269,674
characters of 2631 classes) and 3511 text lines (35,766 characters
of 791 classes), respectively. Further, we compared with the best
results in ICDAR 2011 Chinese handwriting recognition competi-
tion [50] on the same test data of online handwritten texts (3432
text lines, including 91,576 characters of 1375 classes), which is
provided by the same group as the CASIA-OLHWDB database [49].
The text lines of all the three databases have been annotated with
segmentation points and character labels.

6.1. Feature functions

The features functions employed in our experiments include
character classification, geometric and linguistic contexts [5]. The
character recognition scores are given by a character classifier

(7356 classes for Chinese and 4438 classes for Japanese). Unless
otherwise stated, the default character classifier is MQDF and the
feature dimensionality is reduced from 512D to 160D by Fisher
linear discriminant analysis (FDA) [51]. The scores for class-
dependent and class-independent geometries are given by the
quadratic discriminant functions (QDFs) and the linear SVMs,
respectively. All the classifier outputs are transformed to con-
fidences. Trigram language models are used in both training and
decoding in our experiments. The details of classifier training and
language models can be found in [5].

6.2. Performance metrics

Following [2,5,10], the string recognition performance is eval-
uated by character-level correct rate (CR) and accurate rate (AR)
derived by aligning the result string with the transcript using
dynamic programming. We also use the term character error rate
(CER), which equals 1—AR. And we denote the error rates of three
error types (substitution, deletion and insertion) by SUB, DEL and
INS, respectively. The string-level performance is measured by
string error rate (SER), which is as the percentage of mis-
recognized strings. The complexity of summation space H
(cf. Eq. (7)) is measured by lattice edge density (LED), which is
defined as the total number of edges divided by the total number
of characters in the transcript.

6.3. Experimental results

Unless otherwise specified, the following settings are applic-
able to all the learning criteria investigated. We implemented the
methods in MS Visual C+ + 2008 and tested on a PC with Intel
Quad Core 2.83 GHz CPU and 4 GB-RAM. In training, the string
samples were processed iteratively for five cycles in stochastic
gradient (or subgradient for max-margin) decent. Trigram lan-
guage models were used in both training and decoding. Following
our previous work [5], the candidate class number was set as 12 in
training and 10 in testing, when constructing the lattice (cf. Fig. 1).
To alleviate the computational burden, in training the lattice was
first pruned with a pre-trained first-order semi-CRF with pruning
threshold 12, and the default decoding method is ratio threshold
based beam search with threshold 10. Enlarging these values will
increase the time cost of training or decoding, while the improve-
ment of performance is limited. The regularization constant C is
tuned on the training data and set to 0.01 for all learning criteria
(the performances are insensitive to C when it is not too large, e.g.,
C <0.1). In MCE and LM-MCE training, the smoothing parameter &
(cf. Eq. (28)) increases progressively from 1 to 2, such that the loss
approaches hard 0/1 decision. For CLL, SMM and MV, if not stated
otherwise, training text lines with illegible characters were dis-
carded to get higher recognition rates (cf. Section 6.3.5).

6.3.1. Effects of cost functions

Table 2 compares the string recognition results on test string
sets together with the training time (averaged over the training
string number times the iteration number in stochastic gradient
descent as in [5]) for cost functions introduced in Section 4.2 (for
MR training) and the conventional 0/1 cost (for MAP training using
CLL loss). Since risk is non-convex [39], we took the learned
parameters from CLL as initialization before optimization. The
effects with and without pre-training were evaluated in Section
6.3.2. From Table 2 we can see that in contrast to the 0/1 cost, the
use of non-uniform costs can generally improve the string recog-
nition rates (AR and CR) and the correct rates of almost all
character types. The HD cost and the SNFE cost outperform the
MPE cost on both the two test string sets. The performances of
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Table 2
Recognition results (including the correct rates for different character types) (%)
and training time (s/str) for different cost functions.

Table 4
Recognition results for minimum-risk learning with (w/) and without (w/o) pre-
training (%).

Costs AR CR Chinese Symbol Digit Letter Time Criterion Pre-training AR CR AR CR
0/1 93.66 94.26 95.51 85.64 91.72 87.23 235 MPE w/ 93.88 94.46 94.23 95.40
MPE 93.88 94.46 95.70 85.84 92.24 86.97 3.36 w/o 93.85 94.47 93.07 93.85
HD 93.95 94.53 95.76 85.98 92.47 86.97 2.82

HD w/ 93.95 94.53 94.34 95.43
SNFE 93.96 94.54 95.77 85.92 92.50 87.23 3.42 wlo 93.89 0453 93.01 93.72
0/1 93.58 94.62 97.95 92.04 95.06 93.12 1.09
MPE 94.23 95.40 98.06 93.03 96.60 94.38 1.78 SNFE w/ g;gg gzgg 2421;18 gggé
HD 94.34 95.43 98.15 93.10 96.42 94.20 1.35 wlo i i i )
SNFE 94.28 95.42 98.09 93.05 96.66 94.26 1.83

Upper - CASIA-OLHWDB; lower - TUAT Kondate. “Chinese” denotes Chinese
characters or Japanese Kanji, “Symbol” includes both symbol characters and kana
characters for Japanese.

Table 3
Error rates (%) on test strings.

Costs SER CER SUB DEL INS
0/1 58.25 6.34 4.82 0.92 0.60
MPE 57.11 6.12 4.69 0.86 0.57
HD 56.80 6.05 4.65 0.82 0.58
SNFE 56.66 6.04 4.63 0.84 0.57
0/1 31.42 6.42 4.43 0.96 1.03
MPE 29.02 5.77 3.74 0.86 117
HD 28.62 5.66 3.68 0.89 1.08
SNFE 28.77 5.72 3.74 0.84 1.14

Upper - CASIA-OLHWDB; lower — TUAT Kondate.

SNFE and HD are comparable, however, the training time with HD
is much lower than that with SNFE due to less computational
complexity (cf. Section 4.2.2).

Table 3 lists the error rates on the test string sets for the four
cost functions (0/1, MPE, HD and SNFE), from which we can see
that MR training outperforms MAP training on both character
error rates and string error rates. Although the 0/1 cost aims at
minimizing the string-level errors, the non-uniform costs still
achieve lower SERs by reducing the character-level errors. Com-
pared to MAP training, MR training can reduce all the three types
of errors (substitutions, deletions and insertions) on CASIA-
OLHWDB, while slightly increasing the insertion errors on TUAT
Kondate. With comparable CERs, the SERs on CASIA-OLHWDB are
much higher than those on TUAT Kondate. This is because the text
lines in the former database are usually much longer than those in
the latter (25.66 characters per string vs. 10.19 characters per
string, on average).

6.3.2. Effects of pre-training

In contrast to CLL, risk is non-convex [39], therefore the
optimization procedure is prone to getting stuck in local optima.
Inspired by the work of [29], in stochastic gradient descent, we
took the learned parameters from CLL as initialization for risk
minimization (Tables 2 and 3). This is because the convexity of the
CLL loss can generally guarantee that the parameters are in the
right region. Table 4 compares the recognition results with and
without pre-training (the results are identical to those in Table 2
for the case with pre-training), from which we can see that pre-
training significantly improves the performance on TUAT Kondate
database which has less training samples, while the improvement
is just limited on CASIA-OLHWDB having more training strings.
Hereafter, if not stated otherwise, pre-training will be adopted for
MR training.

Left — CASIA-OLHWDB; right - TUAT Kondate.

6.3.3. Effects of lattice pruning

For each training sample, the summation space # for calculating
the risk is composed of all the paths in the lattice (cf. Eq. (7)).
Although the lattice has greatly reduced the hypothesis space by
assigning only a candidate class list to each candidate character
rather than the entire state set which contains thousands of
categories, to incorporate more competing paths, the initially
constructed lattice is usually dense and comprises of many implau-
sible edges. To alleviate the computational burden in training,
following our previous work [5], we resorted to the forward-
backward lattice pruning method, which reduces the lattice com-
plexity while reserving the most rival paths. The risk was calculated
on the reduced lattice.

Using the HD cost, we evaluated the effects of lattice pruning
on string recognition errors. The results are shown in Fig. 4(a), in
which y denotes the pruning threshold. By enlarging y, more edges
will be reserved in the lattice. From Fig. 4(a) we can see that CER
will saturate when y grows large enough. The default lattice
pruning threshold 12 (the corresponding LED is 3.41 for CASIA-
OLHWDB and 4.75 for TUAT Kondate) performs sufficiently well
with respect to the CERs. Increasing y, though incorporates more
rival paths, does not improve the performance.

6.3.4. Effects of edge selection

The purpose of edge selection is to reduce the computation cost
in MR training. In Eq. (24), by enlarging ¢, more edges will be
filtered out in training and only the most confusing ones are
selected for calculating the derivatives and updating the model
parameters. Using the HD cost, on test text lines, Fig. 4(b) illustrates
the character error rates over different ¢ in which £¢=0 means
without edge selection. From Fig. 4(b) we can see that the character
error rates with and without edge selection are comparable even
with relatively larger ¢ (more edges are filtered out). For £ =0.01,
Table 5 lists the string recognition rates on test string sets together
with the proportion of edges discarded in training. As a comparison,
the results without edge selection (cf. Table 2) are also provided.
From Table 5 we can see that the recognition rates for the two cases
are comparable, while a large part of edges are filtered out by edge
selection, and consequently the amount of computations in opti-
mization is reduced. The reason that the proportions for HD are
relatively lower is because the HD cost has already left out those
edges which do not have identical labels as the overlapped
components on the reference path (cf. Eq. (21)).

Table 2 has shown that, without edge selection, MR takes a
much longer training time than CLL. This is because only the
derivatives on the reference path need to be calculated in CLL
optimization [5], while for MR training, we need to calculate the
derivatives on edges in the lattice (cf. Eq. (10)). In Table 6, the
running time of MR training (using HD cost, with and without
edge selection) is compared with that of CLL, MCE and MM.
With comparable computational complexity as CLL and MCE
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Fig. 4. (a) Effects of lattice pruning and (b) effects of edge selection.

Table 5
Recognition results for minimum-risk learning with (w/) and without (w/o) edge
selection (%).

Criterion  Selection AR CR Prop. AR CR Prop.
MPE wi/ 9390 9447 9219 9422 9539 78.99
w/o 93.88  94.46 0 9423 9540 0
HD w/ 93.95  94.51 2833 9432 9541 62.56
w/o 93.95 94.53 0 9434 9543 0
SNFE wi/ 9397 9454 9243 9429 9544 78.96
w/o 93.96 94.54 0 9428 9542 0

Left - CASIA-OLHWDB; right - TUAT Kondate. “Prop.” denotes the proportion of
edges filtered out.

Table 6

Comparison of training time for different learning criteria (s/str).
Database MR (w/) MR (w/o) CLL MCE MM
CASIA-OLHWDB 242 2.82 235 1.76 1.73
TUAT Kondate 1.15 1.35 1.09 0.68 0.64

“MR(w/)” and “MR(w/0)" denote minimum risk training with and without edge
selection, respectively.

respectively, SMM and LM-MCE are not listed in Table 6, for the
calculation of the margin term takes just a small amount of time.
Table 6 shows that, by edge selection, the running time of MR
training is almost comparable with that of CLL. However, it is still
higher than MCE and MM. To calculate the derivatives in CLL and
MR training, the exact forward and backward algorithms [5] are
conducted to compute the marginal probabilities, while for MCE
and MM, only the approximate forward algorithm (beam search) is
run to search for the competing path (cf. Sections 5.2 and 5.3). This
the reason why MCE and MM are more effective than CLL and MR
in optimization.

6.3.5. Robustness of training criteria

For HCTR, due to variable writing styles of different authors,
sloppy handwritings are commonly observed. In this part, we
evaluated the robustness of training criteria to the quality
of training samples. Recall the lattice construction procedure
(cf. Fig. 1), in which each candidate character is given a candidate
class list by a character classifier. In this step, the ground-truthed
label of an illegibly written character or an outlier (incorrectly
labeled character) may be excluded. We consider two strategies to
deal with this case. The first is to simply discard the training
strings containing such characters, and the second is to insert the
ground-truthed labels into the candidate class lists. Training with
the above two strategies are separately referred to as T, and Tiys,
and the corresponding recognition results are compared in Table 7.
The results on CASIA-OLHWDB show that to remove the training
samples (for Ty, 10,743 text lines were discarded from 41,710
training strings) containing illegible characters (or outliers) have

6.2
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© -+-CASIA-OLHWDB
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5.2 g
0 0.1 0.2 0.3 0.4
Table 7
Effects of training samples’ quality (%).
Criterion Strategy AR CR AR CR
CLL Trmy 93.66 94.26 93.58 94.62
Tins 93.46 93.99 93.57 94.66
SMM Trmy 93.73 94.33 94.05 95.18
Tins 93.65 94.20 94.00 95.16
MCE Trmy 93.67 94.29 94.07 95.24
Tins 93.71 94.32 94.06 95.23
LM-MCE Trmy 93.79 94.36 94.15 95.30
Tins 93.79 94.35 94.13 95.28
MM Trmy 93.74 94.36 94.03 95.21
Tins 93.67 94.26 94.05 95.22
MR Trmy 93.94 94.52 94.33 95.41
Tins 93.95 94.53 94.34 95.43

Left - CASIA-OLHWDB; right — TUAT Kondate.

just slight influence on the performances of MCE, LM-MCE and

MR, however, for CLL, SMM and MM, T,,, achieved higher
recognition rates than Tj,s; even using less training samples. This
means CLL, SMM and MM are more sensitive to illegible characters
and outliers, that is, MCE, LM-MCE and MR are more robust to low
quality training samples than CLL, SMM and MM. On TUAT
Kondate, only 296 text lines were discarded from 9793 training
samples for T;,,,,, which is the reason that the results for the two
cases are comparable. Unless otherwise stated, T, strategy,
which can be taken as a string-level training data selection (cf.
Section 4.3), is adopted for CLL, SMM and MM to achieve better
performances in our experiments.

In stochastic gradient (or subgradient) descent, the semi-CRF
parameters are updated using the derivatives of the loss functions.
For CLL and SMM, the derivative of the logarithm log a diverges at
a = 0. Thus when a training string (X', S, Y") contains illegible
characters (or outliers), which usually makes P(S', Y|X'; A) a very
small value approaching zero, the magnitude of the derivative will
be very large. This is the reason why CLL and SMM are sensitive to
low quality training samples. In contrast, for the sigmoid function
fl@=1/1+e~% in MCE and LM-MCE criteria, the derivative
f(a)(1—f(a)) will become close to zero for extremely large mis-
classification measures (cf. Egs. (26) and (29)). Yu et al. [24] also
mentioned that MCE has the property of immunity to the outliers
(i.e., incorrectly labeled training examples). The derivative of the
MM criterion includes the difference of path features (summation
of feature functions along the path, cf. Eq. (32)). The reason that
MM is vulnerable to illegible characters is because the feature
functions used are the logarithms of classification confidences [5],
which are very small values for illegible characters. The derivative
of the MR loss is determined by the derivatives of the marginal
probabilities on lattice edges (cf. Eq. (10)). The marginal prob-
ability P(q, Yq|Xi;A) measures the possibility that the edge (q,Yy) is
on the genuine path, which will be close to zero if the similarity
degree between q and Yy is very low. In Appendix D, we have
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Table 8
Effects of character classifiers (%).

Criterion Classifier AR CR AR CR
CLL FDA +MQDF 93.66 94.26 93.58 94.62
DFE + MQDF 94.30 94.84 94.07 95.06
DFE + DLQDF 94.49 95.15 92.71 93.60
SMM FDA +MQDF 93.73 94.33 94.05 95.18
DFE + MQDF 94.34 94.88 94.52 95.55
DFE + DLQDF 94.54 95.20 93.00 93.91
MCE FDA+MQDF 93.71 94.32 94.06 95.23
DFE + MQDF 94.36 94.90 94.56 95.63
DFE + DLQDF 94.54 95.21 92.99 93.90
LM-MCE FDA +MQDF 93.79 94.35 94.13 95.28
DFE +MQDF 94.38 94.90 94.76 95.73
DFE + DLQDF 94.58 95.22 93.05 93.95
MM FDA +MQDF 93.74 94.36 94.03 95.21
DFE + MQDF 94.36 94.91 94.49 95.54
DFE +DLQDF 94.54 95.22 92.97 93.89
MR FDA +MQDF 93.95 94.53 94.34 95.43
DFE + MQDF 94.51 95.03 94.87 95.86
DFE-+DLQDF 94.69 95.32 93.14 94.10

Left - CASIA-OLHWDB; right — TUAT Kondate.

proved that if P(q, Yq|Xi;A) approaches zero, its derivatives will
also become close to zero, and thus the edge (q,Yq) will not
contribute much to the updating of model parameters. This the
reason why MR is insensitive to low quality training samples.
Heigold et al. [36] also pointed out that MMI is vulnerable to label
noise (outliers), while MPE/MWE tends to be less sensitive to
outliers than MMI on speech recognition tasks.

6.3.6. Effects of character classifiers

In the semi-CRF based HCTR approach, character classification
is used in both candidate class selection and feature functions [5].
Using different feature dimensionality reduction and character
classification methods, we compared the performances of MR
training with other learning criteria introduced in Section 5. Before
character classification, the feature dimensionality was first
reduced to 160D. To achieve higher string recognition rates, we
considered discriminative feature extraction (DFE) [52] and dis-
criminative learning QDF (DLQDF) [53] in addition to the baseline
FDA and MQDF. DFE optimizes the feature subspace (initialized by
FDA) under a discriminative learning criterion, and DLQDF is a
discriminatively updated version of MQDF [53]. The training set
for DFE and DLQDF is the same as that for FDA and MQDF. On
segmented string characters, DFE and DLQDF can generally achieve
higher correct rates (top-1 accuracies) than FDA and MQDF due to
discriminative learning [5]. Table 8 shows the recognition results
on test string sets using different combinations of dimensionality
reduction (FDA, DFE) and classification (MQDF, DLQDF) methods.
For fair comparison with MR, pre-training (cf. Section 6.3.2) is also
adopted for SMM, MCE, LM-MCE and MM.

For each training criterion, on CASIA-OLHWDB, superior string
recognition rates are obtained by DFE+DLQDF, while on TUAT
Kondate, DFE+MQDF performs better. The reason is because the
string recognition performance owes much to the cumulative accura-
cies of character classifiers rather than the top-1 accuracy [5].
The cumulative accuracies (for top-10 candidates) for FDA+ MQDF,
DFE +MQDF and DFE + DLQDF on segmented test string characters of
CASIA-OLHWDB are separately 97.75%, 98.04% and 98.71%, while on
TUAT Kondate, the accuracies are 98.19%, 98.38% and 97.68%,
respectively.

We put the emphasis on the comparison of different train
criteria. For each character classifier, we can see that SMM

Table 9
Comparison with the best results of ICDAR 2011 Chinese handwriting competition
(online handwritten texts).

System Classifier LM AR (%) CR (%)
Proposed FDA+MQDF char tri-gram 93.28 93.83
Proposed DFE +MQDF char tri-gram 93.99 94.45
Proposed DFE+DLQDF char tri-gram 94.22 94.76
Zhou et al. [5] DFE+DLQDF char tri-gram 94.06 94.62
VO MLP word tri-gram 93.56 94.33

outperforms CLL and LM-MCE outperforms MCE by incorporating
the margin term. MCE achieves comparable or better recognition
results than CLL, SMM and MM due to the robustness of sigmoid
function (cf. Section 6.3.5), even when training data selection were
conducted for CLL, SMM and MM. The performances of MM and
SMM are just comparable. Among all the training criteria, MR
achieves the best recognition performance due to the optimization
of character-level errors and the robustness to low quality training
samples. However, by comparing the results achieved by MR and
those achieved by the baseline CLL, it can be seen that changing
the learning criterion is not as effective as changing the character
classification methods.

6.3.7. Experiments on competition set

Finally, we conducted experiments on the test set of online
handwritten texts in ICDAR 2011 Chinese handwriting recognition
competition [50], in which the best results were achieved by
Vision Objects Ltd. (VO), which adopts multilayer perceptron
(MLP) as the character classifier. In Table 9, three semi-CRF based
HCTR models using different character classification methods
(cf. Section 6.3.6) are compared with the system of VO, in which
the model parameters are learned by MR using HD cost and edge
selection (¢ = 0.01). As recommended by the competition, all the
three models are trained with the samples of the entire CASIA-
OLHWDB database. Table 9 shows that even with DFE+MQDF and
a relatively weaker linguistic model (LM), the recognition rates (AR
and CR) are already higher than those of VO. The best results are
given by DFE+DLQDF, which are also higher than the best results
achieved by our former work [5].

7. Conclusion

This paper presents a minimum-risk training method for
handwritten Chinese/Japanese text recognition using semi-CRFs,
which aims at minimizing the character error rate rather than the
string error rate by taking advantage of the non-uniform (non-0/1)
cost functions. An experimental evaluation on CASIA-OLHWDB
database and TUAT Kondate database shows that minimum-risk
training yields better string recognition rates than several widely
used learning criteria, but changing the learning criterion is not as
effective as changing the character classification methods. The HD
cost [43] and the SNFE cost [38] outperform the MPE cost [14] on
test sets of both the two databases. The performances of SNFE and
HD are comparable, while the training time with HD is much
lower than that with SNFE due to less computational complexity.
Edge selection can help to reduce the computation cost of
minimum-risk training. The proposed method also outperforms
the best system on the test set (online handwritten texts) of ICDAR
2011 Chinese handwriting recognition competition.
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Appendix A. Derivation of Eq. (10)

With the cost function formulated in Eq. (9), the per-sample
loss in Eq. (7) can be calculated by

Y PGS, YIX5A)(S,Y), (S, YY)
SY)eH

= ¥ PS.YIX5A) Y 2((q.Yg). (SL YY)
SY)eH qeS

= ¥ Y PSYIX5M2(q,Ye). (SL YY)
SY)eHqeS

= ¥ > PGS, YIX5M)2((, Yo), (S YY)
(q.Yq) e H(S,Y) € H:(q.Yq) € (S.Y)

= ¥ 2(q.Ye.(SLYY) > PGS, Y1X5A)

@Yo eH (8.Y) e H:(q.Yg) € (S.Y)
= Y 2(q,Ye).(SLY)Pq, Yql X' A) (A1)
q.YgeH

From the above per-sample loss, we can derive Eq. (10) computed
on the whole training set.

Appendix B. Derivation of Eq. (12)

From the definition of P(S, YIX:A) (cf. Eq. (1)), the marginal
probability P(q, Yq|X'; A) formulated in Eq. (11) can be rewritten as

exp{—EX.S,Y;A))

: B.1
ZX5A) ’ @D

P(g, YqX';A) =

(S.Y) e H:(q.Yq) € S.Y)
thus the partial derivatives of P(q, Yq|Xi;A) with respect to the
model parameters can be calculated by

9P(q,Yql X5 A) _

. i,
- —P(q, yq‘xl;A)aloL(X’A)

[ Ay
+ D Y XL YOPS, YIX'A),  (B2)
SY)eH:(q.Yg) e(S,Y)ceS
in which

3 FXL YOPES, YIX5A)
(S.Y) e H:(q.Yq) e (S.Y)CeS

= X ) FeXLYOPES, YIX;A)
(€.Ye) e H(S.Y) € Hi(c,Ye) € (S.Y) A (q.Yg) € SY)

= Y fXLYo

c.Yo)eH

P(S,Y|X':A)
(S.Y) e Hic.Ye) € (SY) A (0.Yg) € (S.Y)

= Yz) ka(x; YOP(C, Ye,q, Yql X5 A) (B.3)
cYeo) e

From the definition of Z(Xi;A) (cf. Eq. (4)), we can calculate the
partial derivatives of log Z(X';A) in Eq. (B.2) by

i, . .
Aog ZXLA) _ 5 5 f (XL YRS, VXA
oA SYyeHces

= Y filXLYOP(, Y X5 A) (B.4)
Ye)eH

By substituting Eqgs. (B.3) and (B.4) into Eq. (B.2), we can derive
Eq. (12).

Appendix C. Derivation of Eq. (20)

By substituting the HD cost (cf. Eq. (19)) into Eq. (7), the per-
sample loss can be calculated by
Y PGS, YIX5A)YA=8(Yy, YY)
u

SY)eH
=Y ¥ PGSYIX5A)1-8(Yu,Yh))

uiSyYyer
=y (1 — Y (Y YHPGS, Y|X";A)>
u SY)eH

=Y -P(Y, X5 A)) (€1)

u
in which

PYLIX5A) = X 8(Ya, YDPGS, YIX5A)

SY)eH
= Y Y 8(YuYDPS YIX:A)
SY)eHqeSueq

= X )

SY)eHgeSueqaYi =Y,
_ 5 ¥ P(S, Y| X% A)

@Yo e HueqaYy =Y, SV €M@Y e SY)
= T P@YelXiA) €2

@Y eHueqaY, =Y,

PGS, Y| X5A)

From the above per-sample loss, we can derive Eq. (20)
computed on the whole training set.

Appendix D. Edge selection in Eq. (12)

In Eq. (12), considering that
|P(c, Ye,q, Yql X's A) = P(c, Yc | X' AP, Yq | X5 A)|
<max{P(c, Y, q, Yql X5 A), P(c, Ye | X' A)P(q, Yol X' A))
<P(q,YqIX';A), (D.1)

we can prove that when P(q, Y, 1X'; A) approach zero, the left side
of the above inequality will also approach zero. On the other hand,
considering that

P(c,Ye,q,Yql X' A) =P(c, Ye| X5 A) +P(q, Yl X5 A)
—P((c,Yo) U (q, Yo X5 A), (D.2)

where P((c,Y¢) U (q, Yq)|Xi;A) denotes the probability that (c, Y.) or
(q,Yq) is on the desired path, we can derive that

IP(C, Ye, G, YqI X3 A) = P(C, Ye | X A)P(g, Yql XE; A))|
<P((&,Yo) U (@, Yo) X3 A)—P(@. Y X5 )
+P(C, Ye X3 A)(1—P(q. YqI X' A)). (D3)

Thus, when P(q, Yq 1X’; A) approach 1, the left side of the above
inequality will approach zero. Based on the above conclusions, we
can prove that when P(q, Yq 1X'; A) approaches O or 1, its derivatives
will become close to zero.
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