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Abstract The serotonin-transporter-linked polymorphic

region (5-HTTLPR) is associated with mood disorders.

This association is thought to be due to amygdala hyper-

responsiveness to negative emotional stimuli as a result of

reduced frontal cortical control. In Caucasians, the short

form is associated with this effect, but in Han Chinese we

recently found that the long form is involved. Serotonin

receptors have rich expression in default mode network

(DMN) regions and the recent studies have found an

association between the short form of the 5-HTTLPR and

DMN functional connectivity (FC) in Caucasians. The

present study has investigated whether there may also be an

ethnic difference in this influence of 5-HTTLPR on the

DMN. We recruited 233 young Han Chinese subjects and

calculated the resting-state default-network FC. Our study

found that the L carriers had decreased FC in the bilateral

medial prefrontal cortex, right parahippocampal gyrus, left

middle temporal gyrus, and increased FC in left precuneus

(Pcu) compared to SS. The PCC-Pcu FC in L carriers was

significantly negatively correlated with the depression

scores. Our findings, therefore, suggest that there is also a

difference between Caucasian and Han Chinese subjects in

the association between the different forms of the

5-HTTLPR and DMN functional connectivity.

Keywords 5-HTTLPR � Default mode network �
Ethnic difference � Resting-state functional

connectivity

1 Introduction

The serotonin-transporter-linked polymorphic region (5-

HTTLPR), which affects 5-HTT gene transcription and

modulates the serotonergic activity, comprises two vari-

ants: the long (L, 16 copies of a 20–23 base pair repeat

unit) and the short (S, 14 copies) allele, and is an important

candidate gene for understanding the gene mechanism of

mood disorders [1, 2]. A number of studies have presented

an important role of ethnic background on the effects of the

short and long forms of 5-HTTLPR. These studies have

shown that firstly in Asians, the L allele of 5-HTTLPR

confers a higher risk for depression and is also associated

with a reduced response to antidepressant drugs [3–6],

whereas in Caucasians, it is the S rather than that the L

allele which exhibits this link [7–11]. Secondly, there

exists an ethnic difference in the allele distribution of
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5-HTTLPR with the S allele frequency being significantly

higher in Asians than that in Caucasians [9]. Thirdly,

whereas the S allele is associated with amygdala hyper-

activation in Caucasian subjects during a classical emo-

tional processing task [12–14], in Asian subjects, this same

5-HTTLPR effect is associated with the L allele [15, 16].

The amygdala-frontal neural network is important for

understanding the pathogenesis of mood disorders and our

previous study found that the effect of 5-HTTLPR on the

amygdala-PFC functional and structural coupling was also

varied across racial or ethnic groups, decreased coupling

observed with L allele carriers in HAN Chinese [17], but S

allele ones in Caucasian/heterogeneous subjects [18, 19].

To date, the studies have mainly focused on the limbic-

prefrontal cortex system and it is not clear whether there

are also different effects of 5-HTTLPR on the other neural

networks associated with mood disorders.

The brain default mode network (DMN), a fundamental

resting-state network, shows high activity during rest and

internally directed thoughts but becomes deactivated dur-

ing tasks involving externally directed attention [20, 21].

This so called ‘task-negative’ intrinsic network has been

implicated in self-referential and introspective processing,

such as during rumination, personal future planning and

episodic memory [20–22]. The DMN includes medial

prefrontal cortex (mPFC), lateral parietal cortex, posterior

cingulate cortex (PCC), parahippocampal gyrus (PHG),

and retrosplenial and inferior temporal cortex [22–24].

Based on its important role in emotion processing and the

heritability of the functional connectivity (FC) in DMN

[25], it has been considered as a plausible endophenotype

to link gene polymorphisms and mental disorders [20, 21].

Serotonin receptors are highly expressed in the DMN [26]

and recently, a study in Caucasian subjects has reported

that S allele homozygotes of 5-HTTLPR had the weakest

resting-state FC between the posterior hub of the DMN

(PCC) and mPFC [27]. However, it is currently unclear

whether this is also the case with Asian subjects or whether

a similar ethnic difference exists for 5-HTTLPR effects on

DMN as has been found for amygdala-frontal connections.

The current study therefore investigated the association

between DMN FC and 5-HTTLPR in a large population of

Han Chinese using resting-state functional magnetic reso-

nance imaging (rsfMRI). We chose the PCC as the seed

region and calculated the functional connectivity of the PCC

with other DMN regions. Based on the previous studies, we

hypothesized that the 5-HTTLPR alleles would be associ-

ated with different strengths of FC in the DMN and that in

Han Chinese subjects, in contrast to Caucasians, it would be

the L allele which would be linked with reduced FC between

PCC and some other DMN regions. In addition, until now,

many studies, including our previous research, have shown

that the 5-HTTLPR variants were associated with anxiety-

related scores and depression [6, 7, 11, 17]. In light of the

link between the anxiety/depression measures and functional

connectivity [18, 28–31] and the heritability of DMN FC

[25], it seems interesting to study whether the association

between anxiety/depression scores and FC in DMN was

moderated by 5-HTTLPR genotypes. We expected to find

the distinct correlation between behavior scores and DMN

FC in different genotypes of 5-HTTLPR variants.

2 Materials and methods

2.1 Subjects

All participants in this study were Han Chinese and were

recruited by advertisement. Written informed consent was

signed by all the subjects. The study was approved by the

local Medical Research Ethics Committee of the Tianjin

Medical University. Before the formal experiment, we

carefully asked the subjects to insure that they had no

family history of psychiatric disorder, drug or alcohol

abuse, psychiatric or neurological illness, head trauma, and

no contraindications to MRI scanning, although no clinical

tools (SCID) were used to screen. The Beck Depression

Inventory-II (BDI-II) was used to measure depression

levels, while the State-Trait Anxiety Inventory (STAI) and

the Self-Rating Anxiety Scale (SAS) were used to measure

anxiety. This study included 239 participants, and the

details for the participants’ inclusion had been described in

our previous study [17].

2.2 Genotyping

Genomic DNA was extracted from whole blood by using

the EZgeneTM Blood gDNA Miniprep Kit (Biomiga Inc,

San Diego, CA, USA). Then, the PCR and ligation detec-

tion reaction (LDR) methods [32, 33] were used to geno-

type the 5-HTTLPR polymorphisms for each participant.

The PCR primer sequences of 5-HTTLPR were as follows:

forward: 50-AACCCCTAATGTCCCTACTGC-30 and

reverse: 50-GGAGATCCTGGGAGAGGTG-30. PCR was

carried out in 20 lL volume samples that contained 1 lL

genomic DNA, 0.4 lL primer mixture, 2 lL dNTPs,

0.6 lL Mg2?, 2 lL buffer, 4 lL Q-Solution, and 0.3 lL

Taq DNA polymerase. The amplification protocol con-

sisted of an initial denaturation and enzyme activation

phase at 95 �C for 15 min followed by 35 cycles of

denaturation at 94 �C for 30 s, annealing at 62 �C for

5-HTTLPR for 1 min and 30 s, extension at 72 �C for

1 min, and then a final extension at 72 �C for 7 min. The

PCR products were verified in 3 % agarose gels that had

been stained with ethidium bromide to regulate the amount

of DNA that was added to the LDR. The polymorphisms of
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5-HTTLPR could be obtained by the PCR products. Six

subjects were excluded for failure of genotyping.

2.3 MRI acquisition

MRI data were acquired on a 3.0 T GE scanner (General

Electric; Milwaukee, WI, USA). During rsfMRI, the vol-

unteers were instructed to lie quietly without falling asleep

and to keep their eyes closed. A single-shot, gradient-echo,

echo-planar-imaging sequence was used to collect the fMRI

data with 180 volumes, and every volume included 40 sli-

ces. The repetition time (TR) and echo time (TE) for the

rsfMRI scanning were 2,000 and 30 ms, respectively. Other

parameters included the slice thickness (4 mm), the flip

angle (90�), the FOV (240 mm 9 240 mm), and the matrix

(64 9 64). T1-weighted images were obtained by using a

brain volume sequence with the following parameters:

TR/TE = 8.1/3.1 ms, flip angle = 13�, matrix = 256 9 256,

FOV = 256 mm 9 256 mm, 176 sagittal slices, and slice

thickness = 1 mm.

2.4 fMRI preprocessing

First, two experienced radiologists checked the raw fMRI

data, blind to any gene polymorphism information and

excluded the subjects whose raw data had serious signal

loss or interslice motion artifacts (nine subjects). The

preprocessing process was then carried out using DPARSF

(http://www.restfmri.net/forum/DPARSF). The first ten

volumes were discarded and a slice-timing correction was

applied. A correction for head motion was then performed,

which excluded participants who had maximum displace-

ments along the x, y, or z direction greater than 2 mm, or

maximum rotations greater than 2� around the x, y, or z axis

(11 subjects). Subsequent preprocessing included spatial

normalizing to the Montreal Neurological Institute (MNI)

space and smoothing using a 4-mm Gaussian Kernel.

Linear regression was then conducted to avoid the potential

effects of head motion, linear drift, white matter, cerebro-

spinal fluid, and global signal. Finally, the fMRI data were

temporally filtered with a band-pass filter of 0.01–0.08 Hz.

2.5 DMN definition

We chose the PCC which is a hub in the DMN [34] as the

seed region and defined it as a 6 mm cubic volume at the

central MNI coordinate: (x, y, z) = (0, -52, 30) as in the

previous studies [35]. Then, the average time series for the

seed region was calculated by averaging the time series in

the PCC, and the correlation coefficients were calculated

between this and the time series in the other voxels. Fisher

r-to-z transformation was used to transform resulting cor-

relation maps to Z values. A one sample t test was

performed on the resulting Z maps for all subjects to obtain

the DMN at the threshold of P \ 0.05, with a family-wise

error correction.

2.6 Statistical analysis

Based on the previous studies in the Asian population [15] and

the genotype distribution of 5-HTTLPR in our subjects, we

divided the subjects into two groups (L carriers (LL ? LS)

and SS homozygotes). Then a two sample t test was carried out

to find the difference in the FC of PCC between the L carriers

and S homozygotes in a voxel-wise manner, with age and

gender as covariates. A Monte Carlo simulation was used for

multiple comparisons correction and results were obtained

which survived under a corrected P \ 0.05 (the parameters

for AlphaSim program in REST, http://www.restfmri.net/

forum/, where: P value at each voxel = 0.005, cluster con-

nection radius r mm = 5, FWHM = 4 mm, number of Monte

Carlo simulations = 5000, with a mask from one sample t test

on the resulting Z maps). Two sample t tests were also con-

ducted to compare the BDI-II, SAS, STAI-state, and STAI-

trait scores between the different groups of 5-HTTLPR.

Correlations between scores on the depression and anxiety

questionnaires and functional connectivity between DMN

regions were carried out using Pearson tests in the two dif-

ferent genotype groups.

3 Results

In the current study, 233 participants were included in the final

gene behavior analysis and 213 participants were included in

the final functional connectivity analysis. The 233 subjects

(132 females, mean age: 22.76, age range: 18–29 year old)

were divided into two groups: L carriers (LL: 15 and LS: 85)

and S homozygotes (SS: 133). As our previous study has

reported [17], the 5-HTTLPR variants significantly influenced

the state anxiety (P = 0.032) of STAI measure and tended to

influence the trait anxiety (P = 0.063) of the STAI measure.

However, the 5-HTTLPR polymorphisms showed no influ-

ence on the SAS score (P = 0.629) and BDI-II score

(P = 0.307). Specifically, the L carriers of 5-HTTLPR had

significantly higher state anxiety scores (L carriers:

mean ± SD 31.94 ± 6.06; SS: 30.05 ± 6.27) and tended to

have higher trait anxiety (L carriers: 35.67 ± 6.48; SS:

33.93 ± 6.28) than S homozygotes. In addition, two geno-

types showed no significant differences for age and gender.

Resting-state FC analysis showed that the PCC was

positively correlated with the regions involved in DMN,

such as mPFC, superior frontal cortex, orbitofrontal cortex,

PHG, inferior and medial temporal gyri, retrosplenial and

lateral parietal cortices, and cerebellum [24], as shown in

Fig. 1a. There was also a significant impact of 5-HTTLPR
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on DMN functional connectivity. The L carriers (LL: 15 and

LS: 75) of 5-HTTLPR showed significantly reduced func-

tional connectivity in the bilateral mPFC, the right PHG and

left middle temporal gyrus (MTG) compared with the S

homozygotes (SS: 123). On the other hand, the L carriers

exhibited greater functional connectivity in left precuneus

(Pcu) than the S homozygotes (Table 1, Fig. 1b).

Correlation analysis between scores on behavioral tests

and functional connectivity between the PCC and the left

and right mPFC, right PHG, left MTG, and left Pcu

revealed a significantly (corrected threshold P = 0.05/20,

Bonferroni correction for multiple testing) negative asso-

ciation between BDI-II scores and the PCC-Pcu

(P = 0.001) only in L carriers (see Table 2; Fig. 1c). In

addition, the SAS scores tended to be correlated with the

PCC-PHG (P = 0.01) in L carriers.

4 Discussion and conclusions

The current study investigated the impact of 5-HTTLPR

gene polymorphisms on the functional connectivity of DMN

in Han Chinese subjects and generally confirmed our

hypothesis that 5-HTTLPR L allele carriers would have

reduced DMN functional connectivity compared to S allele

homozygotes. In particular, the L carriers showed decreased

functional connectivity between the PCC and the bilateral

mPFC, left MTG and right PHG, but increased FC between

the PCC and left Pcu. Altered functional connectivity

between these DMN regions occurred frequently in mood

disorders [20, 21, 36, 37] and we found that in L carriers, but

not in S homozygotes, the strength of functional connections

between the PCC and the left Pcu was significantly nega-

tively correlated with depression scores and the PCC-L.Pcu

connectivity tended to be correlated with anxiety scores.

The inhibitory 5-HT1A receptor is highly expressed in

the frontal, parietal, and temporal cortices [26], which are

core regions within the DMN, and there is also an associ-

ation between 5-HT1A receptor binding and DMN during

resting-state and task-dependent activity [35]. The previous

research in healthy volunteers has found that 5-HTTLPR

variants influenced 5-HT1A receptor binding potential in

widespread brain regions, including the frontal cortex,

temporal lobe, and parietal cortex [38]. On the other hand,

the research has also shown the evidence for widespread

binding of the excitatory 5-HT2A receptor in frontal, pari-

etal, and temporal DMN regions [26] and the recent study

has found that the hallucinogen, psilocybin, which is a

5-HT2A receptor antagonist, reduced functional connec-

tivity between ventromedial prefrontal cortex and PCC

[39]. Other studies which used acute tryptophan depletion

to modulate the 5-HT level in healthy participants have

also reported reduced fractional amplitude of low-fre-

quency fluctuation in the mPFC and PCC [40]. Functional

connectivity between the mPFC and PCC/Pcu is altered in

a number of psychiatric disorders during both the resting-

state and self-processing tasks [41]. Thus, 5-HTTLPR

polymorphisms may influence 5-HT concentrations and

interact with both inhibitory and excitatory receptors to

influence mood and self-processing via the cortical midline

components of the DMN. However, in the current study,

we did not find a significant correlation between the PCC-

mPFC functional connection and anxiety in L carriers.

Our results also showed that the L allele of 5-HTTLPR

was associated with reduced functional connectivity

between the PCC and PHG and MTG but increased con-

nectivity with the Pcu. For the PCC functional connection

with the PHG, there was a negative trend of correlation

with self-rated anxiety (SAS score) in the L carriers but not

in the S homozygotes, although this correlation could not

survived under an overall strict corrected P = 0.0025.

Thus, higher anxiety scores were associated with weaker

functional connection strength in this PCC-PHG link. The

PHG plays an important role in emotion regulation and

memory [36] and novelty detection [42] and along with the

Fig. 1 The DMN pattern obtained from rsfMRI and the results for

resting-state functional connectivity analysis. a The default-network

functional connectivity. b The alterations in default-network func-

tional connectivity between two genotypes of 5-HTTLPR. The warm

color indicated the regions showing decreased connectivity and the

cool color indicated the regions showing increased connectivity in L

carriers than S homozygotes. c The association between the PCC-

R.PHG coupling and the SAS scores and between the PCC-L.Pcu link

and BDI scores in L carriers. L left, R right. SAS Self-Rating Anxiety

Scale, BDI Beck Depression Inventory-II
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amygdala and hippocampus shows increased responses to

emotional stimuli in panic disorder [43, 44] and specific

phobias [45]. Thus, the reduced functional connectivity

between the PCC and PHG in L carriers may represent an

increased susceptibility to anxiety disorders and associated

emotional and cognitive dysfunction.

The increased functional connectivity between the PCC

and left Pcu in L carriers was strongly negatively correlated

with depression scores. Thus, the higher depression scores

were associated with weaker functional connectivity in this

PCC-Pcu link. The PCC-Pcu is considered to play an

important role in the DMN and interacts strongly with all

other regions within it [46]. The Pcu is involved with a

range of behavioral functions, including emotion respon-

ses, working memory, and self-processing [47], and both

PCC and Pcu are activated during autobiographical mem-

ory retrieval [48]. Two recent studies on Asian subjects

have reported altered functional connectivity between PCC

and Pcu in depression patients [49, 50]. Thus, our current

findings suggest that the L carriers of the 5-HTTLPR may

have a greater susceptibility to depression related changes

in this core area of the DMN, although we did not find the

overall evidence for L carriers having higher depression

scores than S homozygotes.

Our study also found evidence of reduced PCC to left

MTG functional connectivity in L carriers, although this was

not correlated with either anxiety or depression scores. The

MTG is also associated with the serotonin system [51, 52]

and has been implicated in emotional perception and emo-

tional regulation [53, 54]. Both schizophrenia and depression

patients had smaller gray matter volume in the MTG and

abnormal MTG–DMN functional connectivity which may

relate to negative thoughts in relation to self [55, 56].

Overall our results in Han Chinese subjects have shown

that L carriers of the 5-HTTLPR had decreased functional

connectivity within the DMN, with the exception of the

PCC-Pcu. However, these findings were contrary to those of

the recent report that the S allele of 5-HTTLPR was associ-

ated with the reduced functional connectivity between pos-

terior DMN and mPFC in Caucasians [27]. We have found

similar evidence for this ethnic difference in 5-HTTLPR for

amygdala-frontal connectivity, with again the L carriers

exhibiting reduced functional and structural connectivity

compared with S homozygotes in Han Chinese subjects [17]

Table 1 Default-network functional connectivity in the different 5-HTTLPR genotypes

Brain regions K T Z MNI coordinates Genotypes, mean (SD)

x y z L carriers S homozygotes

SS [ L carriers

L.mPFC 77 3.20 3.16 -10 72 16 0.27 (0.26) 0.39 (0.22)

R.mPFC 42 3.21 3.17 6 68 16 0.33 (0.31) 0.46 (0.27)

R.PHG 158 3.87 3.80 34 -26 -18 0.11 (0.17) 0.19 (0.14)

L.MTG 28 3.22 3.18 -54 -14 -18 0.37 (0.28) 0.49 (0.27)

L carriers [ SS

L.Pcu 58 3.91 3.83 -6 -64 44 0.38 (0.27) 0.23 (0.29)

All regions survived under the corrected threshold of P \ 0.05. K cluster size (the number of voxels), mPFC medial prefrontal cortex, PHG

parahippocampal gyrus, MTG middle temporal gyrus, Pcu precuneus, L left, R right, SD standard deviation

Table 2 Correlations between altered PCC functional connectivity and behavior scores for L carriers and S homozygotes

BDI R value (P value) SAS R value (P value) STAI_state R value (P value) STAI_trait R value (P value)

L carriers S homozygotes L carriers S homozygotes L carriers S homozygotes L carriers S homozygotes

L.mPFC -0.052 -0.040 -0.072 -0.004 -0.058 -0.136 0.018 -0.081

(0. 632) (0.664) (0.504) (0.965) (0.590) (0.127) (0.867) (0.375)

R.mPFC -0.139 -0.003 -0.153 0.070 -0.086 0.021 -0.093 0.001

(0.196) (0.971) (0.154) (0.447) (0.428) (0.821) (0.389) (0.994)

R.PHG -0.108 0.033 -0.272 -0.040 -0.106 0.014 0.036 0.051

(0.316) (0.721) (0.010) (0.661) (0.326) (0.881) (0.739) (0.578)

L.MTG -0.126 0.021 0.156 -0.114 -0.044 -0.146 0.075 -0.145

(0.242) (0.821) (0.148) (0.214) (0.683) (0.111) (0.489) (0.112)

L.Pcu -0.339 -0.058 -0.101 0.030 -0.030 0.068 0.075 0.024

(0.001) (0.531) (0.351) (0.747) (0.785) (0.456) (0.488) (0.798)

A P value of \0.0025 was considered significant (i.e. corrected for multiple tests)
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but with the S carriers showing this pattern in Caucasian

subjects [18]. Thus, our current study suggests that the ethnic

difference between the influence of the short and long forms

of the 5-HTTLPR may extend to multiple brain systems

associated with emotional and cognitive processing as well

as psychiatric disorders. Another recent study on Chinese

subjects has found greater activity in the mPFC of Han

Chinese subjects with the S allele of 5-HTTLPR, although

this correlated with higher levels of distressed feelings [57].

This suggests that the L allele in Han Chinese subjects is

associated with both reduced mPFC activity and functional

connectivity with the PCC, although the link with different

emotional traits is less clear at this point. Clearly, further

confirmation of an ethnic difference of 5-HTTLPR on DMN

activity and functional connectivity between Han Chinese

and Caucasian subjects is required, along with the behavioral

consequences. The previous study on Caucasian subjects

was also considered as a preliminary research on the DMN

with a relatively small number of subjects including ado-

lescents [27]. As far as we know, the ethnic difference in the

effect of 5-HTTLPR polymorphisms between the Asians and

the Caucasians is common and reflects in the association

with the depression disorder [6, 7], the response to antide-

pressant treatment [3, 10], the amygdala activation to the

emotional stimuli [12, 15], and the neural circuit related to

the emotional processing [17, 18]. The different allele dis-

tribution of 5-HTTLPR, the genetic background, environ-

mental, and culture factors, might give rise to such ethnic

difference. However, until now, we have been unsure what

actually causes this ethnic difference in the impact of

5-HTTLPR genotypes. Our work was an initial study and

found the different effect of 5-HTTLPR on the default mode

network between the Han Chinese and the Caucasian, further

micro and macro researches are needed to identify the bio-

chemical mechanism and environmental effect for the ethnic

difference.

In summary, we found potential evidence that in Han

Chinese subjects reduced functional connectivity occurring

in a number of DMN regions was associated with the long

allele of the 5-HTTLPR, whereas the short allele may be

involved with this same effect in Caucasian subjects. This

is in agreement with a similar ethnic difference for func-

tional connectivity involving the amygdala and frontal

cortex and therefore suggests a potential widespread dif-

ferent impact of these 5-HTTLPR polymorphisms on brain

function in Han Chinese and Caucasian populations. These

differences may reflect altered functional interactions

between serotonin signaling and emotional and cognitive

function in Han Chinese and Caucasian populations with

potential implications for pharmacological treatments of

mood disorders. The functional consequences of this ethnic

difference in the effects of 5-HTTLPR are clearly an

important area for further investigation.
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