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Recently, the Institute of Automation of Chinese Academy of Sciences (CASIA) released the uncon-
strained online and offline Chinese handwriting databases CASIA-OLHWDB and CASIA-HWDB, which
contain isolated character samples and handwritten texts produced by 1020 writers. This paper
presents our benchmarking results using state-of-the-art methods on the isolated character datasets
OLHWDB1.0 and HWDB1.0 (called DB1.0 in general), OLHWDB1.1 and HWDB1.1 (called DB1.1 in
general). The DB1.1 covers 3755 Chinese character classes as in the level-1 set of GB2312-80. The
evaluated methods include 1D and pseudo 2D normalization methods, gradient direction feature
extraction from binary images and from gray-scale images, online stroke direction feature extraction
from pen-down trajectory and from pen lifts, classification using the modified quadratic discriminant
function (MQDF), discriminative feature extraction (DFE), and discriminative learning quadratic
discriminant function (DLQDF). Our experiments reported the highest test accuracies 89.55% and
93.22% on the HWDBI1.1 (offline) and OLHWDB1.1 (online), respectively, when using the MQDF
classifier trained with DB1.1. When training with both the DB1.0 and DB1.1, the test accuracies on
HWDB1.1 and OLHWDB are improved to 90.71% and 93.95%, respectively. Using DFE and DLQDF, the
best results on HWDB1.1 and OLHWDBI1.1 are 92.08% and 94.85%, respectively. Our results are
comparable to the best results of the ICDAR2011 Chinese Handwriting Recognition Competition
though we used less training samples.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Handwritten Chinese character recognition, including online
(stroke trajectory-based) and offline (image-based) recognition, have
received intensive attention since the early works in 1960s and
1970s. Particularly, there have been a boom of research from the
1980s owing to the popularity of personal computers and handy
devices for data acquisition (laser scanners, writing tablets and PDAs)
[1,2]. Successful applications have been found in document digitiza-
tion and retrieval, postal mail sorting, bankcheck processing, form
processing, pen-based text input, and so on [3].

Despite the tremendous advances and successful applications,
there still remain big challenges, particularly, the recognition of
unconstrained handwriting, including isolated characters and
continuous scripts (handwritten texts). Handwritten Chinese
character recognition has reported accuracies of over 98% on
sample datasets of constrained handwriting, but the accuracy on
unconstrained handwriting is much lower [4]. Continuous hand-
written script recognition is even more difficult because of the
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ambiguity of character segmentation. The results of the recent
Chinese handwriting recognition competition reveal the challenge
of both isolated character recognition and handwritten text
recognition [5].

To support academic research and benchmarking, the National
Laboratory of Pattern Recognition (NLPR), Institute of Automation
of Chinese Academy of Sciences (CASIA), has built new databases
of unconstrained Chinese handwriting. The handwritten data was
produced using Anoto pen on paper such that both online and
offline data were obtained concurrently. The samples include
both isolated handwritten characters and continuous scripts. The
online handwriting database CASIA-OLHWDB (OLHWDB in brief)
and the offline database CASIA-HWDB (HWDB in brief), produced
by 1020 writers, were released recently for free use in academic
research [6]. Either the OLHWDB or the HWDB contain about
3.9 million isolated character samples and about 5090 hand-
written text pages containing 1.35 million characters. The isolated
character samples are divided into three datasets DB1.0-1.2, and
the handwritten texts are divided into three datasets DB2.0-2.2
(with corresponding writers of DB1.0-1.2). The isolated samples
involve 7356 character classes, including 7185 Chinese characters
and 171 alphanumerics and symbols. The Chinese characters in
DB1.1 (produced by 300 writers) fall in 3755 classes as in the
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level-1 set of GB2312-80 (called GB1 in brief), which was often
taken as a standard set of Chinese character recognition research.
The DB1.0 (produced by 420 writers) involves 3866 frequently
Chinese characters, with 3740 classes overlapping with the GB1
set. It is recommended to add the samples of DB1.0 to DB1.1 for
enhancing the training dataset.

The databases CASIA-OLHWDB and CASIA-HWDB have been
used for training in the competitions organized at 2010 Chinese
Conference on Pattern Recognition (CCPR 2010) [7] and 11th
International Conference on Document Analysis and Recognition
(ICDAR 2011) [5]. The results of competition show improvements
over time, and involve many different recognition methods.
However, there is still a strong need of standard benchmark
because the participating systems of competitions used different
training datasets though reference datasets were recommended.
Thus, this study provides a benchmark of online and offline
handwritten Chinese character recognition on the new standard
datasets. We only consider isolated handwritten Chinese char-
acter recognition in this study since it is still an un-solved
problem, while the handwritten text recognition will be consid-
ered in-depth in other works.

As done in many previous works, we evaluate the recognition
of the 3755 classes of the level-1 set of GB2312-80, as in the
DB1.1 of CASIA-OLHWDB and CASIA-HWDB. We implement
recognition systems using state-of-the-art methods of character
normalization, feature extraction and classification. Specifically,
we use 1D and pseudo 2D normalization methods [8], gradient
direction feature extraction from binary images and from gray-
scale images [9,10], online stroke direction feature extraction
from pen-down trajectory and from pen lifts [11,12], classification
using the modified quadratic discriminant function (MQDF) [13],
nearest prototype classifier [14], discriminative feature extraction
(DFE) [15], and discriminative learning quadratic discriminant
function (DLQDF) [16]. We first compare normalization and
feature extraction methods on the standard dataset DB1.1, then
compare different classification methods using the combined
training dataset of DB1.0 and DB1.1. The reported results provide
some guidelines of methods selection, and serve as a baseline for
evaluating the further works.

In the rest of this paper, we briefly introduce the datasets in
Section 2, outline the recognition methods in Section 3, present
and discuss the experimental results in Section 4, and give a
conclusion in Section 5.

2. Datasets

Many databases of handwritten Chinese and Japanese char-
acters have been released but only the very recent ones are aimed
for unconstrained handwriting.

The handwritten Japanese character database ETL9B contains
200 samples for each of 3036 classes (including 2965 Kanji
characters). Reported accuracies on this database are mostly over
99%. A larger Japanese character database JEITA-HP contains 580
samples for each of 3214 characters, and high accuracies of over
98% have been reported [8]. In 2000, Beijing University of Posts
and Telecommunications released a large database called
HCL2000, which contains 1000 samples for each of 3755 char-
acters [17]. This database is not challenging either, because high
accuracies over 98% can be obtained [18].

For online character recognition, Tokyo University of Agricul-
ture and Technology (TUAT) released two large databases called
Kuchibue and Nakayosi [19], containing samples written in boxes
but in sequences of sentences, produced by 120 writers and 163
writers, respectively. The recognition of Kanji characters in these
databases is not challenging, however (see the results in [11]).

Table 1
Specifications of the isolated character datasets.

Dataset Total GB1

# writer # class # sample # class # sample Training Test

OLHWDB1.0 420 4037
HWDB1.0 420 4037
OLHWDB1.1 300 3926
HWDB1.1 300 3926

1,694,741 3740
1,680,258 3740
1,174,364 3755
1,172,907 3755

1,570,051 1,256,009 314,042
1,556,675 1,246,991 309,684
1,123,132 898,573 224,559
1,121,749 897,758 223,991

The South China University of Technology (SCUT) released a
comprehensive online Chinese handwriting database SCUT-
COUCH2009 [20]. It consists of 11 datasets of isolated characters
(Chinese simplified and traditional, English letters, digits and
symbols), Chinese Pinyin and words. The dataset GB1 contains
188 samples for each of 3755 classes (level-1 set of GB2312-80
standard), produced by 188 writers. A state-of-the-art recognizer
achieves 95.27% accuracy on it [20].

The new databases CASIA-OLHWDB and CASIA-HWDB (details
can be found in [6]) have some outstanding features compared to
the previous ones: unconstrained writing, concurrent online and
offline data, combination of isolated samples and continuous
scripts, deep annotation of script data, large category set, large
number of writers and samples. For the research of isolated
character recognition, we recommend to use the datasets
OLHWDBI1.1 and HWDB1.1 (called DB1.1 in general), OLHWDB1.0
and HWDB1.0 (called DB1.0 in general). The Chinese characters in
DB1.1 fall in the 3755 classes of the standard level-1 set of
GB2312-80 (GB1 set), while the DB1.0 has 3740 classes over-
lapping with the GB1 set.

The online datasets provide the sequences of coordinates of
strokes. The offline datasets provide gray-scaled images with
background pixels labeled as 255. So, it is easy to convert the
gray-scale images to binary images by simply labeling all the
foreground pixels as 1 and background pixels as 0. Nevertheless,
to exploit the gray level information is generally beneficial. The
four datasets, online and offline DB1.0 and DB1.1, which are used
in our experiments, are summarized in Table 1. The datasets
OLHWDB1.0 and HWDB1.0 are partitioned into training set of 336
writers and test set of 84 writers. The datasets OLHWDB1.1 and
HWDB1.1 are partitioned into training set of 240 writers and test
set of 60 writers. The training set and the test set are disjoint and
produced by totally different writers.

Fig. 1 shows some samples of online and offline data produced
by the same writer.

3. Recognition methods

A character recognition system generally consists of three
major components: character normalization, feature extraction,
and classification. Usually, the classification method does not
differ for online or offline recognition, but the normalization and
feature extraction methods depend on the type of input data. In
the following, we outline the normalization and feature extrac-
tion methods for offline recognition and for online recognition
separately, and then give the classification methods.

3.1. Normalization and feature extraction for offline samples

We evaluate recognition performance on both binary images
and gray-scale images. For gray-scale images, the gray levels are
reversed: background as 0 and foreground in [0,254], and fore-
ground gray levels are normalized to a specified range for
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overcoming the gray scale variation among different images [21].
We consider two types of gray level normalization: linear and
nonlinear. Linear normalization, as used in [21], re-scales the
mean and standard deviation (s.d.) of foreground gray levels of
the original image to specified values. Denote the mean and s.d. of
original image as m and g, respectively, which are transformed to
standard values mg and ag, respectively, the original pixel gray
level g is transformed to g’ by
g =@-m- 2 +m. (M)

The linear gray level normalization has a shortage that it does
not map the original gray level 0 to normalized gray level O,
though we can artificially bound the gray levels in [0,255].
Consider that the gray level mostly lies in [m—20,m+2ad], the
linear normalization maps it to [mg—209,mg+209]. To get a
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Fig. 1. Online (a) and offline (b) character samples of the same writer.
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smooth nonlinear gray level mapping, we use a nonlinear func-
tion
g =oug’ @

that maps three values {0,m,m+20} to normalized values
{0,mg,mg+20,}. The constraints give parameters
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gm0+200
p= lim
Ogm+2<7
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Fig. 2 shows the curves of linear and nonlinear gray level
mapping. We can see that when the gray level variance is big
(Fig. 2(a)), the nonlinear mapping tends to enlarge the contrast of
foreground pixels with gray level g <m; when the gray level
variance is small (Fig. 2(b)), the nonlinear mapping tends to
moderate the contrast of foreground pixels with gray level
g <m. The case of Fig. 2(a) occurs often in Chinese character
images when there are many strokes and the between-stroke gap
is blurred and fail to be separated by binarization. Fig. 3 shows
some character images where nonlinear gray level normalization
gives better contrast for between-stroke gaps.

We can normalize both binary and gray-scale character images
using seven methods: linear normalization (LN), nonlinear normal-
ization (NLN) based on line density equalization [22], moment
normalization (MN), bi-moment normalization (BMN) [23], pseudo
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Fig. 3. Left: original image; middle: linear gray level normalization; right: non-
linear gray level normalization. The gray level of original image is reversed before

normalization, and the gray level normalized images are reversed again for
display.
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Fig. 2. Linear (thick line) and nonlinear (thin line) gray level normalization.
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Fig. 4. Examples of character normalization. From left to right: input (gray level
normalized), LN, NLN, MN, BMN, P2DMN, P2DBMN, and LDPI.
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2D moment normalization (P2DMN), pseudo 2D bi-moment normal-
ization (P2DBMN) and line density projection interpolation (LDPI) [8].
The details of all these methods can be found in [8]. For normalizing
gray-scale images, the foreground pixel gray values are directly used
in computing the horizontal/vertical projections in MN, BMN, P2DMN
and P2DBMN. For the methods LN, NLN and LDPI, the character
boundary and line density functions are calculated from the binary
image while the gray values are transferred to the normalized image
after the pixel coordinate mapping functions are obtained from the
boundary and line density functions. Fig. 4 shows some examples of
gray-scale character image normalization using the seven methods.

For binary images, three feature extraction methods are evalu-
ated: normalization-cooperated contour feature (NCCF) [9], normal-
ization-based gradient feature (NBGF) and normalization-coope-
rated gradient feature (NCGF) [10]. In either case, contour/gradient
elements are decomposed into 8 directions and each direction is
extracted 8 x 8 values by Gaussian blurring, and so, the feature
dimensionality is 512. A contour element is a contour pixel in one of
eight chaincode directions. The gradient is computed by the Sobel
operator and its direction is decomposed into its two adjacent
standard chaincode directions by the parallelogram rule. The NCCF
is implemented based on the improved method of [9], called
continuous NCFE. By NCCF or NCGF, the normalized character image
is not generated, but instead, the contour/gradient elements of the
original image are directly mapped to direction maps incorporating
pixel coordinates transformation. By NBGF, the features are
extracted from the normalized image. The details of the three
feature extraction methods can be found in [9,10].

For gray-scale images, the contour feature extraction method
NCCF is not available, but the gradient feature extraction methods
NBGF and NCGF are directly applicable.

3.2. Normalization and feature extraction for online samples

From online character samples (sequences of stroke coordi-
nates), we extract two types of direction features: histograms of
original stroke direction and normalized direction [11]. In either
case, the features are extracted from the original pattern incor-
porating coordinate transformation without generating the normal-
ized pattern. The coordinate normalization methods include linear
normalization (LN), moment normalization (MN), bi-moment nor-
malization (BMN), pseudo 2D moment normalization (P2DMN) and
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pseudo 2D bi-moment normalization (P2DBMN). The line density
based normalization methods in offline character recognition, NLN
and LDPI, are not applicable to online trajectory because the line
density needs to be calculated on raster image. In feature extraction,
the local stroke direction (of the line segment formed by two
adjacent points) is decomposed into eight directions and from the
feature map of each direction, 8 x 8 values are extracted by Gaussian
blurring. So, the dimensionality of feature vectors is 512. The details
of the normalization and direction feature extraction methods can
be found in [11].

We also implemented the direction feature of imaginary
strokes (pen lifts or called off-strokes) [12]. To minimize the
computation overhead, we simply add the direction values of
imaginary strokes to the direction histograms of real strokes with
a weight of 0.5 to get enhanced direction features. So, the
resulting feature vector dimensionality remains 512.

3.3. Classification methods

We evaluate recognition accuracies using four types of classi-
fiers: modified quadratic discriminant function (MQDF) [13],
nearest prototype classifier (NPC) [14], NPC with discriminative
feature extraction (DFE) [15], and discriminative quadratic dis-
criminant function (DLQDF) [16]. Before classification, the feature
vector is reduced to a low-dimensional subspace learned by
Fisher discriminant analysis (FDA). Before dimensionality reduc-
tion, every feature is transformed by variable transformation
y=x05, also known as Box-Cox transformation [24].

The MQDF is a modification of the multivariate Gaussian-
based QDF by regulating the minor eigenvalues of each class to a
constant, such that the discriminant function can be calculated
from the principal eigenvalues and their corresponding eigenvec-
tors only, and the regulation of minor eigenvalues benefits the
generalization performance. Denote the d-dimensional feature
vector (after dimensionality reduction) by X, the MQDF of class
w; (i=1, ..., M) is computed by

k

1
EX)= Y (1) ¢y

j=171

1 k
+ 5 { llx— 111 — > Ix—p) py }

j=1
k
+ Y _ log 4j+(d—k) log &; 4)
j=1
where ; is the mean vector of class w;, 4; and ¢y, j=1, ..., d, are

the eigenvalues (sorted in nonascending order) and their corre-
sponding eigenvectors of the covariance matrix of class w;. k
denotes the number of principal eigenvectors, and the minor
eigenvalues are replaced with a constant J;.

The nearest prototype classifier has lower runtime computation
cost than the MQDF when using few prototypes per class. There are
many algorithms for prototype learning, including clustering, learning
vector quantization (LVQ) [25] and many generalized discriminative
learning methods. We use a recent learning algorithm which opti-
mizes the log-likelihood of hypothesis margin (LOGM) [14]. The
LOGM is a modification of the minimum classification error (MCE)
criterion [26] for improving the training convergence and general-
ization performance. The DFE is a discriminative subspace learning
method, mostly combined with prototype learning: the subspace
(initially learned by FDA) is optimized jointly with the prototypes by
stochastic gradient descent, usually under the MCE criterion [15]. In
our implementation of DFE, we use the LOGM criterion to replace the
MCE criterion.
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The DLQDF is a discriminative version of MQDF, with the para-
meters (class means, eigenvectors and eigenvalues) optimized by
stochastic gradient descent under the MCE objective. We also use the
LOGM criterion to replace the MCE in learning the DLQDF. Either the
MQDF or the DLQDF can be used in the feature subspace learned by
DFE, i.e., learning the subspace jointly with the NPC and then applying
the learned subspace to MQDF and DLQDF [27].

In our implementation of MQDF, we use a unified minor eigen-
value 9; = Jg for all classes and optimize this parameter by 5-fold
holdout cross validation on training data. Particularly, we set do as
(B/Md) Z?"zl Zf:1 /4 with B selected from [0, 1]. For selecting the
value of 3, we use 4/5 of training data for training classifier with
different values of  and using the remaining 1/5 of training data for
validation, and on selecting the best f value, re-train the classifier
using the whole training data. For accelerating MQDF classification,
we first select 200 top rank classes according to the Euclidean
distance to class means, and then compare the MQDF values of 200
classes only. This causes little loss of accuracy for MQDF because the
accumulated accuracy of 200 candidate classes is mostly over 99.40%
on our datasets. In training the DLQDF, we use the parameters of
MQDEF as initial values.

Besides the DLQDF, there are some alternative improved
versions of MQDF proposed in recent years, including the MQDF
with pairwise discrimination [28,29], compact MQDF with sub-
space parameter compression [30], compressed and discrimina-
tively trained Gaussian model [31], and MQDF estimated from re-
weighted samples [32]. All these methods effect in improving the
classification accuracy of MQDF or reducing the storage and
computation complexity. We did not endeavor to implement
these methods in our experiments because the DLQDF is already
effective to achieve high accuracies. Other classifiers that have
shown superiority in many areas, such as the support vector
machine (SVM) and the Gaussian process classifier, are not
suitable for Chinese character recognition because of their extre-
mely high complexity on large category problems.

4. Recognition results

We first evaluated the recognition methods on standard
datasets HWDB1.1 and OLHWDB1.1. On selecting the best nor-
malization and feature extraction methods, we then trained
classifiers using the merged training data of DB1.0 and DB1.1.

As shown in Table 1, the offline dataset HWDB1.1 has 897,758
training samples and 223,991 test samples of GB1 character set
(3755 classes). The online dataset OLHWDB1.1 has 898,573
training samples and 224,559 test samples of GB1 character set.

In all the experiments, we fixed the feature subspace dimen-
sionality as 160. Our experience shows that increasing the sub-
space dimensionality from 160 leads to slight improvement of
recognition accuracy but increases the computational complexity
evidently.

4.1. Offline recognition results on HWDBI1.1

First, to justify the benefits of nonlinear gray level normalization
introduced in Section 3.1, we conducted an experiment to compare
the recognition performance of linear and nonlinear gray level
normalization, using a standard feature extraction method NCGF
combined with character normalization method NLN, classification
by MQDF and Euclidean distance classifiers with dimensionality
reduction by FDA. We tested some tentative values of standard mean
mp and deviation o of foreground gray level which approximately
meet mg+209 <255 and mg—2ao > 50 such that after gray level
normalization, the contrast among foreground pixels and the one
between foreground and background are both sufficient. Using the

training samples of HWDB1.1 for training the classifiers, the accura-
cies on the test set of HWDBI1.1 are shown in Table 2. We can see that
in most settings of mg and o, nonlinear gray level normalization
yields higher accuracies than linear gray level normalization. Non-
linear gray level normalization with my =200 and ¢ = 30 achieves
the highest accuracies. Consider that when mg = 180, the recognition
performance is comparable and more stable against different values
of gy, we choose nonlinear gray level normalization with my = 180
and g = 30 for the remaining experiments.

On binary images of HWDB1.1, we can evaluate three feature
extraction methods NBGF, NCGF and NCCF, and different character
normalization methods. The test accuracies are shown in Table 3.
Comparing the three types of features, we can see that NBGF and
NCCF perform comparably, and NCGF shows obvious superiority,
especially when combined with nonlinear normalization and pseudo
2D normalization methods. This comparative relationship is consis-
tent with that reported in the literature [10].

Table 4 shows the test accuracies of offline recognition on gray-
scale images (in this case, the contour feature does not apply). Again,
NCGEF yields higher accuracies than NBGF. And comparing with the
performance on binary images, feature extraction from gray-scale

Table 2
Test accuracies (%) of linear and nonlinear gray level normalization on HWDB1.1.

mg ) Linear Nonlinear

MQDF Euclid MQDF Euclid
180 20 87.69 79.40 88.03 79.69
180 30 87.92 79.60 88.15 79.77
180 40 88.08 79.64 88.13 79.74
200 20 87.65 79.31 87.97 79.62
200 30 87.90 79.56 88.17 79.79
160 30 87.97 79.62 88.14 79.75
160 40 88.10 79.66 88.15 79.66
140 40 88.08 79.61 88.12 79.57
140 50 87.97 79.42 87.97 79.40

Table 3

Test accuracies (%) of offline character recognition on binary images of HWDB1.1.

Normalization NBGF NCGF NCCF

MQDF Euclid MQDF Euclid MQDF Euclid
LN 79.88 66.18 79.89 66.3 79.25 65.41
NLN 85.62 76.91 86.59 78.12 86.09 77.47
MN 85.29 76.48 85.49 76.72 84.97 76.20
BMN 85.61 77.06 85.87 77.32 85.37 76.80
P2DMN 85.73 77.68 86.65 79.13 86.39 78.79
P2DBMN 86.29 78.67 87.23 80.05 87.00 79.68
LDPI 86.70 78.75 87.87 80.45 87.49 79.82

Table 4

Test accuracies (%) of offline character recognition on gray-scale images of
HWDBI1.1.

Normalization NBGF NCGF

MQDF Euclid MQDF Euclid
LN 81.93 68.2 81.97 68.30
NLN 87.48 78.83 88.15 79.77
MN 86.73 77.97 86.85 78.10
BMN 87.09 78.50 87.28 78.68
P2DMN 87.11 79.06 88.01 80.41
P2DBMN 87.69 80.06 88.59 81.36
LDPI 88.55 80.68 89.55 82.17




160 C.-L. Liu et al. / Pattern Recognition 46 (2013) 155-162

Table 5
Test accuracies (%) of online character recognition on OLHWDB1.1.

Normalization Original direction Normalized direction Original enhanced

MQDF  Euclid MQDF Euclid MQDF  Euclid
LN 8599 7235  86.13 72.46 87.83 7483
MN 91.69 8516 9158 85.12 9274  87.13
BMN 9179 8518  91.70 85.25 92.80  87.03
P2DMN 92.10 8641 91.68 85.95 93.08  88.10
P2DBMN 9222 8675 91.92 86.33 9322  88.26

images shows apparent advantage. Specifically, it improves the test
accuracy of MQDF from 87.87% to 89.55%.

4.2. Online recognition results on OLHWDBI1.1

Table 5 shows the test accuracies of online recognition on
dataset OLHWDBI1.1, based on five normalization methods, two
types of direction features (original direction and normalized
direction), as well as the original direction feature enhanced with
pen lifts (called “Original enhanced” in Table 5). We can see that
the pseudo 2D normalization methods (P2DMN and P2DBMN)
yield higher accuracies than the 1D normalization methods, and
the feature of original direction outperforms that of normalized
direction. Enhancing the feature of original direction with pen
lifts, the recognition accuracy is further improved, specifically,
from 92.22% to 93.22% by MQDF classification.

4.3. Recognition results on combined DB1.0 and DB1.1

The above experimental results on standard datasets of 3755
classes in GB1 can be used as benchmarks for handwritten
Chinese character recognition research. We further report recog-
nition results of various classifiers using larger training datasets
combining DB1.0 (HWDB1.0 or OLHWDB1.0) and DB1.1. Combin-
ing the training samples of GB1 set in DB1.0 and DB1.1 (Table 1),
we obtained training datasets of 2,144,749 offline samples and
2,154,582 online samples, respectively.

In experiments on the larger datasets, we used the best
combination of normalization and feature extraction methods,
i.e., LDPI normalization and NCGF for offline samples, P2DBMN
and enhanced original direction feature for online samples. The
feature dimensionality remains 512, which is reduced to 160 by
FDA and DFE. We report the recognition accuracies on the test
datasets of both DB1.0 and DB1.1.

For the nearest prototype classifier (NPC) and DFE, we evaluated
the recognition performance with variable number of prototypes per
class. Prototype learning by k-means clustering (using cluster centers
of each class as prototypes) and LOGM [14], as well as joint prototype
and subspace (initialized by FDA) learning by DFE (LOGM criterion)
were evaluated. For MQDF and DLQDF, we give the results of MQDF
with numbers of principal eigenvectors per class as k=40 and k=50,
and DLQDF with k=40. We did not implement the DLQDF with k=50
because the MQDF/DLQDF versions with k=40 and k=50 give
comparable performance, and the training of DLQDF on large dataset
is very time consuming. On a PC with Quad CPU Q9550 2.83 GHz, the
training time with 2.1 million samples of 160D was 46.5 h even
though we used acceleration technique based on hierarchical classi-
fication [27].

First, we see the results of offline character recognition. The test
accuracies of NPC on HWDB1.0 and HWDB1.1 are shown in Table 6,
and the results of MQDF and DLQDF are shown in Table 7. For the
NPC, we used 1, 2, 3, 4, and 5 prototypes per class. Increasing
prototypes further was shown to give little improvement for LOGM
and LOGM+DFE. It is not a surprise that the supervised prototype

Table 6
Test accuracies (%) of offline character recognition by NPC trained with HWDB1.0
and HWDB1.1.

# prototype per class  Cluster LOGM LOGM +DFE

DB1.0 DB1.1 DB1.0 DB1.1 DB1.0 DBI1.1
1 85.70 81.83 89.23 8582 9092 87.89
2 87.56 84.02 9030 87.07 9147 88.58
3 88.28 8483 90.50 87.39 9142 88.46
4 88.65 8532 9053 8746 9139 88.49
5 88.81 8558 90.59 8743 9147 88.59

Table 7

Test accuracies (%) of offline character recognition by MQDF and DLQDF trained
with HWDB1.0 and HWDB1.1.

Subspace Classifier (k) DB1.0 DB1.1 Competition

FDA MQDF(40) 92.94 90.68 91.51
MQDF(50) 93.00 90.71 91.57
DLQDF(40) 93.33 91.00 91.78

DFE MQDF(40) 93.95 91.89 92.60
MQDF(50) 93.94 91.92 92.64
DLQDF(40) 94.20 92.08 92.72

learning algorithm LOGM yields higher accuracies than k-means
clustering, and LOGM + DFE further improves the accuracy. However,
the accuracies of LOGM+DFE are lower than those of MQDF and
DLQDF as shown in Table 7, which also gives the accuracies on the
test dataset of ICDAR 2011 Competition [5]. We can see that using the
same classifier, the test dataset of DB1.0 has higher accuracy than the
DB1.1. This confirms that the DB1.0 has better writing quality than
the DB1.1 (in database building, the DB1.0 abandoned more samples
of low quality than the DB1.1). The quality of the competition data is
between the DB1.0 and the DB1.1.

Using classifiers trained with the merged training set of HWDB1.0
and HWDB1.1, the MQDF (k=50) gave accuracy 90.71% on HWDB1.1
test set, which is higher than the accuracy 89.55% of the classifier
trained with HWDB1.1 only. The DLQDF improved the accuracy of
MQDF (k=40) from 90.68% to 91.00%. Using the feature subspace
learned by DFE instead of that of FDA, the test accuracy of MQDF
(k=50) was improved from 90.71% to 91.92%. In the subspace learned
by DFE, DLQDF improves the accuracy of MQDF (k=40) from 91.89%
to 92.08%, which is the highest accuracy that we achieved in this
study on the HWDB1.1 test set.

As for online character recognition, the test accuracies of NPC
on OLHWDB1.0 and OLHWDB1.1 are shown in Table 8, and the
results of MQDF and DLQDF are shown in Table 9. The NPC again
used 1, 2, 3, 4, and 5 prototypes per class, and again, the joint
prototype and subspace learning algorithm LOGM + DFE outper-
forms the k-means clustering and LOGM prototype learning.
Using classifiers trained with the merged training data of
OLHWDB1.0 and OLHWDBI1.1, the MQDF (k=50) gave test accu-
racy 93.95% on OLHWDB1.1, which is higher than the accuracy
93.22% of the classifier trained with OLHWDB1.1 only. The DLQDF
improved the accuracy of MQDF (k=40) from 93.90% to 94.29%.
Using the feature subspace learned by DFE instead of that of FDA,
the test accuracy of MQDF (k=50) was improved from 93.95% to
94.68%. In the subspace learned by DFE, DLQDF improves the
accuracy of MQDF (k=40) from 94.65% to 94.85%.

We give the accuracies on the competition test dataset of ICDAR
2011 Competition [5] (60 writers, 224,419 offline samples, and
224,590 online samples) to demonstrate that the methods used in
this study are state-of-the-art. The ICDAR 2011 Competition reported
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Table 8
Test accuracies (%) of online character recognition by NPC trained with
OLHWDB1.0 and OLHWDB1.1.

# prototype per class  Cluster LOGM LOGM +DFE

DB1.0 DB1.1 DB1.0 DB1.1 DB1.0 DB1.1
1 89.00 8799 91.73 9099 92.73 92.15
2 90.38 8938 9246 91.74 92.68 92.05
3 90.88 8998 92,61 9195 92.77 9215
4 91.19 9031 9273 92.09 9295 9233
5 91.38 90.52 92.77 92.05 9311 9249

Table 9

Test accuracies (%) of online character recognition by MQDF and DLQDF trained
with OLHWDB1.0 and OLHWDB1.1.

Subspace Classifier (k) DB1.0 DB1.1 Competition

FDA MQDF(40) 94.39 93.90 94.26
MQDEF(50) 94.45 93.95 94.31
DLQDF(40) 94.81 94.29 94.69

DFE MQDF(40) 95.09 94.65 95.08
MQDEF(50) 95.12 94.68 95.12
DLQDF(40) 95.28 94.85 95.31
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Fig. 5. Some misrecognized samples in HWDB1.1. Below each image are the
ground-truth class and classification outcome.

the highest accuracy 92.18% in offline character recognition and
95.77% in online character recognition, both were achieved by
training with larger number of samples (including distorted samples
and all the samples of DB1.0 and DB1.1). Our best result of 92.72% in
offline recognition is superior to that of the ICDAR 2011 Competition.
Our accuracy of 95.31% in online recognition is slightly lower than
that of the ICDAR2011 Competition. Consider the training set size of
the winning recognizers of the competition, our recognizers trained
with much less samples are sufficiently competitive.

4.4. Examples of recognition errors
We show some misrecognized offline samples by the best

classifier DLQDF in DFE subspace trained with combined HWDB1.0
and HWDBI1.1. The confusion of online samples is similar to that of
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Fig. 6. Some miswritten samples in HWDB1.1. Below each image are the labeled
class and classification outcome.

offline samples since the online and offline samples were produced
concurrently by the same writers. Some misrecognized samples are
shown in Fig. 5, where we can see that the ground-truth class and the
assigned class (classification outcome) are indeed confusing in shape,
particularly the samples in the top two rows. The presence of
many cursive and confusing samples in the new databases CASIA-
HWDB and CASIA-OLHWDB makes it very difficult to achieve high
accuracies.

There are also some miswritten characters in the databases,
though very few, that were not removed during ground-truthing.
Fig. 6 shows some examples of such characters. Compared to the
remarkable error rates (7.91% on HWDB1.1 and 5.15% on
OLHWDBI1.1), the very small number of miswritten samples does
not affect the confidence of performance evaluation.

5. Conclusion

We evaluated state-of-the-art online and offline handwritten
character recognition methods on the new large scale, unconstrained
Chinese handwriting databases CASIA-HWDB and CASIA-OLHWDB.
The results on the isolated character datasets of 3755 classes can
serve as benchmarks for evaluating recognition methods. On the new
datasets, the highest accuracies achieved by the state-of-the-art
methods (92.08% on offline dataset HWDB1.1 and 94.85% on online
dataset OLHWDB1.1) are far lower than the accuracies on previous
constrained datasets (mostly over 98%). This indicates that isolated
handwritten Chinese character recognition (HCCR) is still a challenge,
and it opens a large room for research and improvement.
We achieved best performance using pseudo 2D character normal-
ization, normalization-cooperated gradient/trajectory direction fea-
ture extraction, subspace learning by discriminative feature
extraction (DFE) and classification by discriminative learning quad-
ratic discriminant function (DLQDF). The community is expected to
propose more effective methods and achieve higher performance in
the future.

Our recommendations for evaluating isolated HCCR (either
online or offline) are as follows. (1) Using the standard dataset
DB1.1 for evaluating character normalization and feature extrac-
tion methods with standard classifiers of MQDF and Euclidean
distance. The DB1.1 has handwritten samples of 3755 classes of
GB2312-80 level-1 set (GB1) produced by 300 writers. (2) For
training discriminative classifiers using larger dataset, combining
the training samples of DB1.0 and DB1.1. The DB1.0 has samples
of 420 writers, with 3740 classes falling in GB1. (3) More samples
can be generated by synthesizing or distorting handwritten
samples. Other research issues have been discussed in [6].

For evaluating classification algorithms on standard feature data,
we have also release our extracted feature data of CASIA-HWDB1.0-
1.1 and CASIA-OLHWDB1.0-1.1 on our database webpage.'

1 http://www.nlpr.ia.ac.cn/databases/handwriting/Download.html.
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