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Abstract

Despite significant advances in multimodal imaging techniques and analysis approaches, unimodal 

studies are still the predominant way to investigate brain changes or group differences, including 

structural magnetic resonance imaging (sMRI), functional MRI (fMRI), diffusion tensor imaging 

(DTI) and electroencephalography (EEG). Multimodal brain studies can be used to understand the 

complex interplay of anatomical, functional and physiological brain alterations or development, 

and to better comprehend the biological significance of multiple imaging measures. To examine 

the function-structure associations of the brain in a more comprehensive and integrated manner, 

we reviewed a number of multimodal studies that combined two or more functional (fMRI and/or 

EEG) and structural (sMRI and/or DTI) modalities. In this review paper, we specifically focused 

on multimodal neuroimaging studies on cognition, aging, disease and behavior. We also compared 

multiple analysis approaches, including univariate and multivariate methods. The possible 

strengths and limitations of each method are highlighted, which can guide readers when selecting 

a method based on a given research question. In particular, we believe that multimodal fusion 

approaches will shed further light on the neuronal mechanisms underlying the major structural and 

functional pathophysiological features of both the healthy brain (e.g. development) or the diseased 

brain (e.g. mental illness). And in the latter case, may provide a more sensitive measure than 

unimodal imaging for disease classification, e.g. multimodal biomarkers, which potentially can be 

used to support clinical diagnosis based on neuroimaging techniques.

© 2013 Elsevier Inc. All rights reserved.

Address for Correspondence: Jing Sui, Vince D Calhoun, The Mind Research Network, 1101 Yale Blvd, NE, Albuquerque, NM, 
87106, kittysj@gmail.com, vcalhoun@unm.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2015 November 15.

Published in final edited form as:
Neuroimage. 2014 November 15; 102 Pt 1: 11–23. doi:10.1016/j.neuroimage.2013.09.044.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Keywords

multimodal fusion; fMRI; sMRI; Diffusion MRI; EEG; brain connectivity

Introduction

There is increasing evidence that instead of focusing on the relationship between 

physiological or behavioral features using a single imaging modality, multimodal brain 

imaging studies can help provide a better understanding of inter-subject variability from 

how brain structure shapes brain function, to what degree brain function feeds back to 

change its structure, and what functional or structural aspects of physiology ultimately drive 

cognition and behavior.

Many studies try to address the aforementioned issues by comparing specific subjects 

groups, e.g. those with a specified mental disorder to healthy controls, in terms of either 

brain structure or function, thereby only enable indirect conclusions on putative structure-

function relationships. In contrast, direct associations can be inferred when more than one 

measurement modality has been utilized in a given study (Schultz et al., 2012); however, it 

is not necessary for these modalities to have been measured simultaneously or have later 

been processed in a concurrent fusion model. Yet, the availability of several modal 

measurements allows the application of a number of statistical approaches, including (but 

not being limited to) correlational analyses (Skudlarski et al., 2008), data integration (Ardnt, 

1996; Savopol and Armenakis, 2002) or data fusion based on higher-order statistics and/or 

modern machine learning algorithms (Sui et al., 2012a).

A key motivation for jointly analyzing multimodal data is to take advantage of the cross-

information of the existing data, thereby potentially revealing important variations that may 

only partially be detected by a single modality. Combined analysis of multiple modalities is 

typically performed either by data integration or data fusion. (here we do not consider 

‘overlay’ approaches which have also been called data fusion but do not directly incorporate 

the information about multiple modalities beyond visual co-registration). Data integration 

approaches use data from one modality to enhance the other, and can be considered an 

asymmetric approach. In this case, one modality can be constrained by features derived from 

a second modality to obtain a generative model in order to improve brain activity estimates. 

In contrast, we define data fusion as a symmetric approach in which multiple modalities 

contribute jointly to the solution (Calhoun and Adali, 2009). More specifically, data fusion 

involves exploratory discovery of joint relationships among multiple data sets, which are 

typically not possible to identify by evaluating each data set separately. Such approaches can 

provide a wealth of information, enabling researchers to more confidently draw conclusions 

about normal variability in aging, disease, cognition, and behavior. A number of efficient 

fusion approaches have been developed to assess the joint information provided by multiple 

imaging techniques (mostly based on cross-modal covariance). In addition to these more 

recent methodological developments, we also reviewed more classical approaches for 

combining structural and functional information in the context of connectivity studies.
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There is increasing evidence from multimodal studies that patients with mental disorders 

exhibit unique morphological characteristics, connectivity patterns, and functional 

alterations. Applying classification techniques to these characteristics could identify 

biomarkers for psychiatric diseases. This could expedite differential diagnosis, thus leading 

to more appropriate treatment and improved outcomes for patients with mental disorders. 

Therefore, in this review paper we reviewed several machine learning methods that were 

able to identify features from multiple imaging modalities, providing significant 

discrimination between patients and controls, which could possibly be applied to the early 

detection of psychiatric diseases.

The most common structural imaging modalities are structural magnetic resonance imaging 

(sMRI) and diffusion tensor imaging (DTI). Functional MRI (fMRI) and 

electroencephalography (EEG) are the two most prevalent methods for functional imaging. 

In this paper, we selectively reviewed a number of multi-modal neuroimaging studies that 

concurrently utilize at least one structural and one functional modality of the aforementioned 

ones. Behavioral relevance of the assessed physiological features will be mentioned 

whenever possible. We will discuss approaches for doing two–way combinations first, 

followed by a 3-way or N-way fusion applications, and also provide some comparison of the 

strengths and limitations of the different approaches when possible.

Prevalent brain imaging modalities

High-resolution T1-weighted imaging (which we will refer to as sMRI from now on), is the 

most common method for depicting structural properties of the brain, which enables the 

assessment of differences in the local concentration or volume of gray matter (GM) and 

white matter (WM) at each voxel, by using approaches such as voxel-based morphometry 

(VBM) (Ashburner and Friston, 2000), voxel-based cortical thickness (VBCT) (Haier et al., 

2009), or higher order morphometric and shape changes through programs such as 

FreeSurfer (Fischl, 2012). DTI, on the other hand, for a given voxel, measures the 

directional diffusion of water molecules. Common parameters derived from DTI are 

fractional anisotropy (FA) and mean diffusivity (MD), which refer to the overall strength of 

water diffusion and its directedness regardless of its specific orientation, respectively. Note 

that tractography based on DTI cannot directly image multiple fiber orientations within a 

single voxel. Because if a diffusion tensor is calculated, only one direction for the fiber is 

obtained in the voxel given by the principal eigenvector, and the orientation distribution 

function (ODF) is a delta function. To address this limitation, a number of methods have 

been proposed to measure ODF's based on the angular resolution requirement to resolve 

closely aligned fiber bundles. Among others, these methods include diffusion spectrum 

imaging (DSI) (Wedeen et al., 2005), Q-ball imaging (Tuch, 2004), and a probabilistic 

method based on Monte-Carlo simulations (Behrens et al., 2003). Particularly, DSI and 

related methods were developed to image complex distributions of intra-voxel fiber 

orientation (Johansen-Berg and Rushworth, 2009). DSI relies on more accurate assumptions 

regarding the typical structure of white matter, thus enables looking at crossing or kissing 

fibers (Tefera et al., 2013), and has shown structural basis of functional cerebellar circuits in 

the human cerebellum in vivo (Granziera et al., 2009). Structural imaging can also be 

performed with diffusion-weighted imaging (DWI) and fiber tractography, which uses the 
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passive diffusion of water molecules to infer properties of the surrounding tissue (Roberts et 

al., 2013). Recently, DWI has been increasingly used for its ability to assess WM 

microstructure and pathways of the whole brain in vivo (Jones, 2008). In this paper, we use 

diffusion MRI (dMRI) to denote all abovementioned diffusion imaging methods.

In the functional domain, fMRI measures dynamic changes of the hemodynamic response 

related to neural activity in the brain. Using blood oxygenation-level dependent (BOLD) 

imaging, changes in regional blood flow predominantly resulting from increased synaptic 

activity of neurons ultimately leads to an increase in the fMRI signal. Another prevalent 

method is EEG, which assesses brain electrical activity only at electrodes placed on the 

scalp. Yet, its higher temporal resolution is beneficial for the estimation of changes in 

functional network connectivity. Note that the vast majority of EEG studies focus on 

electrophysiological activity corresponding to frequencies well below 100 Hz, which similar 

to fMRI also has been shown to reflect synaptic rather than spiking activity of neurons 

(Hughes, 1996; Satherley et al., 1996).

In many multimodal studies, data from each modality is first reduced to a feature space, 

which is a lower-dimensional representation of selected brain activities, and subsequently to 

discover the correlation along the feature datasets by subjects' variations (Calhoun and 

Adali, 2009). Incorporating fusion analysis at the group level (across multiple subjects) is 

quite promising because weak (but important) cross modality relationships along with inter-

subject variations can be revealed. Such feature-based approaches provide a natural way to 

find multimodality associations.

Review of Function-Structure Associations

We next review brain function-structure studies based on pair-wise and multi-way modality 

combinations, in the context of cross-modal connectivity and covariance, for both healthy 

and diseased subject groups.

fMRI – dMRI

DTI has become a popular tool for the investigation of white matter architecture in the 

normal brain, while fMRI, as a well-established neuroimaging technology, may act as a 

reference framework for validating conclusions derived from the relatively newer DTI 

method (O'Donnell et al., 2011; Reinges et al., 2004). Reports have validated that there are 

networks of brain regions where maturation of white matter and changes in functional 

activity show similar developmental trends during human childhood (Olesen et al., 2003), 

thus it is plausible to assume that functional and anatomical brain properties covary across 

subjects, an assumption that may well generalize to brain pathology. Hence combining DTI 

and fMRI may also provide unprecedented opportunities to deepen our understanding of 

brain disorders (Kim et al., 2012b; Mascalchi et al., 2012; Soldner et al., 2011; Tang et al., 

2013).

Functional-structural connectivity

Many of the conducted fMRI-DTI studies addressed disruptions of brain connectivity seen 

with mental illnesses such as depression, schizophrenia (SZ), Alzheimer's disease and 
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bipolar disorder. In particular, (Matthews et al., 2011) examined structural and functional 

neural correlates of soldiers with a history of blast-related concussion and who concurrently 

suffered from major depressive disorder (MDD) and compared them to a matched non-

MDD group. They utilized DTI and an emotional face matching fMRI task for their 

investigation. MDD relative to non-MDD individuals showed greater activity in the 

amygdala and other emotion processing structures, but lower activity in emotional control 

structures such as the dorsolateral prefrontal cortex (DLPFC) during fear matching trials, as 

well as lower FA in WM tracts such as the superior longitudinal fasciculus (SLF). These FA 

values correlated negatively with depressive symptom severity. Schlosser et al. observed a 

direct correlation in schizophrenia between frontal FA reduction and fMRI activation in 

regions of the prefrontal and occipital cortices (Schlosser et al., 2007). This finding 

highlights a potential relationship between anatomical changes in a frontal-temporal 

anatomical circuit and functional alterations in the prefrontal cortex. A recent study of Koch 

et al. (Koch et al., 2011) showed that WM fiber integrity in terms of increased radial 

diffusivity of the left superior temporal gyrus (STG) is associated with reduced neuronal 

activation during decision making in lateral frontal and cingulate cortices as well as the 

dorsal striatum, hypothalamus, left and right cerebellum and the right insula. These findings 

clearly suggest that intact white matter connectivity plays an important role for the pattern 

and intensity of functional activations with neuronal networks engaged in decision making 

and error-related processes.

(Skudlarski et al., 2010) evaluated interactions between measurements of anatomical and 

functional connectivity collected in the same subjects to study global schizophrenia-related 

alterations in brain connectivity. Although patients showed deficits in white matter anatomy, 

functional connectivity alterations were more complex and a decoupling between structural 

and functional connectivity was found with networks originating in posterior cingulate 

cortex, the task-positive network, and one of the default mode network (DMN) components 

(shown in Figure 1).

(Zhou et al., 2008) studied both functional and anatomical connectivities between 

hippocampus and other regions by utilizing resting fMRI and FA. Bilateral hippocampi 

showed reduced functional connectivity in schizophrenia compared to regions involved in 

episodic memory, such as posterior cingulate cortex (PCC), extrastriate cortex, medial 

prefrontal cortex, and parahippocampus gyrus. Similarly, mean FA of the fornix body was 

significantly reduced in patients, indicating concurrence of reductions in functional and 

anatomical connectivity. Similarly, (Yan et al., 2012) investigated the functional and 

anatomical connectivity of the anterior cingulate cortex (ACC) by using resting fMRI and 

DTI. Patients with schizophrenia showed abnormal hemispheric asymmetry regarding their 

functional connectivity profiles of the ACC-cd with multiple brain areas, as for example 

increased negative connectivity with the left PCC. Mirroring the functional observations, FA 

of the right anterior cingulum also was significantly decreased in the patient group.

(Soldner et al., 2011) determined associations of structural integrity in the PCC as assessed 

by DTI and its functional connectivity with both the hippocampus and para-hippocampus 

during resting state in Alzheimer's disease (AD), mild cognitive impairment (MCI) and 

healthy controls (HCs). Results suggest that under healthy conditions, effective connectivity 
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in the default mode network (DMN) between PCC and hippocampus is primarily maintained 

by an indirect pathway via the parahippocampal gyrus. Patients with AD and MCI showed 

changes in this connectivity with a partial allocation to the direct pathway, most likely 

reflecting early parahippocampal lesions. In another functional connectivity study, Wang et 

al. investigated potential disruptions in perigenual anterior cingulate cortex (pACC)-

amygdala functional connectivity and corresponding abnormal structural connections in 

bipolar disorder (BP) during processing of face stimuli (Wang et al., 2009). As expected, 

functional connectivity was decreased between the pACC and amygdala in bipolar 

participants compared to controls during processing of both fearful and happy faces. 

Moreover, a significant positive association between pACC-amygdala functional coupling 

and FA in ventro-frontal white matter, including the region of the uncinate fasciculus was 

found; suggesting that disruptions in functional and white matter connectivity may 

contribute to disturbances in the coordinated responses of the pACC and amygdala during 

emotional processing in BP. (Staempfli et al., 2008) also illustrated that DTI- and fMRI-

derived topologies are similar, and that the fMRI-DTI combination can provide additional 

information in order to choose reasonable seed regions for identifying functionally relevant 

networks and to validate reconstructed WM fibers.

Finally, (Bosnell et al., 2011) tested whether practice-related changes in brain activity differ 

after stroke by fMRI and DWI, in order to explore spatial relationships between activity 

changes and patterns of structural degeneration. Results indicate that performance in stoke 

patients gains with motor practice, which can be associated with increased activity in 

regions that have been either directly or indirectly impaired by loss of connectivity, 

suggesting that neurorehabilitation interventions may be associated with enhanced activity 

in regions with impaired structural connectivity.

Inter-modality covariance

In contrast to the above correlational analyses, multivariate data-mining can also be used to 

access the joint information of multiple measurement modalities by assessing inter-modality 

covariance across subjects. Specifically, joint independent component analysis (jICA) was 

used in (Franco et al., 2008) to combine amplitude of low-frequency fluctuations (ALFF) 

and FA. Their results indicated that activity in the DMN highly depends on the integrity of 

WM connections between the two hemispheres (connected via the corpus callosum) and 

within the cingulate bundles. In addition, Sui et al. applied an “mCCA+jICA” approach (Sui 

et al., 2011), an optimized model for identifying correspondence across modalities, to 

compare patients (SZ and BP) and HCs based on task-related fMRI contrast maps and FA 

data. The authors identified distinct regions that could be used to discriminate between 

controls and patients, specifically, the DLPFC and motor regions in fMRI and the WM fiber 

tracts including anterior thalamic radiation (ATR), SLF and inferior frontal-occipital 

fasciculus (IFO). Further, separation of the SZ and BP groups was established by differences 

in hippocampal, prefrontal and visual cortex impairments in fMRI combined with disrupted 

WM integrity in SLF, forceps minor and forceps major. A high-level functional-structural 

network diagram was also derived to identify which known tracts are both intersected by the 

regions of FA changes and touch the regional fMRI changes. (Camchong et al., 2011) used a 

hybrid ICA method to extract the group DMN and accompanying time-courses from resting 
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fMRI but also computed a voxel-wise statistical analysis of FA data to look for between-

group differences by means of voxel-wise regressions/correlations. Results revealed 

convergent fMRI and DTI findings consistent with the disconnection hypothesis in 

schizophrenia, particularly in medial frontal and anterior cingulate regions, while adding 

some insight of the relationship between differences in brain connectivity and behavior.

The above findings were facilitated by advanced modeling techniques and could not have 

been revealed through separate uni-modal analyses as typically performed in the majority of 

neuroimaging experiments. Importantly, fusion of fMRI and DTI data may improve brain 

disease classification. For example, MCI, often an early stage of AD, is difficult to diagnose 

due to its rather mild and nearly insignificant symptoms of cognitive impairment. (Wee et 

al., 2011) integrated information from DTI and resting fMRI by employing multiple-kernel 

support vector machines (SVMs), yielding statistically significant improvement (>7.4%) in 

classification accuracy of predicting MCI from HC by using multimodal data (96.3%) 

compared to using each modality independently. There are additional studies that 

demonstrate the potential of the fusion of structural and functional data combined with 

multi-modal classification techniques to provide more accurate and early detection of brain 

abnormalities (Fan et al., 2008).

fMRI - sMRI

Historically, the combination of structural and functional brain imaging has been used for 

the purpose of analyzing functional activity in a priori defined brain regions. Whereby the 

anatomical T1-weighted image is typically used as a reference for extracting or locating 

ROIs or for the purpose of placing seed-points for cross-correlational functional analyses 

(Tian et al., 2011). However, much is to be gained if the T1 weighted image is not only used 

as a mere reference template (Schultz et al., 2012). For example, when trying to identify 

MCI patients in a classification study, (Kim and Lee, 2012) showed that the integration of 

sMRI and fMRI can provide complementary information to improve the diagnosis of MCI 

relative to either one alone (error rate: 6% using both versus 15% using fMRI only and 35% 

using sMRI only).

Functional-structural connectivity

A central assumption of systems neuroscience is that the structure of the brain can predict 

and/or is related to functional connectivity. The findings of Segall et al., support this 

hypothesis. In that particular study, spatial ICA was applied separately to both gray matter 

density maps derived from T1-weighted images and resting state (rs-) fMRI data from a 

large dataset of healthy adults. Then, the decomposed structural and functional components 

were compared by spatial correlation. The results generally show that each single structural 

component usually corresponds to several resting-state functional components (see Figure 2. 

for an example) thereby, elucidating the relationship between brain function at rest and GM 

density maps (Segall et al., 2012). In (Khullar et al., 2011), functional information is able to 

improve the correspondence of functional boundaries across subjects beyond the standard 

structural normalization.
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One area of research that has gained much from the union of anatomical and functional 

images is human brain development, where longitudinal studies have demonstrated the 

synchronicity between structural and functional changes during childhood and adolescence 

(Casey et al., 2005). Studies of psychopathological phenomena discovered spatial overlaps 

of structural and functional alterations in schizophrenia or at risk mental state using 

cognitive tasks and GM volume. (Salgado-Pineda et al., 2004) found three regions including 

the thalamus, the anterior cingulate and the inferior parietal that showed both structural and 

functional impairments associated with attentional processing in schizophrenia. A follow up 

study of the same group (Salgado-Pineda et al., 2011) also found both functional alterations 

(facial emotion task) and GM volume reductions in the DMN in schizophrenia. (Smieskova 

et al., 2012) discovered that reduced insular and prefrontal activation (during an N-back 

task) was associated with a reduction of GM volume in a at risk mental state group.

Additional studies suggest that alterations in neuronal functioning are directly related to 

alterations in gray matter structure (Schultz et al., 2012). For example, using a version of the 

tower of London task, (Rasser et al., 2005) found a positive correlation of neuronal 

activation and cortical gray matter thickness in prefrontal/frontal and parietal areas in first-

episode schizophrenia patients, whereas this correlation in most parts was inverted in 

healthy controls. When examining the relationship between neuronal activation during an N-

back working memory task and GM volume in 15 ultra-high-risk subjects and 15 matched 

HCs, (Fusar-Poli et al., 2011a) found that reduced prefrontal activation during the task was 

associated with a reduction in GM volume in the same area in high risk subjects only. Using 

a whole-brain correlational approach, Michael et al, found that the linkage between GM 

volumes and functional activation (derived from an auditory sensorimotor task) is stronger 

in HC than in SZ patients (Michael et al., 2010). In a subsequent study of the authors 

(Michael et al., 2011) investigated the association of neuronal activity during the Sternberg 

working memory task and GM. The results demonstrated a differential pattern of structure-

function associations across subject groups in anterior cingulate, temporal regions and the 

cerebellum; with negative correlations in SZ and positive correlations in HCs. Patients 

exhibited a concordance of increased neuronal activation and diminished gray matter 

concentration.

Inter-modality covariance

Multivariate, data-driven approaches have also been applied in the context of fMRI and 

sMRI fusion. For example, (Calhoun et al., 2006) analyzed data of schizophrenia patients 

and healthy controls using jICA with GM volume maps and fMRI task data. Calhoun et al., 

found that GM group differences in bilateral parietal and frontal as well as posterior 

temporal regions distinguished groups. Patients had reduced gray matter concentrations 

(GMC) and less hemodynamic activity during target detection in bilateral anterior temporal 

lobe regions. An unexpected corollary to their finding was that, in those regions showing 

largest group differences, GMC were higher in patients than controls, suggesting that higher 

GMC may be related to lower functional connectivity during performance of an auditory 

oddball task. (Correa et al., 2008) also showed an interesting joint relationship between 

fMRI and GM volume by multimodal canonical correlation (mCCA), with schizophrenic 

patients showing more functional activity in motor areas and less activity in temporal areas. 
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Additionally, both functional observations coincided with reduced GM volume when 

compared to healthy controls.

EEG – dMRI

There are few studies which attempted to directly associate parameters inferred from DTI 

with electrophysiological activity at rest. Most other studies only permitted indirect 

conclusions, for example, by studying age-related changes in functional connectivity, or by 

comparing patient groups with neurological impairments to healthy controls. Not 

surprisingly, all relevant studies tried to identify the physiological prerequisites that 

determine the individual alpha frequency (IAF), that is, the frequency at which an individual 

exhibits highest activity in the alpha range (8 - 12 Hz).

The majority of studies addressing structure-functions associations utilizing EEG in task-

contexts either focused on the relevance of WM characteristics for interhemispheric transfer 

of information or cognitive control processes, often using DTI to assess structural 

connectivity. Interhemispheric transfer time (IHTT) and inter-hemispheric signal 

propagation (ISP) are two measures used to quantify the quality of the transmission of 

signals across the corpus callosum. IHTT with EEG is computed as the latency-difference 

between sensory evoked potentials (e.g., the visual P100) between contralateral and 

ipsilateral electrodes, when stimuli are presented to only one hemisphere in a given trial. 

ISP, on the other hand, quantifies the similarity (as the ratio) of signals measured above the 

different hemispheres after unilateral stimulation, with values around one indicating a good 

signal transfer. (Westerhausen et al., 2006), for example, found a negative correlation 

between IHTT and MD in the posterior third of the corpus callosum, with sensory event- 

related potentials (ERPs) measured at parieto-occipital electrodes. Interestingly, such 

correlations were not found with IHTT estimates derived from reaction times. Similarly, 

(Whitford et al., 2011) observed callosal fibers connecting visual areas in both hemispheres 

being isolated by means of tractography. In Whitford et al., the ERP-derived IHTT was 

significantly explained by both FA and total diffusion within a linear regression model, even 

after correction for putative influences such as age, fiber length and curvature. (Voineskos et 

al., 2010) extended these results by computing ISP for transcranial magnetic stimulation 

evoked potentials generated in the DLPFC and the motor cortex. Again, the tracts 

connecting homologous regions were extracted and mean FA values for these tracts were 

computed. Not only were associations indicating better signal transfer with higher FA, but 

the pattern was also regionally specific; i.e., correlations of ISP with fibers connecting the 

motor-areas were found when the motor-cortex was stimulated but not when the DLPFC 

was targeted and vice versa. Moreover, (Chatzikonstantinou et al., 2011) analyzed features 

of acute DWI abnormalities related to status epilepticus by combining DWI and EEG 

analysis, which provided clues to seizure localization and propagation, as well as to identify 

brain structures affected by continuous or frequent ictal activity.

Teipel and colleagues conducted one of the first studies combining resting state-EEG and 

DTI measurements, through the use of a multivariate network based on principal component 

analysis (PCA) to determine the effects of coherence on the regional pattern of diffusivity 

(Teipel et al., 2009). For both MCI and HC, higher temporo-parietal IAF coherence was 
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associated with increased FA but decreased MD in posterior parts of the corpus callosum 

and in parietal and occipital WM tracts. In the following year, (Valdes-Hernandez et al., 

2010) published data which indicated side- and region-specific effects when correlating IAF 

and FA values. Again, correlations of the occipital IAF were found significant with rather 

posterior WM tracts, e.g. the superior corona radiata as well as the inferior occipital and 

longitudinal fascicule. However, correlations in the corpus callosum showed sign variability 

with positive associations in the isthmus but negative correlations in the splenium. Although 

the exact nature of this effect is elusive, Valdes-Hernandes et al suggested that either 

differences in the function of callosal subregions may play a role (excitatory vs. inhibitory 

connectivity) or that a given IAF might show differential associations depending on a 

region's time delay when transmitting signals [see also (David and Friston, 2003)]. Hence, 

resting state EEG data indicate that higher IAF and its coherence is associated with 

microstructural measures indicating higher conduction velocity, putatively suggesting an 

increased efficiency in trans-regional communication. This is in accordance with the notion 

that higher IAF is associated with increased performance in difficult cognitive tasks [e.g., 

(Klimesch et al., 2003); (Zoefel et al., 2011)]. Yet, the observation of inverted relationships 

within homologous regions of the two hemispheres awaits replication and further 

investigation.

Additional DTI-EEG studies with a focus on higher order cognition tried to elucidate the 

microstructural determinants of brain processes associated with errors. When participants in 

a task produce an erroneous response, scalp EEG shows a fronto-medially pronounced 

effect, manifested as negative going event-related potential, the so-called error-related 

negativity (ERN), corresponding to an increased activity in the theta band e.g. (Cavanagh et 

al., 2012; Gruendler et al., 2011). The mid-cingulate cortex is believed to be a generator of 

this response-locked phenomenon. (Westlye et al., 2009) found an association of the ERN 

amplitude with FA values in the left cingulate bundle, whereby a higher ERN was associated 

with increased FA, an effect that seemed to be driven by lowered diffusion perpendicular to 

the main orientation of the bundle. Studying fronto-medial theta in response to errors, 

(Cohen, 2011) made similar findings; higher theta power was associated with stronger tract 

connectivity, between regions that are estimated to generate the electrophysiological 

response and other regions altogether forming a system underlying cognitive control (e.g., 

the striatum and the ventrolateral frontal cortex). Even more, participants whose fronto-

medial theta activity was functionally coupled to many other electrodes on the scalp 

(indexed by increased phase synchronization) also showed stronger tract connectivity from 

theta generators through the corpus callosum to superior frontal regions.

EEG - sMRI

Instead of addressing associations of EEG features with micro-structural properties of the 

white matter, one can assess the relevance of inter-individual differences in regional GM or 

WM volumes. Again, similarly to joint DTI- EEG studies, inter-hemispheric processing 

seems to be of special interest. (Zaehle and Herrmann, 2011), for example, used a visual 

detection task to assess, whether the individual frequency of the stimulus evoked gamma 

band response (≈ 40 Hz) over occipital areas is associated with regional volume of the 

corpus callosum. Indeed, positive correlations were found for the truncus and splenium of 
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the corpus callosum, indicating a higher frequency of the evoked gamma band response with 

regionally increased white matter volume. Similarly, (Fusar-Poli et al., 2011b) found that the 

auditory oddball P300, measured in a sample of healthy control subjects and participants at 

risk for developing a mental disorder, were positively correlated with the volume of the 

genu. Both of the aforementioned studies used voxel-based morphometry for their 

assessments. (Huster et al., 2011), though, reported negative correlations of the stop-related 

P300 observed in a lateralized somatosensory stop-signal task and the cross-sectional area of 

the truncus of the corpus callosum. A study that looked at associations of P300s with both, 

white and gray matter variability (Cardenas et al., 2005), found that latencies of the P3b 

increased with decreased white matter volume in tracts connected to the thalamus and 

central regions, as well as parts of the corpus callosum. Relevant correlations with GM 

volume were not reported.

Yet, already a decade earlier (Ford et al., 1994) reported that global GM volumes of the 

frontal and parietal lobes showed differential associations with amplitudes of P300s elicited 

in a three stimulus oddball task: whereas P300s under conditions of automatic attention 

capture correlated with frontal cortical volume, P300s under effortful attention were 

associated with parietal lobe volume. Correlations with GM volume have also been reported 

for phase synchronization in the gamma band or event-related potentials observed with 

memory tasks. (Williams et al., 2005), for example, found differential gamma band phase 

correlations for female and male participants in an auditory oddball task. Whereas women 

exhibited positive correlations with local gray matter volume in frontal and parietal cortices, 

men rather showed negative correlations. This was also the case in a task probing the 

electrophysiology of the recollection of faces (Schiltz et al., 2006), where larger 

hippocampal volume and diffusion was positively correlation with slow-wave amplitudes 

between 275 and 325 ms after stimulus presentation. In addition, hippocampus morphology 

was also positively correlated with behavioral indices in a nonverbal learning task.

Other studies did not so much directly focus on volumetric effects, but rather studied the 

relevance of gross-morphometric characteristics of the cortex, such as the degree and 

asymmetry of cortical folding patterns. The mid-cingulate cortex exhibits a variable degree 

of asymmetry in cortical folding across subjects, with most subjects showing a leftward 

asymmetry due to the occurrence of a second (superior- or paracingulate gyrus (Huster et al., 

2007; Vogt et al., 1995). It has been shown in a series of experiments (Huster et al., 2012; 

Huster et al., 2011; Huster et al., 2009) that this leftward asymmetry is accompanied with 

higher amplitudes of fronto-medial negativities as observed in Stroop, go/no-go, and stop 

signal tasks. This effect is believed to originate from larger extent and/or volume of 

cytoarchitectural area 32 (Vogt et al., 1995) and furthermore coincides with increased 

behavioral performance measures of interference control.

Three-way Fusion

Inter-modality Connectivity—Collecting data from three or more imaging modalities 

enables a test bed for investigating brain development or disorders. This is believed to be 

critical for the understanding of brain networks and their relationship to human cognition 

and behavior. For example, Jacobson et al. studied schoolchildren (Jacobson et al., 2009) 
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(11–13 year) experiencing psychotic symptoms and controls with gray matter, DTI and task-

related fMRI. A spatial overlap between patterns of altered gray matter and functional 

activations was observed in lateral frontal, anterior cingulate and temporal cortical regions. 

Moreover, concurrently revealed disturbances of WM connectivity of the IFO, inferior 

longitudinal fasciculus (ILF) and cingulate bundles, together with the observed alterations in 

GM structure, might constitute a neuroanatomical underpinning of disturbed error-related 

neuronal processing. Such a multimodal pattern may well cause higher susceptibility for 

developing psychosis. (Qiu et al., 2011) explored changes of brain structure and function in 

attention-deficit/hyperactivity disorder (ADHD) between normal controls by sMRI, DTI and 

resting-state fMRI, and found significantly decreased functional activity in ACC and pCC, 

reduced FA values in the forceps minor, and thinner cortex in bilateral frontal regions for 

children with ADHD.

(Supekar et al., 2010) examined developmental changes in DMN connectivity by combining 

resting-state fMRI, GM segmentations from VBM and DTI-based tractography. The DMN 

was found to undergo significant developmental changes in functional and structural 

connectivity, but these changes were not uniform across all DMN nodes. Convergent 

structural and functional connectivity analyses suggest that connectivity between posterior 

cingulate cortex (PCC) and medial prefrontal cortex (mPFC) along the cingulum bundle is 

the most immature link in the DMN of children. Results imply that functional connectivity 

in children can reach adult-like levels despite weak structural connectivity. It is also 

suggested the maturation of PCC-mPFC structural connectivity plays an important role in 

the development of self-related and social-cognitive functions that emerge during 

adolescence. Pomarol-Clotet (Pomarol-Clotet et al., 2010) performed a three-modal analysis 

using DTI, GM maps, and fMRI during an n-back working memory task in chronic 

schizophrenia and healthy controls. A spatial overlap of GM volume reduction, WM 

connectivity and neuronal activation was found for a large medial prefrontal area including 

parts of the anterior cingulate cortex. To a lower degree of spatial overlap, the dorsolateral 

frontal cortex showed alterations in all three modalities. This study reveals new evidence for 

converging three-modal pathology of the medial prefrontal region in schizophrenia.

A recent multi-modal study investigating late-life depression found that while WM integrity 

was reduced in MDD patients, there were no significant differences in GM volume or in 

resting state functional connectivity (Sexton et al., 2012). This study is useful for 

interpreting multi-modal studies for the lack of difference in GM and functional connectivity 

could indicate how interrelated the two modalities are. Therefore, significant structural 

differences for certain disorders could pertain only to white matter. Finally, (Jann et al., 

2012) gathered data not only from EEG and DTI, but also from fMRI measurements. The 

IAF at occipital electrodes correlated positively with FA in fibers of the posterior superior 

longitudinal fasciculus and the corpus callosum (in the genu and the splenium). Even more, 

when extracting the time courses of the IAFs and correlating them with variations observed 

in the BOLD signal, correlations in inferior and superior frontal, mid-temporal, as well as 

cingulate regions were observed at least partially corresponding to areas supported by the 

aforementioned fiber tracts.
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Inter-modality covariance—Despite these intriguing findings, one can learn even more 

through the characterization of multimodal covariance across subjects utilizing data-driven 

multivariate fusion approaches based on ICA or canonical correlation analysis (CCA). These 

types of studies typically require more than just the addition of more variables to statistical 

models; the accurate spatial and temporal interrelation of multiple structural and functional 

brain measures often demands collaborative expertise in multivariate statistics, mathematical 

modeling and neuroscience (Sui et al., 2012a).

To examine how MRI and EEG inform one another, (Calhoun and Adali, 2009) employed 

the use of feature-based fusion of brain imaging data, in which multimodal data were 

preprocessed to compute features of interest, then these features were analyzed in a 

multivariate manner by joint ICA. (Correa et al., 2010a) used a feature-based approach by 

applying multi-set CCA (mCCA) to study schizophrenia by combining the contrast maps of 

an auditory oddball fMRI task, grey matter maps and ERPs. On examining the inter-subject 

modulation in conjunction with the spatial and temporal components, their results implied 

that subjects with schizophrenia exhibit less functional activity and less GM volume in the 

areas jointly detected, and also a part of the ERP response appeared to be affected. 

Interestingly, when performing t-tests on the derived mixing coefficients, results from the 

three-way analysis showed stronger effects than two- or one-way analyses, suggesting that 

such high-order multi-way analyses may be more informative for group discrimination.

Linked ICA is another fusion model that can take various types of data to characterize inter-

subject variability in a set of multimodal components (Groves et al., 2011). Using a modular 

Bayesian framework, Groves et al., used linked ICA to combine sMRI (GM density) and 

three diffusion data measures (FA, MD, and tensor mode) to compare a set of Alzheimer 

patients and age-matched controls. This exploratory approach automatically generates 

models to explain structure in the data, and may prove especially powerful for large-scale 

studies.

Both the above ICA-based methods assume inter-subject covariation to be the same for all 

modalities; multi-set CCA can relax this strong assumption, but its source separation 

performance may suffer in many cases; thus “mCCA+jICA” has been optimized for exactly 

this situation (Sui et al., 2011). By taking advantage of these two complementary 

approaches, mCCA+jICA allows both high and weak connections to be detected and shows 

excellent source separation performance. It enables robust identification of correspondence 

among N diverse data types and enables one to investigate the important question of whether 

certain disease risk factors are shared or are distinct across multiple modalities. In 

accordance with this notion, this approach has already been used to fuse fMRI, sMRI and 

DTI to study schizophrenia (Sui et al., 2012c; Sui et al., 2013).

Other machine learning applications using data from three modalities focus on classification 

(Zhang et al., 2012). Specifically, (Zhang et al., 2011) combined biomarkers from sMRI, 

FDG-PET, and CSF to discriminate between AD, MCI and HC. A linear SVM was adopted 

to evaluate the classification accuracy based on a 10-fold cross-validation. As a result, 

combining all three modalities of biomarkers achieved a classification accuracy of 93.2% 

between AD and HC, whereas single modalities only reached 86.5% at best. Similar 
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observations were made for MCI and HC classifications (combined 76.4% vs. single 72%), 

suggesting that using complimentary multimodal biomarkers may be more informative and 

effective to discriminate brain disorders.

Discussion

General Aspects

Various neurophysiological techniques used to assess functional/structural connectivity such 

as fMRI, sMRI, diffusion MRI and EEG/MEG, provide data at different spatial and 

temporal scales. Hence combining multimodal imaging data provides unprecedented 

opportunities to further deepen our understanding of the patho-physiological core features of 

brain disorders(Sui et al., 2013) and provide useful information on how these separate 

elements relate to each other, such as gray and whiter matter alterations, aberrant 

electrophysiological activity and altered resting-state/task-related functioning. Although the 

number of multimodal imaging studies is still limited, initial findings are promising 

(Rykhlevskaia et al., 2008; Sui et al., 2012d).

All of the multimodal studies that are reviewed in this paper are summarized and separated 

into different modality categories in Table 1. In general, most studies we reviewed 

demonstrate congruent effects across measurement modalities and combining modalities 

does provide more differentiating power among multiple diseases. Within the context of 

clinical research, structure–function relationships may be reformulated as links between 

structural brain damage and its functional or behavioral consequences (Kolb and Whishaw, 

1998; Schlosser et al., 2007; Wang et al., 2009). These structure-function associations are 

not regionally unspecific but follow a topological pattern; furthermore, they reveal spatial 

overlaps across different brain pathologies (Bullmore and Sporns, 2009; Keightley et al., 

2012; Toosy et al., 2004). For example, the medial frontal region stands out as region of 

central importance for schizophrenia and bipolar disorder (Camchong et al., 2011; Sui et al., 

2011). In addition, most studies stress the relevance of fiber tracts in direct vicinity to or 

those connecting functionally active regions of the cortex (Leergaard et al., 2012). A good 

example is the quasi-topological ordering of functional associations and callosal fibers. 

Many of these effects have even been validated while controlling for global variables such 

as sex, age, and most importantly, intracranial volume or brain size.

Despite the rather limited number of studies that have investigated putative structure-

function associations, a clear pattern has emerged. Overall, data indicate that features 

suggesting an increased connectivity between regions tend to be associated with larger EEG 

or fMRI signal amplitudes, higher frequencies of intrinsic oscillations, shorter transmission 

latencies, or stronger functional connectivity. Such features usually refer to microstructural 

aspects of white matter tracts of which FA is the one most often applied. Most of these DTI 

measures suggest higher axonal density or an augmented degree of myelination to be an 

underlying factor. Additionally, pure volumetric effects, whether assessed for white or for 

gray matter, have been reported as well and they largely point in the same direction. Less 

common studied features, such as the regional folding of the cortex, reveal similar effects; 

possibly, because they might as well be traced back to mere volumetric phenomena or 
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because folding patterns themselves result from white matter architecture (Toro and Burnod, 

2005).

In this review, many of the structural imaging findings are based on extracted features, i.e. 

brain morphology obtained by VBM from T1-weighted imaging, and FA values calculated 

from DTI. These approaches have some limitation, for example VBM does not directly 

measure volume or cortical thickness and FA does not provide directional information. On 

the other hand, several more advanced techniques have been increasingly employed in 

neuroimaging studies, which may have a better chance of characterizing the brain tissue 

structure. For example, quantitative T1 mapping is one approach which can provide 

improved segmentation of GM and WM; T1 weighted data can be quantitatively compared 

across sites and longitudinally with brain development, and for most cortical brain areas 

(Sereno et al., 2012). In addition, as a measure of local variations in grey matter, VBCT and 

VBM yield very consistent results but there is evidence that VBCT provides a more 

sensitive measure than VBM in grey matter (Hutton et al., 2009) which is likely to improve 

substantially over the next few years with use of quantitative T1 mapping and higher spatial 

resolution images, for which VBM will be seen as an gradually inappropriate tool (Sereno et 

al., 2012).

Similarly, DTI as a rather approximate technique (Jones et al., 2013), is unable to resolve 

complex configurations of fiber tracts, limiting its utility for constructing detailed, 

anatomically-informed models of brain structure. Therefore, the multimodal fusion results 

published thus far that involved results derived from DTI should be treated and interpreted 

carefully, because the basic assumption of this analysis technique is not accurate enough in 

most white matter voxels. In contrast, DWI with fiber-reconstruction algorithms could trace 

large WM pathways and be used to explore patterns of WM projections among different 

brain regions. Recent findings suggest that diffusion-weighted imaging might even be used 

to measure functional differences in water diffusion during task performance (Jeurissen et 

al., 2012; Roberts et al., 2013). Furthermore, DSI and fiber tractography is able to reproduce 

known neuroanatomy with precision and accuracy as indicated in (Phillips et al., 2012). This 

advantage is partly due to data acquisition procedures: while many DTI protocols measure 

diffusion in a small number of directions (e.g., 6 or 12), DSI can assess diffusion in 257 

directions and at a range of magnetic gradient strengths. In summary, diffusion weighted 

MRI(Behrens and Johansen-Berg, 2009) carries invaluable in vivo information about tissue 

microstructure, but in order to extract this information in the most efficient and unbiased 

way, it is important to make the right choices for the acquisition and analysis of these data, 

and, even more importantly, for the interpretation of the results, as advised in (Jones et al., 

2013).

Methodical Considerations

It is abundantly clear that there is a diverse and growing collection of scientific tools 

available for non-invasively studying human brain functioning and relating it to cognitive 

and behavioral measures. Using these technologies, substantial progress has been made in 

characterizing structural/functional brain abnormalities and their interactions. In addition, a 
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major goal in integrating/fusing approaches is to capitalize on the relative strengths of each 

modality, providing results synergistically.

Correlational analyses represent an important element in multimodal neuroimaging. Some 

are based on pure correlations, such as (Eichele et al., 2005; Michael et al., 2010), some are 

based on predictions, e.g., multivariate regression, relevance vector machine (RVM), as 

reported in (De Martino et al., 2010; Valente et al., 2011), which often incorporate testing 

and training phases and thus provide additional information in terms of stability and 

reproducibility of the results. Also, structural equation modeling (SEM) or dynamic causal 

modeling (DCM) can be used to examine the associative structure between functional and 

structural variables (Goncalves and Hall, 2003). However, such linear ROI-based 

approaches may miss important nonlinear connectivity links and do not provide information 

about inter-voxel relationships (Oakes et al., 2007; Schlosser et al., 2003).

The availability of multivariate data-driven approaches provides novel ways to investigate 

the inter-subject covariance among multiple modalities. They include, but are not limited to 

principal component analysis (PCA), ICA, CCA, and partial least squares (PLS). Data 

driven approaches are quite useful for identifying interesting relationships among 

modalities. Such an approach is complementary to model-based approaches which enable 

targeted questions and incorporation of potentially useful assumptions based on known 

properties of the data(Sui et al., 2012a). Informed data-driven approaches are in-between 

these two extremes and will likely play an increasing role in the future. In addition, the 

correct choice of component number is often ambiguous, with interpretations depending on 

the shape and scale of the distribution of points in a data set, thus the easiness of 

interpretation of the results that often is left to the experimenter (selection of components 

etc), though there are several categories of methods can help for making this decision, such 

as improved minimum description length (MDL) (Li et al., 2007). In addition, high model 

order studies have started regularly evaluating the cross-correlation among components 

which enables one to visualize the relationship among components even in the case where 

there may be no ideal model order (Allen et al., 2011).

Future Directions

Although recent multimodal imaging results are promising, much work remains to be done. 

As the field of multimodal imaging is relatively new, most of the studies represent novel 

findings; however, replication is needed to draw general conclusions about structure-

function relationships. Secondly, multimodal fusion proves to be fruitful for a more 

informative understanding of brain activity and disorders, but fusing as many modalities/

features as possible in the training sample does not guarantee best discrimination or 

classification between groups, as reported in (Calhoun and Adali, 2009; Zhang et al., 2012); 

thus it would be helpful to compare a combination of uni-modal and multimodal results, as 

done in (Kim et al., 2010). This work can be pursued in future by using larger data sets and 

various modalities. Finally, introducing multimodal analyses in longitudinal brain studies 

has not been done frequently yet, which could be another new direction, as there are many 

possibilities for modeling the baseline and change over multiple time points.
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Furthermore, recently graph theory-based analyses have become popular for investigating 

brain networks using imaging data (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010; 

Yu et al., 2012; Yu et al., 2013). However, only few studies examined topological properties 

of brain networks from concurrently obtained multiple modalities. Future multimodal 

studies incorporating graph theoretical analyses may be helpful to further understand brain 

functioning.

Besides the four frequently used modalities we discussed above, the incorporation of other 

modalities, e.g. PET, MR spectroscopy, Infrared (FTIR & IR) spectroscopy and/or genetics 

may even further and in greater detail assist in our understanding of the complexities of the 

human brain. For instance, using four modalities (fMRI, sMRI, DTI and MRS), (Hao et al., 

2011) were able to more confidently make statements about the neural determinants of 

intellectual abilities of healthy adults. Moreover, the combination of MRS with MRI could 

provide markers which could clarify the relationship between prodromal phases of 

psychosis, neuroimaging characteristics, and underlying neurobiological pathways (Fusar-

Poli et al., 2011c). More importantly, generating endophenotypes from brain imaging data 

for genetic association studies can help to identify potential biomarkers for several mental 

illnesses (Liu et al.; Meda et al.), which potentially could be used to support clinical 

diagnosis.

Over the last ten years the number of multimodal studies published that employed a 

combination of the 4 previously mentioned modalities has steadily increased as shown in 

Figure 4, as searched from PubMed. It's clear that exploratory brain studies that describe the 

variability across modalities have become more and more popular over the last 5 years. Most 

neuroimaging data fusion schemes are restricted to two modalities, because although 

combining 3 or more modalities improves inferences(Correa et al., 2010a), it also increases 

analytic challenges. A main challenge in multimodal data fusion comes from dissimilarity of 

the data types being fused and result interpretation. However, emerging from 2009, N-way 

multimodal fusion may become one of leading directions in future neuroimaging research.

In summary, we are just beginning to unlock the potential of multimodal imaging. Joint 

analysis of brain functional and structural data appears to be an effective approach for 

analyzing brain diseases. It helps to identify the unique and shared variance associated with 

each imaging modality that underlies cognitive functioning in healthy controls and 

impairment in mental illness. The most promising avenues for the future may rest on 

developing better models based on multi-disciplinary knowledge, thereby enabling the 

broader neurosciences to access neuroimaging so that key questions can be addressed in a 

theoretically grounded fashion (Friston, 2009).
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Research Highlights

• A comprehensive survey of function-structure association studies across 4 

modalities

• Both univariate and multivariate methods are compared in pair-wise and N-way 

fusion

• Both function-structure connectivity and inter-modality covariance are 

examined

• Evidences show that multimodal features enable higher group classification 

accuracy.

• Guide readers to select an appropriate method based on a given fusion research
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Figure 1. Functional and anatomical connectivity that differs between healthy controls and 
schizophrenia
(a) Connections between brain regions that was lower in schizophrenia patients than controls 

(p<0.01) in measure of anatomical connectivity (DTI) (b)Connections between brain regions 

that differ between SZ and HC in functional connectivity (FMRI). Red lines represent 

connections for which the functional connectivity was higher in patients, whereas for green 

line, connectivity was higher in control subjects (p<0.02). IFG, inferior frontal gyrus; IPL, 

inferior parietal lobule; MTG, middle temporal gyrus; STG, superior temporal gyrus. Ant., 

anterior;
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Figure 2. An example of functional-structural connectivity study by (Segall et al., 2012)
The structural (sMRI) components (red) and corresponding rs-fMRI components (blue). The 

spatial correlation between component pairs is indicated adjacent to the functional 

component number. Both sMRI and fMRI aggregate components were converted to z-scores 

and thresholded at Z > 2. Structural components are displayed at the slices with peak 

activation, indicated as (x, y, z) coordinates in MNI space. Functional components are 

displayed at different coordinates that best represent their activation.

Sui et al. Page 28

Neuroimage. Author manuscript; available in PMC 2015 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. fMRI-sMRI-DTI fusion by mCCA+jICA
Summary of joint and modal specific group discriminative ICs(p<0.05). Joint ICs is 

significantly group-discriminative in more than 2 modalities, such as IC1, IC2 and IC9. In 

addition, fMRI_IC4, DTI_IC3 and DTI_IC7 only show significance in a single modality, 

they are called modal-specific discriminative ICs(pink framed). Hence the modal MCCA

+jICA enable people to capture components of interest that are either common or distinct 

across modalities.
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Figure 4. Frequency of published multimodal fusion studies using brain imaging data
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Table 1
Summary of Function-Structure Association Studies

Modality Focus Papers Subject Type Methods

fMRI-sMRI

connectivity

(Tian et al., 2011),(Schultz et al., 
2012), (Kim and Lee, 2012), (Segall 
et al., 2012), (Casey et al., 2005). 
(Salgado-Pineda et al., 2004), 
(Salgado-Pineda et al., 2011), 
(Smieskova et al., 2012), (Schultz et 
al., 2012). (Rasser et al., 2005), 
(Fusar-Poli et al., 2011a),(Michael 
et al., 2010), (Michael et al., 2011),
(Rektorova et al., 2012),(Smieskova 
et al., 2011),(Harms et al., 2012)

HC-MDD,
HC-SZ,
HC-MCI-AD
HC-TBI

Correlational analysis
Multiple Regression

covariance

(Calhoun et al., 2006; Choi et al., 
2008) (Correa et al., 2008), 
(Camchong et al., 2011), (Wee et 
al., 2011),(Kim et al., 2012a)

HC-SZ,
HC-MDD,
HC-AD

jICA, mCCA

fMRI-DTI

connectivity

(Olesen et al., 2003),(Matthews et 
al., 2011),(Koch et al., 2011),
(Schlosser et al., 2007),(Skudlarski 
et al., 2010), (Zhou et al., 2008), 
(Yan et al., 2012), (Soldner et al., 
2011), (Wang et al., 2009), 
(Schonberg et al., 2006), (Staempfli 
et al., 2008),(Voss and Schiff, 
2009),(Palacios et al., 2012)

healthy children,
HC-MDD,
HC-SZ, HC-BP,
HC-TBI
HC-AD-MCI,

Correlational analysis, 
SEM
Multiple Regression

covariance (Franco et al., 2008; Sui et al., 
2011; Teipel et al., 2010)

HC-SZ,
HC-SZ-BP

jICA,
mCCA+jICA

EEG-sMRI connectivity

(Zaehle and Herrmann, 2011),
(Fusar-Poli et al., 2011b),(Cardenas 
et al., 2005),(Ford et al., 1994) 
(Williams et al., 2005), (Schiltz et 
al., 2006) (Huster et al., 2007; Vogt 
et al., 1995),(Huster et al., 2012; 
Huster et al., 2011; Huster et al., 
2009),(Vogt et al., 1995)

HC
HC-AD
HC-SZ

Correlational analysis,
Dynamic causal 
modeling
Multiple Regression

EEG-DTI connectivity

(Westerhausen et al., 2006),
(Whitford et al., 2011) (Voineskos 
et al., 2010),(Teipel et al., 2009),
(Valdes-Hernandez et al., 2010),
(David and Friston, 2003)). 
(Klimesch et al., 2003), (Zoefel et 
al., 2011), (Cavanagh et al., 2012; 
Gruendler et al., 2011), (Westlye et 
al., 2009), (Cohen, 2011)

HC-SZ,
HC-AD
HC-MCI

Correlational analysis
Multiple Regression

Three-way Fusion

connectivity

(Jacobson et al., 2009), (Supekar et 
al., 2010), (Pomarol-Clotet et al., 
2010), (Jann et al., 2012), (Sexton 
et al., 2012), (Qiu et al., 2011)

HC-ADHD children-adults,
HC-MDD
HC-psychotic

Correlational analysis,
Multiple Regression

covariance

(Calhoun and Adali, 2009), (Correa 
et al., 2010a) (Groves et al., 2011), 
(Sui et al., 2012b; Zhang et al., 
2012), (Zhang et al., 2011), (Groves 
et al., 2012), (Sui et al., 2012c)

HC-SZ
HC-AD
HC-MCI-AD

jICA, mCCA,
mCCA+jICA
linked ICA
SVM

Other Fusion Applications

fMRI-EEG 
DTI-sMRI 
GM-WM 
MRI-Gene

(Eichele et al., 2008; Liu and 
Calhoun, 2007), (Chen et al., 2011; 
De Martino et al., 2010; Haller et 
al., 2011),(Chen et al., 2009; 
Martinez-Montes et al., 2004),
(Correa et al., 2010a; Correa et al., 
2010b; Jagannathan et al., 2010; 
Jamadar et al., 2010; Liu et al., 
2009; Meda et al., 2010),(Hao et al., 

HC-SZ,
HC-AD
HC-MCI,
HC-BP,
HC-TBI
HC

Correlational analysis,
Multiple Regression 
jICA, mCCA PCA, 
PLS, parallel ICA
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Modality Focus Papers Subject Type Methods

2011),(Fusar-Poli et al., 2011c),(Xu 
et al., 2009),(Meda et al., 2012a)
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