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To improve the class separability of Fisher linear discriminant analysis (FDA) for large category

problems, we investigate the weighted Fisher criterion (WFC) by integrating weighting functions for

dimensionality reduction. The objective of WFC is to maximize the sum of weighted distances of all

class pairs. By setting larger weights for the most confusable classes, WFC can improve the class

separation while the solution remains an eigen-decomposition problem. We evaluate five weighting

functions in three different weighting spaces in a typical large category problem of handwritten

Chinese character recognition. The weighting functions include four based on existing methods,

namely, FDA, approximate pairwise accuracy criterion (aPAC), power function (POW), confused

distance maximization (CDM), and a new one based on K-nearest neighbors (KNN). All the weighting

functions can be calculated in the original feature space, low-dimensional space, or fractional space.

Our experiments on a 3,755-class Chinese handwriting database demonstrate that WFC can improve

the classification accuracy significantly compared to FDA. Among the weighting functions, the KNN

method in the original space is the most competitive model which achieves significantly higher

classification accuracy and has a low computational complexity. To further improve the performance,

we propose a nonparametric extension of the KNN method from the class level to the sample level. The

sample level KNN (SKNN) method is shown to outperform significantly other methods in Chinese

handwriting recognition such as the locally linear discriminant analysis (LLDA), neighbor class linear

discriminant analysis (NCLDA), and heteroscedastic linear discriminant analysis (HLDA).

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In pattern classification for high-dimensional data, it is com-
mon to apply a feature extraction method as a pre-processing
technique, not only to reduce the computational complexity, but
also to obtain better generalization performance, by reducing
irrelevant and redundant information in the data, and overcoming
the estimation problem in statistical classifier learning. The
feature extraction methods include linear and nonlinear dimen-
sionality reduction ones. A large variety of linear methods, such as
principal component analysis (PCA) [19,41], Fisher linear discri-
minant analysis (FDA) [12], independent component analysis
(ICA) [18], non-negative matrix factorization (NMF) [24] and
locality preserving projections (LPP) [16], have been proposed
from different statistical or geometrical viewpoints. The nonlinear
methods include (i) the kernel extension of the linear methods,
such as kernel PCA [36] and kernel FDA [45]; (ii) manifold
learning models such as the ISOMAP [40], LLE [35] and Laplacian
eigenmaps [3]; (iii) deep neural networks [17,43,38] which use a
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deep architecture to learn the nonlinear data mapping. The
dimensionality reduction methods can also be divided into
data-independent (e.g. random projection [9,6]), unsupervised
(e.g. PCA, NMF, LPP), and supervised (e.g. FDA, kernel FDA),
according to the increasing level of involvement of the data.

In this paper, we focus on supervised linear dimensionality
reduction for large category problems, which incur high compu-
tational complexity to nonlinear methods and even some linear
methods. The most well-known supervised linear method is the
FDA, which was first developed by Fisher [11] for binary classi-
fication and then extended by Rao [34] to multi-class problems.
The purpose of linear dimensionality reduction is to learn a
transformation matrix WARd�d0 to transform the feature from
Rd into a low-dimensional space Rd0 (d0od). The objective of FDA
is to maximize the between-class distance as well as minimize
the within-class distance. FDA is the optimal model for linear
dimensionality reduction [12], when (i) the class-conditional
distribution is Gaussian with equal covariance matrix for all the
classes (homoscedastic); and (ii) the reduced dimensionality is
C�1 (C is the number of classes).

For large category problems where Cbd4d0, however, FDA
suffers from the class separation problem. The objective of FDA
can be formulated as maximizing the sum of all the pairwise
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distances between different classes, which overemphasizes the
large distances of the already well-separated classes, and confuses
the classes that are close in the original feature space. Many
methods have been proposed to overcome this problem. Loog
et al. [32] proposed the approximate pairwise accuracy criterion
(aPAC), which uses a weighting function to emphasize the close
class pairs in the between-class scatter matrix. Lotlikar and
Kothari [33] developed the fractional-step FDA, which is also a
weighting approach but selects a subspace through fractional
steps. Instead of the arithmetic mean of distances used in FDA,
Tao et al. [39] proposed to use the geometric mean, while Bian
and Tao [4] proposed to use the harmonic mean, which require
complex computation in subspace solution, however. Recently,
the idea of maximizing the minimal pairwise distance was
proposed to solve the class separation problem [50,44,47,5].
Simultaneously maximizing all the pairwise distances was also
proposed as a multi-objective optimization problem [2] to handle
the class separation problem. Besides the class separation pro-
blem, many other methods have been developed to deal with the
heteroscedastic problem [31,51], to extract more than C�1
features for small category problems [21], and to alleviate the
small sample size problems [7,46].

Handwritten Chinese character recognition is a typical large
category problem where FDA has been popularly used for dimen-
sionality reduction (e.g., [14,25]). The linear dimensionality
reduction methods based on weighted Fisher criterion (WFC),
such as the aPAC and the confused distance maximization (CDM)
[48], are applicable to large category problems with moderate
computation cost because the subspace solution remains an
eigen-decomposition problem. To improve the class separability
of FDA for large category problems, we evaluate various weight-
ing functions in different feature spaces. The weighting functions
include four based on existing methods, namely, the FDA (a
special case of WFC), the aPAC, the power function (POW) used
in fractional-step dimensionality reduction [33], and the CDM.
We explore a new model which maximizes the sum of the
distances between each class and its k-nearest neighbors (KNN).
The weighting functions are calculated in three different spaces:
the original feature space, the low-dimensional space, and the
fractional space, which have increasing computational complex-
ities but lead to better approximations of the weighting function
in the final reduced space. We compare the five weighting
functions from four perspectives: (i) the class separation in the
reduced subspace; (ii) the locality; (iii) the property of classifier-
dependence and (iv) the property of space invariance. We
evaluated the weighting functions and weighting spaces on a
3,755-class Chinese handwriting dataset. The experimental
results show significant improvement of classification accuracy
of WFC over the ordinary FDA. The KNN weighting function in the
original space is the most competitive model in respect of both
the classification accuracy and the computational complexity. To
the best of our knowledge, this is the first work on the evaluation
of different weighting functions in different weighting spaces of
WFC for large category dimensionality reduction.

Another contribution of this paper is the extension of the KNN
based weighted Fisher criterion from class level to sample level
(denoted as sample-level KNN: SKNN). SKNN is a nonparametric
extension of the KNN method. By computing the between-class
scatter matrix at sample level, SKNN can capture much more
information of the decision boundary, solve the class separation
problem, and also alleviate the heteroscedastic and multi-modal
problems. Compared with some popular methods in Chinese
handwriting recognition such as locally linear discriminant ana-
lysis (LLDA) [15], neighbor class linear discriminant analysis
(NCLDA) [42], and heteroscedastic linear discriminant analysis
(HLDA) [30,31], SKNN can achieve much higher classification
accuracy for both the nearest class mean (NCM) and modified
quadratic discriminant function (MQDF) [20] classifiers on all the
reduced subspaces consistently. All the compared results can be
exactly repeated with the feature data released at [1], and there-
fore can be used as a benchmark for comparing different dimen-
sionality reduction models for large category problems.

The rest of this paper is organized as following: Section 2
introduces the class separation problem of FDA and some related
works attempting to solve this problem; Section 3 presents the
framework of weighted Fisher criteria (WFC), and describes five
weighting functions in three different weighting spaces; Section 4
reports comprehensive evaluations of different WFC from the
aspects of accuracy, complexity, statistical significance, space
invariance, and similar characters; Section 5 extends the KNN
method to the sample level, and compares the new method with
some popular methods in Chinese handwriting recognition; and
Section 6 draws concluding remarks.
2. FDA and class separation problem

Let miARd and SiARd�d be the mean vector and the covar-
iance matrix for class i, (i¼ 1 � � �C), respectively. The within-class
and between-class scatter matrices are defined as:

Sw ¼
XC

i ¼ 1

piSi, ð1Þ

Sb ¼
XC

i,j ¼ 1

pipjðmi�mjÞðmi�mjÞ
>, ð2Þ

where pi ¼Ni=N, N¼
PC

i ¼ 1 Ni (Ni is the number of samples in
class i). The objective of FDA is to learn a transformation matrix
WARd�d0 (d0od) to transform the feature vector xARd into a low-
dimensional vector x0ARd0 as x0 ¼W>x by minimizing the within-
class variance while maximizing the between-class variance. It is
easy to verify that the scatter matrices in the transformed space
become W>SwW and W>SbW . There are many formulations of FDA,
and two typical criteria are given below [12]:

max
W

trfðW>SwWÞ�1
ðW>SbWÞg, ð3Þ

max
W
fln9W>SbW9�ln9W>SwW9g, ð4Þ

which are equivalent to a constrained problem:

max
WFDA ARd�d0

trðW>
FDASbWFDAÞ s:t: W>

FDASwWFDA ¼ I, ð5Þ

where I is the identity matrix. Usually, this model is solved by an
equivalent two-step approach: whitening followed by PCA in the
whitened space.

2.1. The first step: whitening

Let P be the eigenvector matrix and L be the diagonal
eigenvalue matrix of the within-class scatter matrix:

Sw ¼ PLP>: ð6Þ

The whitening transformation is defined as:

Wwhiten ¼ PL�1=2ARd�d, ð7Þ

which satisfies

W>
whitenSwWwhiten ¼ I: ð8Þ

It is implicitly assumed that within-class scatter matrix Sw is
invertible. For the large category problem with enough training
samples, this assumption can be generally guaranteed. In the case



Table 1
Optimization methods and experimental datasets used by different models.

Method Optimization Experiments

(C classes)

[39] steepest gradient UCI and USPS (Cr10)

[4] conjugate gradient UCI and Objects (Cr20)

[50] constrained concave-convex

procedure (CCCP)

UCI and Face (Cr100)

[44] semi-definite programming (SDP) UCI and Face (Cr40)

[5] sequential SDP UCI and Face (Cr50)

[2] gradient descent Image and UCI (Cr40)
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of singular Sw, the zero values in L can be set as some small non-
zero positive constant.

2.2. The second step: PCA in the whitened space

Defining the transformation matrix of FDA as

WFDA ¼WwhitenW , ð9Þ

and inserting this equation into the objective function of FDA (5),
the problem becomes

max
W ARd�d0

trðW>W>
whitenSbWwhitenWÞ s:t: W>W ¼ I: ð10Þ

This problem is equivalent to

max
W ARd�d0

XC

i,j ¼ 1

pipjnij s:t: W>W ¼ I, ð11Þ

where nij is the distance between the class means of classes i and
j in the transformed subspace

nij ¼ JW>W>
whitenðmi�mjÞJ

2
2: ð12Þ

The second step of FDA is thus to solve (11), which is exactly
the principal component analysis (PCA) among whitened class
means W>

whitenm1, . . . ,W>
whitenmC (Fig. 1(b)). However, PCA is a

global model, which maximizes the sum of all the pairwise
distances. The local information for distinguishing one class from
another may be lost after PCA transformation, which results in the
class separation problem.

2.3. The class separation problem

The first step of FDA is to learn a suitable distance metric: in the
whitened space, the Euclidean distance becomes the optimal
measurement. In the second step, because (11) is to maximize the
sum of all the pairwise distances, it will cause the class separation
problem [32]. To illustrate this, consider that one class is located
remotely from the other classes and can be considered as an outlier
(Fig. 1(c)). In this case, by optimizing (11), the projection axis of FDA
is the one that separates the outlier from the remaining classes as
much as possible. The pairs of large-distance classes completely
dominate the solution of (11). As a consequence, there is a large
overlap among the remaining classes, leading to an overall low and
suboptimal classification performance.

To solve the class separation problem, Tao et al. [39] proposed
to maximize the geometric mean fmax

P
ia jpipj log nijg. Bian and

Tao [4] further proposed to maximize the harmonic mean
fmax �

P
ia jpipjn

�1
ij g. Recently, many authors have proposed to

maximize the minimal distance fmaxðminia jnijÞg [50,44,47,5].
Abou-Moustafa et al. [2] further proposed to maximize all the
pairwise distances fmaxn12,maxn13, . . . ,maxnC�1,Cg simulta-
neously in multi-objective optimization. Although these methods
have reported improved performance, they are all based on some
complex iterative optimization procedures (Table 1), which make
them not scalable for large category (e.g. thousands of classes)
problems.
Fig. 1. (a) The distributions of three classes; (b) After whitening transformation,

each class can be approximately represented by a sphere; (c) An illustration of the

class separation problem of FDA.
Another widely used method to solve the class separation problem

is the weighted Fisher criterion (WFC) fmax
PC

i,j ¼ 1 f ijpipjnijg

[32,33,48]. By integrating the weighting function fij into the objective
function of (11) and setting larger weights for the most confusable
classes, WFC can solve the class separation problem effectively.
Furthermore, the solution of WFC only requires solving an eigen-
decomposition problem and no complex iterative optimization is
needed, which makes WFC efficient for large scale applications. In this
paper, we investigate the WFC with various weighting functions for
large category classification. Specifically, we evaluate the classifica-
tion accuracies and running times of five weighting functions in three
different weighting spaces on a large scale 3,755-class handwriting
dataset.

3. Weighted Fisher criteria

To solve the class separation problem, the objective function of
(11) is generalized by introducing a weighting function, resulting
in the weighted Fisher criterion (WFC):

max
W ARd�d0

XC

i,j ¼ 1

f ijpipjnij s:t: W>W ¼ I, ð13Þ

where f ijZ0 is a weighting function that depends on the prob-
ability of confusion or merging in the reduced subspace between
class i and class j. By setting larger fij for the class pairs which are
closer together and likely to cause confusion, WFC helps make the
optimality criteria more representative of the classification ability
in the reduced space.

The criterion of (13) can be re-written as:

max
W ARd�d0

trðW> bSb WÞ s:t: W>W ¼ I, ð14Þ

where bSb is the weighted between-class scatter matrix in the
whitened space:

bSb ¼
XC

i,j ¼ 1

f ijpipjð bmi� bmj Þð bmi� bmj Þ
>, ð15Þ

and bmi is the whitened mean for class i:bmi ¼W>
whitenmi 8i¼ 1,2, . . . ,C: ð16Þ

The model of (14) can be solved by taking the columns of the
d� d0 matrix W to be the d0 eigenvectors corresponding to the d0

largest eigenvalues of bSb . Denote the solution of WFC in (14) as
WWFCARd�d0 , the final dimensionality reduction matrix is the
accumulation of the whitening transformation (7) and WFC:

W final ¼WwhitenWWFCARd�d0 : ð17Þ

The weighted Fisher criterion (WFC) is a general framework.
Its performance depends on the definition of the weighting matrix

F ¼ ff ijgARC�C : ð18Þ
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3.1. Weighting function

In this section, we describe and compare five weighting
functions, which can be used in the WFC framework for dimen-
sionality reduction.

3.1.1. FDA

Clearly, the ordinary FDA is a special case of WFC adopting a
constant weighting function

FDA : f ij ¼ 1,8i,j¼ 1, . . . ,C: ð19Þ

Since all the class pairs are equally weighted, FDA will over-
emphasize the large-distance class pairs and cause an overlapping
of the small-distance class pairs.

3.1.2. aPAC

Loog et al. [32] proposed the approximate pairwise accuracy
criterion (aPAC) by using a weighting function as

aPAC : f ij ¼
1

2d2
ij

erf
dij

2
ffiffiffi
2
p

� �
, ð20Þ

where erfðxÞ ¼ 2ffiffiffi
p
p
R x

0 e�t2
dtA ½�1,1� is the error function1, and dij is

the distance between class i and class j in the whitened space:

dij ¼ J bmi� bmjJ2 ¼ JW>
whitenðmi�mjÞJ2: ð21Þ

The aPAC is derived to approximate the Bayes error for class pairs,
and can solve the class separation problem by setting larger fij for
small-distance (small dij) class pairs.

3.1.3. POW

Lotlikar and Kothari [33] proposed the fractional-step dimen-
sionality reduction model which uses a weighting function as:

POW : f ij ¼ d�m
ij , ð22Þ

where m is a positive integer. The dropping of fij should be faster
than the increasing of dij, and so m is suggested to be mZ3. Since
Eq. (22) is a power function, we denote this method by POW.

3.1.4. CDM

Zhang and Liu [48] proposed the confused distance maximiza-
tion (CDM) to solve the class separation problem, which defines
the weighting function as the confusion probability among
different classes:

CDM : f ij ¼

Ni*j

Ni
, ia j

0, i¼ j

8><>: ð23Þ

where Ni is the number of samples in class i, and Ni*j is the number
of samples of class i that are classified into class j by a specific
classifier. To obtain a better generalization performance, the con-
fusion matrix F ¼ ff ijgARC�C should be estimated from a dataset
which is different from the one used to train the basic classifier, e.g.,
using the holdout-validation or cross-validation. The weighting
function of CDM is defined as the confusion probability estimated
from the data with a pre-learned classifier, and therefore is more
relevant to the classification task. CDM has shown better classifica-
tion performance than FDA, aPAC and POW [48].

3.1.5. KNN

A new weighting function named KNN is proposed in this
paper to maximize the sum of the distances between each class
1 http://wikipedia.org/wiki/Error_function
and its k nearest neighbors:

KNN : f ij ¼
1, if bmj AKNNð bmi Þ

0, otherwise

(
ð24Þ

where KNNð bmi Þ denotes the k nearest neighbors of the whitened
class mean bmi in fcm1 , . . . , dmi�1 , dmiþ1 , . . . ,cmC g. The benefits of con-
sidering each class with its k nearest neighbors include:
(i) focusing on the nearest class pairs, and removing the influence
of the large-distance class pairs; (ii) the geometric relationship of
different classes is preserved by the connection and propagation
between each class and its nearest neighbors; (iii) the fast
construction and sparsity of the weighting matrix can signifi-
cantly reduce the computational complexity of WFC (Section 4.7);
(iv) the KNN weighting matrix is nearly space invariant, which
means the KNN relationship between the class pairs is nearly the
same either in the original feature space or the low-dimensional
subspace (Section 4.9).

3.1.6. Comparison of weighting functions

We show different weighting functions in Fig. 2 and make
qualitative comparisons from the following perspectives (Table 2):
�
 Class separation. By setting larger weights for the most
confusable classes, the weighting functions of aPAC, POW,
CDM and KNN have the ability to solve the class separation
problem caused by the constant weighting function in FDA.

�
 Locality. The weighting matrices of aPAC and POW are based

on the pairwise distance dij. CDM is based on the confusion
matrix, and since each class is only confused with a small
number of classes, the weighting matrix of CDM is very sparse.
Furthermore, for the KNN weighting matrix, there are at most
k non-zero elements for each row (each class). Therefore, the
weighting matrices of CDM and KNN are much more sparse
(local) than aPAC and POW. The locality property makes CDM
and KNN more relevant to the classification accuracy by
focusing on the most confusable classes. Furthermore, the
computation cost of bSb in Eq. (15) will be significantly reduced
due to the locality of fij.

�
 Classifier-dependence. Fig. 2 shows the CDM weighting

matrices for two different classifiers (nearest class mean
(NCM) and modified quadratic discriminant function (MQDF))
described in Section 4.2. We can see that the confusion matrix
used in CDM is classifier-dependent, which indicates that CDM
may be more relevant to a particular classifier, while the
weighting matrices of FDA, aPAC, POW and KNN are indepen-
dent of the classifier.

�
 Space invariance. Another important property of the weight-

ing function is space invariance, which means the weighting
functions in the original feature space and in the reduced
subspace should be close to each other. The weighting function
of FDA is space invariant, and the one of KNN is nearly space
invariant due to the geometry preserving of K-nearest neigh-
bors. This will be shown in detail in Section 4.9, and in the
following section we will show that this property is very
important for dimensionality reduction.

3.2. Weighting space

The weighting function can be defined in different spaces.
Because we want to learn a transformation from Rd to Rd0 and the
classification performance is directly evaluated in Rd0 , the optimal
weighting function should be defined in the final reduced space
(FRS) Rd0 to reflect the real confusion relationship between
classes. However, the weighting function definition in FRS and
the transformation matrix learning of WFC are two problems with

http://wikipedia.org/wiki/Error_function


Fig. 2. The 100�100 weighting matrix of different methods for the first 100 classes of the 3,755-class problem.

Table 2
Comparison of different weighting functions.

class separation locality classifier-dependence space invariance

FDA O
aPAC O
POW O
CDM O O O
KNN O O O
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a chicken-and-egg flavor, because solving one relies on the other.
In practice, we can only make some approximations to the
weighting function in FRS.

3.2.1. The original space

The simplest method is to define the weighting function in the
original feature space Rd, and this method has the lowest
computation cost. However, the weighting function in the original
space and that in the FRS may be significantly different. The large-
distance class pairs (small fij) in the original space may become
small-distance pairs (large fij) in FRS. Therefore, the weighting
function in the original space still suffers from the class separa-
tion problem, which will weaken the classification performance.

3.2.2. The low-dimensional space

To better approximate the weighting function in FRS, we can
define weighting functions in the low-dimensional space. That
means we first construct a weighting matrix in the original space
Rd and learn a WFC transformation matrix WARd�d0 to transform
the data into Rd0 . After that, the weighting matrix is re-estimated
in this low-dimensional space Rd0 and is then incorporated into
WFC to learn the transformation matrix again. The weighting
matrix in the low-dimensional space reflects the class confusion
relationship more accurately, and can achieve better performance
than the weighting matrix in the original space. The cycle of
learning WARd�d0 and weighting matrix in Rd0 can be repeated
iteratively. However, the convergence is not guaranteed because
the objective function optimized by this iterative procedure is not
well-defined.

3.2.3. The fractional space

A useful iterative method to approximate the weighting
function in FRS is the fractional-step dimensionality reduction
[33]. The dimensionality is reduced from d to d0 (d0od) in small
fractional steps, allowing for the relevant class pairs to be more
correctly weighted. Denote by t the fractional step, the dimen-
sionality reduction is performed in multiple steps iteratively as

Rd
�!

F

½WFC�
Rd�t

�!
F

½WFC�
Rd�2t

� � � �!
F

½WFC�
Rd0 : ð25Þ

In each step, the weighting matrix F is estimated in the higher-
dimensional input space, and then WFC is used to reduce the
dimensionality by a small step t, after which the weighting matrix
is re-estimated in the lower-dimensional output space. This
procedure is repeated until the final dimensionality reaches d0.
The fractional-step t can be very small. The step to1 means many
steps are involved to reduce the dimensionality by 1 (from Rd to
Rd�1) (more details can be found in [33]). To alleviate the
computation burden for large category applications, in this paper
we only consider the fractional step t to be an integer (e.g. 1,5,10).
By reducing the dimensionality with small fractional steps, the
weighting matrix F can be estimated more reliably and closer to
the weighting matrix in the FRS.

3.2.4. Comparison of weighting spaces

The three weighting spaces have increasing computational
complexities, but lead to better approximations of the weighting
function in the FRS. All the five weighting functions (FDA, aPAC,
POW, CDM and KNN) can be defined in the three weighting
spaces. If the weighting function is not changed for different
weighting spaces (space invariant), we can simply define the
weighting function in the original space which has the lowest
computational complexity. We will show the improvements by
considering weighting functions in different weighting spaces in
Section 4.8. We also compare the space invariance property of
different weighting functions in Section 4.9.
4. Evaluation of weighted Fisher criteria

We evaluated the weighted Fisher criteria (WFC) with five
weighting functions (FDA, aPAC, POW, CDM and KNN) in three
different weighting spaces (original space, low-dimensional space
and fractional space) on a large scale 3,755-class Chinese hand-
writing dataset CASIA-HWDB1.1 [27].

4.1. Dataset

The CASIA-HWDB1.1 [27] is a new handwritten Chinese
character database collected by the Institute of Automation of
Chinese Academy of Sciences. This database contains samples
from 300 writers (240 for training and 60 for testing). Each writer
produced one sample for each of the 3,755 classes (GB2312-80
level-1 set), but a few mis-written samples were abandoned.
Finally, 897,758 training samples and 223,991 test samples were
obtained. For representing a character sample, features from gray-
scale character images (background eliminated) were extracted
using the normalization-cooperated gradient feature (NCGF)
method [25]. The feature dimensionality is 512, representing
the histogram of gradients extracted at 8 directions in 8�8
spatial grids. The feature data can be downloaded from our
database webpage [1].

Chinese handwriting recognition is a challenging problem due
to the large category (thousands of classes) and the many similar
characters [14]. Some similar character pairs are shown in Fig. 8.



Table 3
Classification accuracies (%) of different dimensionality reduction models with the NCM classifier.

d0 60 70 80 90 100 110 120 130 140 150 160 170 180 Average

FDA 78.80 79.88 80.56 81.07 81.43 81.71 81.88 81.97 82.09 82.12 82.13 82.16 82.19 81.38

aPAC 78.84 79.92 80.58 81.08 81.41 81.74 81.89 81.96 82.05 82.12 82.13 82.13 82.16 81.39

aPAC-L 78.94 80.01 80.62 81.09 81.44 81.75 81.88 81.94 82.06 82.12 82.13 82.14 82.16 81.41

aPAC-F10 78.95 80.03 80.63 81.11 81.48 81.76 81.91 82.00 82.07 82.15 82.16 82.16 82.18 81.43

aPAC-F5 78.95 80.03 80.63 81.12 81.49 81.76 81.91 81.99 82.07 82.14 82.16 82.17 82.19 81.43

aPAC-F1 78.94 80.03 80.63 81.12 81.50 81.76 81.91 81.99 82.07 82.14 82.16 82.16 82.19 81.43

POW10 79.11 80.18 80.81 81.27 81.61 81.84 81.98 82.04 82.10 82.14 82.18 82.13 82.13 81.50

POW9 79.23 80.21 80.86 81.26 81.55 81.82 82.00 82.07 82.13 82.16 82.16 82.19 82.13 81.52

POW9-L 78.57 80.13 80.95 81.49 81.80 82.03 82.12 82.22 82.21 82.27 82.26 82.26 82.23 81.58

POW9-F10 79.75 80.58 81.12 81.52 81.79 81.97 82.11 82.18 82.19 82.24 82.23 82.24 82.18 81.70

POW9-F5 79.77 80.61 81.14 81.51 81.81 81.96 82.11 82.19 82.20 82.24 82.24 82.24 82.18 81.71

POW9-F1 79.77 80.62 81.15 81.52 81.81 81.98 82.12 82.18 82.19 82.24 82.23 82.24 82.18 81.71

POW8 79.13 80.19 80.85 81.19 81.58 81.80 81.95 82.03 82.13 82.15 82.15 82.15 82.15 81.50

POW7 79.02 80.13 80.82 81.20 81.54 81.77 81.92 82.02 82.11 82.13 82.15 82.15 82.15 81.47

CDM 79.20 80.21 80.77 81.25 81.52 81.73 81.89 82.04 82.05 82.09 82.05 82.12 82.16 81.47

CDM-L 79.66 80.52 81.01 81.35 81.62 81.84 81.97 82.09 82.12 82.12 82.12 82.13 82.14 81.59

KNN1 79.76 80.68 81.29 81.61 81.91 82.07 82.21 82.31 82.35 82.36 82.36 82.29 82.29 81.81

KNN5 80.30 81.20 81.67 82.02 82.17 82.32 82.46 82.43 82.44 82.49 82.46 82.37 82.35 82.05

KNN5-L 80.41 81.27 81.81 82.04 82.29 82.38 82.50 82.48 82.49 82.46 82.41 82.40 82.33 82.10

KNN5-F10 80.56 81.37 81.82 82.09 82.26 82.35 82.49 82.47 82.48 82.47 82.44 82.40 82.35 82.12
KNN5-F5 80.57 81.34 81.81 82.11 82.26 82.33 82.47 82.47 82.48 82.50 82.43 82.38 82.34 82.11

KNN5-F1 80.57 81.35 81.80 82.10 82.27 82.34 82.48 82.46 82.48 82.49 82.44 82.40 82.33 82.12
KNN10 80.31 81.12 81.62 81.95 82.15 82.29 82.42 82.41 82.46 82.45 82.38 82.34 82.35 82.02
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In dimensionality reduction for Chinese handwriting recognition,
the ordinary FDA suffers from the class separation problem that it
will merge the similar character pairs that are close to each other
in the original feature space. Therefore, the weighted Fisher
criteria (WFC) are necessary and important to improve the
performance for large category dimensionality reduction.

4.2. Classifiers

Two efficient and effective large-category classifiers are used
for our evaluations.2 The first classifier, denoted as nearest class
mean (NCM), is based on the Euclidean distance

xAarg min
C

i ¼ 1
fd1ðx,iÞ ¼ Jx�miJ

2
2g: ð26Þ

The second classifier is the quadratic discriminant function (QDF)
derived from the Bayes decision theory under the assumption of
Gaussian class-conditional distribution

xAarg min
C

i ¼ 1
fd2ðx,iÞ ¼ ðx�miÞ

>S�1
i ðx�miÞþ log9Si9g, ð27Þ

where miARd is the mean vector and SiARd�d is the covariance
matrix of class i. To efficiently compute S�1

i in d2ðx,iÞ, we use the
modified quadratic discriminant function (MQDF) [20] which is
the state-of-the-art classifier in Chinese handwriting recognition.
The MQDF replaces the small eigenvalues of Si with a constant, so
that only the principal eigenvectors are needed in computing the
quadratic distance, and improved classification performance is
obtained. The MQDF uses d3ðx,iÞ to replace d2ðx,iÞ, where

d3ðx,iÞ ¼
Xk

j ¼ 1

1

lij
½ðx�miÞ

>fij�
2þ

1

di
Jx�miJ

2
�
Xk

j ¼ 1

½ðx�miÞ
>fij�

2

8<:
9=;

þ
Xk

j ¼ 1

log lijþðd�kÞlog di, ð28Þ

where lijARþ and fijARd, j¼1,y,d, are respectively the eigen-
values (sorted in non-ascending order) and their corresponding
2 Other classifiers such as the nearest neighbor (NN) classifier and support

vector machines (SVM) are too expensive for large-category problems.
eigenvectors of Si, and k is the number of principal eigenvectors.
The minor eigenvalues li,kþ1 � � � li,d are replaced with a constant
di. We set di to be common for all the classes and selected its
value by cross validation on the training dataset. The number of
principal components used in MQDF was empirically set to be
k¼50 for all the methods in our experiments.

In the following sections, we use both NCM (26) and MQDF
(28) to evaluate the classification performance in the dimension-
ality reduced spaces of WFC. MQDF is a state-of-the-art classifier
in Chinese handwriting recognition over the past 25 years. MQDF
can give much higher classification accuracy than NCM. However,
for MQDF the memory requirement is much heavier and the
testing speed is much slower than NCM. For example, in 160-
dimensional space, the memory requirement is 117MB for MQDF
and 2.29MB for NCM, and the classification speed is 12.25 milli-
second/character for MQDF (speeded up via candidate selection
by NCM) and 1.85 millisecond/character for NCM. Therefore,
using NCM and MQDF for comparing different dimensionality
reduction models is a widely used strategy for Chinese hand-
writing recognition [15,42,30].

4.3. Experimental settings

The five weighting functions in three different weighting spaces
are compared according to the classification accuracy in the
reduced low-dimensional space from d¼512 to d0 ¼ 60,70, . . . ,180.

For the POW method, we test powers m¼ 3,4, . . . ,12 for
Eq. (22) and report the best performance on the test dataset.
For the CDM method in Eq. (23), we partition the training set
randomly into two subsets: using 3=4 for training the basic
classifier and 1/4 for estimating the confusion matrix. For the
KNN method in Eq. (24), we evaluate the performance by varying
k¼ 1,5,10. For the fractional-step dimensionality reduction (25),
we compare the performance with fractional step t¼ 1,5,10. The
algorithms were programmed in Cþþ and executed on a PC (CPU:
Intel Dual E8400 3.0 GHz, RAM: 2 GB).

4.4. Experimental results

The experimental results are shown in Table 3 for the NCM
classifier and Table 4 for the MQDF classifier. The ‘‘POW10, POW9,



Table 4
Classification accuracies (%) of different dimensionality reduction models with the MQDF classifier.

d0 60 70 80 90 100 110 120 130 140 150 160 170 180 Average

FDA 86.35 87.42 88.14 88.59 88.87 89.10 89.26 89.40 89.47 89.52 89.53 89.51 89.51 88.82

aPAC 86.33 87.42 88.13 88.61 88.87 89.10 89.26 89.36 89.46 89.50 89.49 89.48 89.50 88.81

aPAC-L 86.39 87.50 88.15 88.63 88.89 89.10 89.27 89.40 89.47 89.49 89.50 89.50 89.50 88.83

aPAC-F10 86.43 87.54 88.22 88.68 88.94 89.17 89.32 89.42 89.53 89.54 89.56 89.52 89.51 88.88

aPAC-F5 86.43 87.54 88.22 88.68 88.94 89.17 89.32 89.42 89.52 89.54 89.56 89.52 89.51 88.87

aPAC-F1 86.43 87.54 88.21 88.69 88.94 89.17 89.31 89.42 89.53 89.54 89.56 89.52 89.50 88.87

POW10 86.46 87.49 88.20 88.68 88.95 89.11 89.26 89.35 89.39 89.45 89.48 89.47 89.47 88.83

POW9 86.55 87.61 88.29 88.75 89.00 89.20 89.34 89.44 89.47 89.48 89.54 89.52 89.53 88.90

POW9-L 85.71 87.29 88.15 88.69 89.02 89.28 89.44 89.49 89.57 89.57 89.57 89.54 89.53 88.83

POW9-F10 87.04 87.92 88.52 88.93 89.18 89.37 89.51 89.57 89.61 89.58 89.59 89.60 89.59 89.08

POW9-F5 87.04 87.93 88.52 88.92 89.19 89.35 89.51 89.58 89.60 89.58 89.59 89.62 89.59 89.08

POW9-F1 87.05 87.95 88.56 88.93 89.20 89.36 89.51 89.58 89.62 89.58 89.59 89.62 89.58 89.09

POW8 86.53 87.59 88.26 88.72 88.98 89.19 89.31 89.43 89.48 89.53 89.52 89.54 89.53 88.89

POW7 86.46 87.53 88.24 88.70 88.93 89.17 89.32 89.40 89.50 89.52 89.53 89.53 89.49 88.87

CDM 86.81 87.83 88.45 88.86 89.14 89.33 89.40 89.48 89.51 89.54 89.52 89.53 89.49 88.99

CDM-L 87.10 87.96 88.55 88.93 89.15 89.34 89.40 89.47 89.53 89.54 89.52 89.49 89.47 89.03

KNN1 87.03 87.93 88.53 88.94 89.19 89.30 89.40 89.49 89.57 89.59 89.61 89.55 89.50 89.05

KNN5 87.50 88.35 88.85 89.24 89.43 89.59 89.66 89.73 89.73 89.76 89.73 89.71 89.71 89.31

KNN5-L 87.46 88.35 88.88 89.23 89.49 89.55 89.70 89.74 89.75 89.73 89.73 89.74 89.66 89.31

KNN5-F10 87.63 88.37 88.89 89.23 89.50 89.59 89.66 89.74 89.77 89.74 89.76 89.78 89.71 89.34
KNN5-F5 87.64 88.37 88.89 89.22 89.49 89.58 89.68 89.73 89.78 89.74 89.77 89.74 89.71 89.33

KNN5-F1 87.63 88.36 88.90 89.19 89.48 89.57 89.69 89.72 89.76 89.73 89.76 89.74 89.70 89.33

KNN10 87.55 88.32 88.84 89.17 89.46 89.55 89.65 89.71 89.70 89.71 89.70 89.68 89.68 89.29

3 In case of ties, average ranks are assigned, e.g. the ranks of

f80%,90%,70%,70%,60%g are f2,1,3:5,3:5,5g.
4 If we reject the null hypothesis, we may make a mistake with

probability 0.05.

X.-Y. Zhang, C.-L. Liu / Pattern Recognition 46 (2013) 2599–2611 2605
POW8, POW7’’ means the POW weighting function (22) with
m¼ 10,9,8,7, respectively. The ‘‘KNN1, KNN5, KNN10’’ means
KNN weighting function (24) with k¼ 1,5,10, respectively. For
different weighting spaces, we use ‘‘xxx’’ to denote the weighting
function in the original space, ‘‘xxx-L’’ to denote the low-
dimensional space, and ‘‘xxx-F10, xxx-F5, xxx-F1’’ to denote the
fractional spaces with fractional step t¼ 10,5,1 respectively. For
example, ‘‘KNN5-F10’’ means the KNN weighting function with
k¼5 in the fractional space with t¼10. We did not consider the
CDM weighting function in the fractional spaces, because in each
step CDM needs to train a classifier and estimate a confusion
matrix, which is very time-consuming when combined with
fractional steps.

Our experiments were conducted on the standard training and
testing sets of CASIA-HWDB1.1 database, and therefore our
results are not comparable with the results of the Chinese hand-
writing recognition competition in ICDAR2011 [29] where the
training data were open. To further improve the performance of
Chinese handwriting recognition, we can (i) enlarge the training
dataset [28], (ii) use discriminatively trained classifiers [26], (iii)
adopt some perturbation or distortion based method to produce
multiple new patterns for a testing pattern and then combine
multiple decisions to boost the accuracy [37], (iv) apply the
convolutional neural network to automatically learn the features
from the data [8], and also (v) adapt the classifier to the unique
handwriting style of a particular writer [49]. Because our purpose
is to evaluate different dimensionality reduction models, we did
not use these strategies to further improve the classification
accuracy.

From the results in Tables 3 and 4, we can see that the class
separation problem does occur in Chinese handwriting recogni-
tion. Compared with the baseline FDA model, the weighted Fisher
criteria (WFC) can improve the classification accuracies consis-
tently for all the reduced subspaces and for both the NCM and
MQDF classifiers. The improvement is significant especially when
the reduced dimensionality is low. For example, at a dimension of
60 for MQDF classifier, the accuracy is improved from 86.35% for
FDA to 87.64% for KNN5-F5. On the other hand, at a dimension of
180, the accuracy is only improved from 89.51% for FDA to 89.71%
for KNN5-F5. The reason is that, with the increase of dimension-
ality, the classification performance will become saturated, and
the differences of the performance between different dimension-
ality reduction models will become smaller (this can be verified
from the results in Tables 3 and 4). However, improvement of the
classification accuracy at low dimensional spaces is of practical
value, e.g., for embedding the classifiers into some handheld
devices (e.g. mobile phone and tablet computer) which requires
the memory requirement to be as low as possible and also the
computation speed to be as fast as possible (in such applications,
the dimensionality can be as low as 30). Besides the accuracies
shown in Tables 3 and 4, in the following we also make a fair and
meaningful comparison of their average ranks to show the
statistical significance of different models.
4.5. Statistical significance

Friedman test is a widely used statistical test for comparing
more than two algorithms over multiple evaluations [10]. Sup-
pose we have k algorithms evaluated for N times. Let ri

j be the
rank of the j-th algorithm in the i-th evaluation.3 The Friedman
test compares the average ranks of algorithms Rj ¼

1
N

PN
i ¼ 1 rj

i. The
null-hypothesis states that all the algorithms are equivalent, and
so, their ranks Rj,j¼ 1, . . . ,k should be equal. If the null hypothesis
is rejected at 0.05 significance level4, we can proceed with a post-
hoc test (the Nemenyi test) to find out which algorithms signifi-
cantly differ. Specifically, the performance of two algorithms are
significantly different if their average ranks differ by at least the
critical difference (CD) [10].

In Tables 3 and 4, we have a total of 23 models with 26
evaluations. Fig. 3 shows the CD diagram for the 23 models,
where the average rank of each compared model is marked along
the axis. The axis is turned so that the lowest (best) ranks are to
the right. Groups of models that are not significantly different are
connected with a thick line. The critical difference (CD¼ 6:802 at
0.05 significance level) is also shown above the axis. If the
difference of the average ranks of two models RA�RBZ6:802



CD

23 21 19 17 15 13 11 9 7 5 3 11

2.2692 KNN5-F10
2.6346 KNN5-F5
3.0962 KNN5-F1
3.3269 KNN5-L
4.0769 KNN5
5.5962 KNN10
8.6346 KNN1
8.7308 POW9-F1
9.2885 POW9-F5
9.6731 POW9-F10

12.3654 POW9-L
13.8654CDM-L
14.2885POW9
15.2115POW8
16.0769CDM
16.5962aPAC-F5
16.6731aPAC-F10
16.8269aPAC-F1
16.8846POW7
18.0192POW10
20.1538FDA
20.3654aPAC-L
21.3462aPAC

Fig. 3. The critical difference (CD) diagram of different methods.
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Fig. 5. Training times (seconds) for different weighting functions (d0 ¼ 160).
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(CD), we can conclude that model ‘‘B’’ significantly outperforms
model ‘‘A’’.

4.6. Comparison of five weighting functions

From the results in Tables 3 and 4, we can find that the best
result for the POW method is achieved when m¼9; for the KNN
method, k¼5 gives the best performance. From Fig. 3, we
calculate the differences of average ranks of the five weighting
functions as:

aPAC �!
1:1924

FDA �!
4:0769

CDM �!
1:7884

POW9 �!
10:2116

KNN5: ð29Þ

The models on the right side are better than the ones on the left.
We observe that the differences between aPAC and FDA, also
between CDM and POW9 are not significant. The CDM, POW9 and
KNN5 have significantly higher classification accuracies than FDA,
especially when the reduced dimensionality is low. For example,
when d0 ¼ 60 in Table 3, the accuracies are 78:80%, 79:20%,
79:23% and 80:30% for FDA, CDM, POW9 and KNN5, respectively.
Furthermore, the KNN5 weighting function significantly outper-
forms all the other models, because the differences of the average
ranks between KNN5 and the other models are much larger than
6.802. Compared with the baseline FDA model, KNN5 significantly
improves the classification accuracies as shown in Fig. 4.

4.7. Comparison of computational complexity

The computational cost of WFC based dimensionality reduc-
tion includes three parts5: (i) the computation of the weighting
matrix, (ii) the construction of the scatter matrix bSb in Eq. (15),
and (iii) the eigen-decomposition of bSb . The comparison of the
computation times of the five weighting functions are shown in
Fig. 5. The training time of CDM is based on the NCM classifier. For
the MQDF classifier, CDM will have even much longer training
time.

We find that FDA has the lowest running time. This is because
FDA uses a constant weighting function f ij ¼ 1,8i,j (no need to
compute the weighting matrix). Furthermore, the scatter matrix
of FDA can be computed efficiently as:

bSb ¼
XC

i,j ¼ 1

pipjð bmi� bmj Þð bmi� bmj Þ
>
¼ 2

XC

i ¼ 1

pið bmi�cm0 Þð bmi�cm0 Þ
>, ð30Þ
5 Because the whitening transformation is a common pre-processing step for

all the weighting functions, we omit the computation time of whitening here.
where cm0 ¼
PC

j ¼ 1 pj bmj . While for the other weighting functions,
the scatter matrix can only be computed in a pairwise manner:

bSb ¼
XC

i,j ¼ 1

f ijpipjð bmi� bmj Þð bmi� bmj Þ
>
¼
XC

i ¼ 1

XC

j ¼ iþ1

ðf ijþ f jiÞpipjð bmi� bmj Þð bmi� bmj Þ
>:

ð31Þ

This is extremely time-consuming when C is large. For example,
for the aPAC and POW9 methods in Fig. 5, the computation time
of the scatter matrix is nearly 75 times that of the other steps
combined. Therefore, for the weighted Fisher criteria (except
FDA), the locality (sparsity) of the weighting matrix is very
important for the reduction of the computation cost (as it
eliminates the need to calculate the terms in bSb when
f ijþ f ji ¼ 0). As discussed in Section 3.1.6, the weighting matrices
of CDM and KNN are very sparse (Table 2). Therefore, the
computation times of the scatter matrices for CDM and KNN are
significantly reduced as shown in Fig. 5. However, for the CDM
method, a very time-consuming process is the estimation of the
confusion matrix which needs to train a classifier and evaluate it
on a validation dataset. Considering the overall computation time,
with the exception of the baseline FDA model, the KNN method
has the lowest computational complexity due to the fast con-
struction and sparsity of the weighting matrix.
4.8. Comparison of three weighting spaces

From Fig. 3, we can find that: aPAC-L outperforms aPAC; CDM-
L outperforms CDM; POW9-L outperforms POW9; and KNN5-L
outperforms KNN5. This indicates that the weighting function in
the low-dimensional space can achieve better performance than
that in the original feature space. Take the CDM as an example,
when d0 ¼ 60, CDM-L improves the classification accuracy from
79:20% to 79:66% in Table 3 and from 86.81% to 87.10% in
Table 4. This is because the confusion matrix estimated in the
low-dimensional space is more relevant to the real confusion
information in the final reduced space.

The fractional-step spaces can further improve the classifica-
tion performance compared with the low-dimensional space.
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The average ranks (Fig. 3) are improved by:

aPAC �!
0:9808

aPAC�L �!
3:7692

aPAC�F5,

POW9 �!
1:9231

POW9�L �!
3:6346

POW9�F1,

KNN5 �!
0:7500

KNN5�L �!
1:0577

KNN5�F10: ð32Þ

Take the POW9 model as an example, the comparison of the
original space and fractional-step space is shown in Fig. 6. The
improvements are not significant compared with the improve-
ments caused by different weighting functions (29), however.

For different fractional steps, we can find that the performance
is ordered as:

aPAC�F1oaPAC�F10oaPAC�F5,

POW9�F10oPOW9�F5oPOW9�F1,

KNN5�F1oKNN5�F5oKNN5�F10: ð33Þ

This indicates that small fractional steps do not always result in
better classification performance.

We also compare the training times for different weighting
spaces in Fig. 7. We find that when the fractional step t decreases,
the computational complexity increases dramatically. Therefore,
in practice we should choose large fractional steps, considering
the minor improvements produced by fractional-step spaces and
the dramatically increased computation.
4.9. Space invariance analysis

In this section, we check the property of space invariance for
different weighting functions. Given a weighting matrix
F ¼ ff ijgARC�C , we define the normalization of F as bF :

bF ¼ bf ij ¼
f ijPC

i,j ¼ 1 f ij

( )
ARC�C : ð34Þ

This is to avoid the influence of scale change and will not affect
the WFC criterion (13). Then we define the difference between
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Fig. 7. Training times (seconds) for the KNN5 model in different weighting spaces

(d0 ¼ 160).
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POW9 and POW9-F1 with the NCM (left) and MQDF (right) classifiers.
two weighting matrices A and B as:

diff1¼
XC

i,j ¼ 1

9cAij�
cBij 9,

diff2¼
1

C2

XC

i,j ¼ 1

IðcAij acBij Þ, ð35Þ

where IðaabÞ ¼ 1 if aab and 0 otherwise. The ‘‘diff1’’ measures
the absolute error and ‘‘diff2’’ counts the number of different
elements in A and B.

We calculate the difference for the weighting functions
between the original space and final reduced space. The compar-
ison is shown in Table 5. The confusion matrix used by CDM is
classifier dependent, hence we show two results of CDM for the
classifiers NCM and MQDF respectively. The FDA weighting
matrix is absolutely space invariant. The aPAC model has low
absolute error (‘‘diff1’’) but the elements are mostly changed in
the original and final reduced space (‘‘diff2’’). Considering both
‘‘diff1’’ and ‘‘diff2’’, the KNN model is nearly space invariant, i.e.,
the KNN relationship in different spaces is nearly unchanged. This
explains why the fractional-step space achieves the lowest
improvements on KNN (32).

4.10. Similar character analysis

In this section, we compare the classification performance on
similar characters in the dimensionality reduced space. We define
the confusion probability (CP) of two classes A and B as:

CPA,B ¼
1

2

NA*B

NA
þ

NB*A

NB

� �
, ð36Þ

where NA is the number of samples in class A, and NA*B is the
number of samples of class A that are classified into class B. The
confusion probabilities of some similar characters in the reduced
spaces of FDA and KNN5 (d0 ¼ 60 with NCM classifier) are shown in
Fig. 8. We can find that: (1) for most similar characters, the
confusion probabilities of KNN5 are significantly lower than that
of FDA; (2) however, for some particular similar characters, the
confusion probabilities of KNN5 are higher than that of FDA. On the
testing data of CASIA-HWDB1.1, there are totally 8279 class pairs
with confusion probabilities higher than 0.01 (for either FDA or
Table 5
Differences of weighting functions between original (d¼512) and final reduced

spaces (d0 ¼ 160).

diff1 diff2

FDA 0.0000 0.0000

aPAC 0.0286 0.9997

POW9 0.5201 0.3845

CDM (NCM) 0.7283 0.0028

CDM (MQDF) 1.0106 0.0022

KNN5 0.2585 0.0003

Fig. 8. Confusion probabilities of some similar characters for FDA and KNN5.
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KNN5). Among the 8279 class pairs, KNN5 outperforms FDA on
3755 class pairs, FDA outperforms KNN5 on 2650 class pairs, and for
the remaining class pairs FDA and KNN5 have the same perfor-
mance. These results confirm the advantages of KNN5 in improving
the overall classification performance for similar characters.
5. Extension of weighted Fisher criteria from class level to
sample level

The weighted Fisher criteria (WFC) only use the mean vector and
covariance matrix of each class, i.e., consider the weighted scatter
matrix at class level as Eq. (15). Therefore, WFC can be viewed as a
parametric feature extraction method [12]. Nonparametric discri-
minant analysis (NDA) methods [13,22] extend the scatter matrix to
the sample level, wherein different samples can be weighted appro-
priately in the scatter matrix according to their nearness to the
decision boundaries in the flavor of decision boundary based feature
extraction [23]. Considering that weighting at the sample level
exploits more discriminative information than weighting at the
class level, we also extend WFC to the sample level.
6 In [15], the evaluations were not conducted on the standard training and

testing partition of CASIA-HWDB1.1 [1], and the accuracies in [15] are much lower

than our results.
5.1. SKNN: Sample level KNN method

Because the KNN weighting function performs best in the
previous evaluations, we extend the KNN method to the sample
level. Given a training dataset fxi,yig

N
i ¼ 1 where xiARd and

yiAf1, . . . ,Cg. The whitening transformation Wwhiten is defined in
(7), and the whitened class mean bmi is defined in (16). The between-
class scatter matrix is now extended to the sample level as:

~Sb ¼
XN

i ¼ 1

XC

j ¼ 1

f ijðbxi� bmj Þðbxi� bmj Þ
>, ð37Þ

where bxi ¼W>
whitenxi. The sample level weighting function

F ¼ ff ijgARN�C is now defined as:

f ij ¼
1, if bmj AKNNðbxi ,yiÞ

0, otherwise

(
ð38Þ

where KNNðbxi ,yiÞ denotes the k nearest neighbors of bxi in
fcm1 ,cm2 , . . . , dmyi�1 , dmyiþ1 , . . . ,cmC g. The scatter matrix ~Sb is based on
the sample level KNN method, therefore we call this method SKNN.
Denote the columns of WSKNNARd�d0 to be the d0 eigenvectors
corresponding to the d0 largest eigenvalues of ~Sb , the final dimen-
sionality reduction matrix is: W final ¼WwhitenWSKNNARd�d0 .

SKNN is a nonparametric extension of the KNN method to the
sample level. Different samples can have different nearest neigh-
bors of class means, and therefore SKNN can capture much more
information about the decision boundary. SKNN can overcome the
class separation problem because each sample is only connected
to its k nearest neighbors. SKNN can also alleviate the hetero-
scedastic problem, since ~Sb is computed from all the samples
other than the class means. By computing the between-class
scatter matrix only from the class means as in parametric WFC
(15), the covariance matrices of each class are only used in
whitening (i.e. Sw) which is based on the homoscedastic assump-
tion. Contrarily, by computing the between-class scatter matrix
from all the samples in SKNN, the information of the covariance
matrices can be implicitly captured in the second step of eigen-
decomposition of ~Sb . Furthermore, SKNN can partially solve the
multi-modal distribution problem, because each class is described
not only by its class mean but also the entire training sample set
of this class. In summary, SKNN can capture much more informa-
tion of the decision boundary, solve the class separation problem,
and also alleviate the heteroscedastic and multi-modal problems.
Therefore, SKNN is expected to achieve much better performance
than the other models.

In the next sections, we compare the performance of SKNN
with other methods which have shown high performance for
Chinese handwriting recognition in the recent literature.

5.2. Other dimensionality reduction methods for Chinese

handwriting recognition

The locally linear discriminant analysis (LLDA) recently pro-
posed by Gao et al. [15] uses three strategies to improve the
classification performance: (1) partition each class into several
clusters; (2) find the nearest neighboring clusters from the
remaining classes for each cluster of one class, and use the
corresponding cluster means to compute the between-class
scatter matrix; and (3) apply feature vector normalization to
further improve the performance. The LLDA can solve the class
separation problem and also the multi-modal sample distribution
problem, and hence has shown better performance than the
traditional FDA in Chinese handwriting recognition [15].

The neighbor class linear discriminant analysis (NCLDA) was
recently proposed by Wang et al. [42] to solve the class separation
problem. NCLDA re-defines the between-class scatter matrix as
Sb ¼

PC
i ¼ 1 pið bmi�

1
k

Pk
j ¼ 1 cmij Þð bmi�

1
k

Pk
j ¼ 1 cmij Þ

>, where cmij is the j-th
nearest neighbor of bmi from the remaining classes. When k¼C,
NCLDA is equivalent to the traditional FDA. By setting a small
value of k, NCLDA can solve the class separation problem. NCLDA
is very similar to the KNN based weighted Fisher criterion. The
difference lies in that: the KNN based weighted Fisher criterion
maximizes the distance between each class and each of its nearest
neighbors; while the NCLDA maximizes the distance between
each class and the mean of its nearest neighbors. Utilizing the
mean of the nearest neighbors may lose some important dis-
criminative information. For example, consider three classes
located at A: ð�1,0Þ, B: ð0,0Þ, and C: ð1,0Þ. Maximizing the
distances of dðB,CÞþdðB,AÞ will find the x-axis as the projection
direction. Contrarily, maximizing the distance of dðB,0:5ðAþCÞÞ

cannot produce any meaningful results. Therefore, the KNN based
weighted Fisher criterion should be more robust than NCLDA
theoretically.

Another limitation of FDA is the heteroscedastic problem, i.e.,
the covariance matrices are not the same for different classes,
which breaks the homoscedastic assumption of FDA. Loog and
Duin [31] proposed a heteroscedastic extension of FDA based on
the Chernoff criterion. However, for large category problems, the
pairwise-class calculation scheme used in the Chernoff criterion is
computationally formidable. To solve this problem, Liu and Ding
[30] proposed a heteroscedastic linear discriminant analysis
(HLDA) scheme using the Mahalanobis criterion to replace the
Chernoff criterion. This HLDA was shown to be more efficient
than the Chernoff criterion and computationally feasible for large
category problems, and has achieved promising performance in
Chinese handwriting recognition.

5.3. Performance evaluation

In this section, we compare the performance of LLDA, NCLDA,
HLDA with KNN based weighted Fisher criterion and the sample
level extension of KNN (SKNN) on the CASIA-HWDB1.1 dataset [1]
(see Section 4.1). For LLDA, we used the same parameter settings
(the numbers of clusters and neighbors) reported by [15].6 For



Fig. 9. Comparison of the classification accuracies (%) in different reduced spaces for FDA, LLDA, NCLDA, HLDA, KNN, and SKNN with the NCM (left) and MQDF (right)

classifiers.

Fig. 10. Training times (seconds) for FDA, LLDA, NCLDA, HLDA, KNN, and SKNN

(d0 ¼ 160).
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NCLDA, KNN, and SKNN, the number of nearest neighbors was set
to be 5 for fair comparison.

The experimental results are shown in Fig. 9. From these
results we can find that: (1) All the methods (LLDA, NCLDA,
HLDA, KNN, and SKNN) can improve the classification accuracy
compared with the traditional FDA. This is because FDA has the
limitations of class separation problem and homoscedastic
assumption. (2) KNN outperforms NCLDA for both NCM and
MQDF classifiers. This indicates that maximizing the sum of the
distances between each class and its nearest neighbor classes is
more promising than maximizing the distance between each
class and the mean of its nearest neighbor classes. (3) LLDA
achieves good performance for MQDF but low performance for
NCM. This identifies that partitioning each class into multiple
clusters is useful for MQDF to capture the distributions of
different classes. However, this strategy does not work for the
nearest class mean (NCM) classifier which only uses one proto-
type (class mean) for each class. (4) HLDA achieves good perfor-
mance for NCM but low performance for MQDF. This is because
the NCM assumes Gaussian distribution with identity covariance
matrices for each class. HLDA exploits the heteroscedastic
information, and thus can improve the accuracy significantly for
NCM. However, for the MQDF classifier, the differences of covar-
iance matrices has already been taken into consideration, and in
this case the main remaining issue is the class separation
problem. Therefore, HLDA does not bring much gain to the MQDF
classifier. (5) SKNN achieves the best performance for both the
NCM and MQDF classifiers on all the reduced subspaces consis-
tently. SKNN also outperforms the KNN method significantly. This
demonstrates that the between-class scatter matrix calculated at
sample level can capture much more discriminative information
and is therefore much more accurate and robust than other
approaches.

We also compare the training complexities of different models
in Fig. 10. We can find that: (1) FDA, KNN, and NCLDA have lower
training complexities, because they only use the class-wise means
to calculate the between-class scatter matrix. (2) LLDA has
moderate training complexity as it partitions each class into
multiple clusters. (3) HLDA has the highest training complexity,
because in the computation of the between-class scatter matrix,
the inverse matrix operation is required for each class. (4) SKNN
also has a high training complexity, because the complexity of
sample level nearest neighbor searching is linearly dependent on
the number of training samples, the number of classes and the
number of original dimensionality. Considering the significant
accuracy improvement brought by SKNN, the increased training
complexity is worthwhile.

All the results reported here can be exactly repeated with the
feature data released at [1], and we hope this can be used as a
benchmark for comparing different dimensionality reduction
methods on large category problems.
6. Conclusion

In this paper, we investigate the weighted Fisher criteria (WFC)
for solving the class separation problem in large category dimen-
sionality reduction. The objective of WFC is to maximize the sum of
weighted pairwise distances. By setting larger weights for the most
confusable class pairs, WFC can improve the class separability in the
reduced space. We evaluated five weighting functions (FDA, aPAC,
POW, CDM and KNN) in three different weighting spaces (original
space, low-dimensional space and fractional space) on a large
scale 3,755-class Chinese handwriting dataset. The KNN weighting
function achieves significantly better classification performance
than the other weighting functions. Due to the sparsity and fast
construction of the weighting matrix, the KNN method also has the
lowest training complexity against the other weighting functions
(except FDA). Different weighting spaces can improve the perfor-
mance slightly with the cost of dramatically longer running time. It
is also revealed that the KNN weighting matrix (KNN relationship
between different classes) is nearly space invariant. Therefore, in
practice, the KNN weighting function in the original space is the
most efficient and effective model for large category dimensionality
reduction.

We also extend the KNN based weighted Fisher criterion from
class level to sample level. The sample level KNN (SKNN) is a
nonparametric method which can capture much more informa-
tion about the decision boundary, solve the class separation
problem, and also alleviate the heteroscedastic and multi-modal
problems. Experimental results identify that SKNN can outper-
form the locally linear discriminant analysis (LLDA) (proposed for
solving class separation and multi-modal problems), neighbor
class linear discriminant analysis (NCLDA) (proposed for solving
class separation problem), and heteroscedastic linear discrimi-
nant analysis (HLDA) (proposed for solving heteroscedastic pro-
blem) for Chinese handwriting recognition.
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