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Abstract The majority of brain activities are performed

by functionally integrating separate regions of the brain.

Therefore, the synchronous operation of the brain’s mul-

tiple regions or neuronal assemblies can be represented as a

network with nodes that are interconnected by links.

Because of the complexity of brain interactions and their

varying effects at different levels of complexity, one of the

corresponding authors of this paper recently proposed the

brainnetome as a new –ome to explore and integrate the

brain network at different scales. Because electroenceph-

alography (EEG) and magnetoencephalography (MEG) are

noninvasive and have outstanding temporal resolution and

because they are the primary clinical techniques used to

capture the dynamics of neuronal connections, they lend

themselves to the analysis of the neural networks com-

prising the brainnetome. Because of EEG/MEG’s appli-

cability to brainnetome analyses, the aim of this review is

to identify the procedures that can be used to form a net-

work using EEG/MEG data in sensor or source space and

to promote EEG/MEG network analysis for either neuro-

science or clinical applications. To accomplish this aim, we

show the relationship of the brainnetome to brain networks

at the macroscale and provide a systematic review of net-

work construction using EEG and MEG. Some potential

applications of the EEG/MEG brainnetome are to use

newly developed methods to associate the properties of a

brainnetome with indices of cognition or disease condi-

tions. Associations based on EEG/MEG brainnetome ana-

lysis may improve the comprehension of the functioning of

the brain in neuroscience research or the recognition of

abnormal patterns in neurological disease.
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Introduction

The brainnetome and the EEG/MEG network

Because the brain is an adaptable and efficient system that

integrates a large number of neurons, axons and astrocytes

so that they function concordantly, one of the challenges in

the field of neuroscience is the examination of brain

function. Exploring brain function increases scientists’

comprehension of this mysterious system and may facili-

tate the diagnosis of neuropsychological diseases. Neurol-

ogists and clinicians have attempted to determine the

underlying mechanisms of brain function since the 18th

century. For many years, the central theme of brain func-

tion was that of functional localization, i.e., each separate

region of the cerebral cortex dictates a specific function.

Thus, it would be hypothetically feasible to delineate the

region of the cortex that implements a certain function.

Electrophysiological techniques were applied to validate

such functional localization. However, investigations that

showed a high level of electrical conduction between dif-

ferent regions of the brain ultimately revealed that the

evidence for functional localization was insufficient and

thus that localizing a specific brain function to an indi-

vidual region of the brain may not be possible (Başar 2011;

Fehr 2013; Fuster 2006; Poldrack 2006).

Advances in electrophysiology and neuroimaging

increased the comprehension of brain function by findings

such as synaptic connections between neurons (Gerstein

and Perkel 1969) and neural assemblies (Fingelkurts et al.

2010), in which distributed neural activity is thought to be

integrated into dynamic connections (Eichenbaum 1993;

Varela 1995). The brain is no longer considered to work via

individual regions but rather by several regions working

cooperatively (Varela et al. 2001). This concept is also

consistent with microscopic observations of the brain.

Neurons were found to be connected by axons in ways that

allowed their individual actions to be synchronized. Simi-

larly, the functional integration of distinct brain regions,

which had been analyzed using various imaging modalities,

could be deduced at a macroscopic level (Frackowiak et al.

2004; He and Liu 2008; Pockett et al. 2007). This func-

tional integration means that segregated brain regions are

integrated and coordinated to perform a particular function

(Fingelkurts et al. 2010; Tononi et al. 1994).

Because of this progress from functional localization to

functional integration, both the academic community and

governments now understand the importance of the neural

network. A series of projects, such as the ‘‘Human Connec-

tome Project’’ in the U.S. and the ‘‘CONNECT Project’’ in

Europe, were launched across the world to delineate this

complex network. The Brainnetome Project is a similar

project for China but is focused on the unique structural and

dynamic features of the brain network and provides a lon-

gitudinal perspective. The brainnetome concept, as a new –

ome, covers not only the brain connectivity based on brain

structural/functional data but also the potential relationship

between certain parts of the network with genetics. A review

by Jiang (2013) presented details of the Brainnetome Project

and enumerated these contemporary international projects.

We refer readers to this work for more information regarding

related projects. The brainnetome concept was designed to

integrate a variety of neuroimaging techniques, methods and

models as well as to merge fragmented findings into a uni-

form research framework to further clarify the organization

of the brain. Song and Zuo, respectively, provided reviews of

the use of functional magnetic resonance imaging (fMRI)

and diffusion MRI (dMRI) to develop the brainnetome (Song

and Jiang 2012; Zuo et al. 2012). Although the brain network,

the brainnetome, has been studied in a number of publica-

tions, the majority of them focused on networks constructed

using fMRI data. A few studies provided networks based on

EEG/MEG data (Gavit et al. 2001; Michel et al. 2004; Michel

and Murray 2012), but few introduced a method for con-

structing an EEG/MEG network in both sensor space where

the measurements occur and source space in the brain itself

or explained how neuroscientists and clinicians can apply

this type of network analysis (Lemieux et al. 2011). This

manuscript is designed to complement current brainnetome

analyses by adding electromagnetic network information

and applying its network properties to neuroscience research

and clinical applications.

Traditional electrophysiological techniques that recor-

ded electrical currents in a single region have been

improved by multi-channel EEG and MEG systems which

can record 256 channels simultaneously with superb tem-

poral resolution. Taking advantage of multiple channels

with this level of resolution, the functional integration of

the brain can be analyzed across multiple regions by this

system. The association between channels can be intui-

tively defined as their connectivity. Based on this definition

of connectivity, the brain activity can be organized into

networks. Adding this type of network system to those

derived from fMRI and relating electromagnetic network

features to psychiatric, behavioral, or clinical performance

could advance neuroscience and clinical research (Britz

et al. 2010) (Schoffelen and Gross 2009).

To encourage the adoption of EEG or MEG for

studying the brainnetome, this review introduces EEG/

MEG in Subsection ‘‘Usefulness of EEG/MEG in brain-

netome analysis’’ of the Introduction. Because graph

theory is the basis for brainnetome analysis, the basics of

graph theory analysis will be introduced in Subsection

‘‘Graph theory’’.
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Usefulness of EEG/MEG in brainnetome analysis

EEG uses electrodes attached to a subject’s scalp to mea-

sure voltage fluctuations in the ionic current that accom-

panies neuronal activity (Lewine and Orrison 1995a). It is a

common non-invasive technique used to record the elec-

trophysiological signals resulting from brain activity. EEG

is also free of ionic radiation or constrictive head fixation,

which are unavoidable in computed tomography and MRI.

This means that an EEG system can easily be administered

in either research or clinical settings. Moreover, experi-

mental paradigms that use EEG are not limited by stringent

recording requirements. The most important factor with

respect to the study of the brainnetome is that the most

advanced EEG systems can detect signals with a sampling

rate faster than 1 kHz. Equipped with this resolution, an

EEG system can record subtle and swift changes in neu-

ronal activity, an important advantage, since some activi-

ties, such as epileptiform spike waves, may occur in less

than 50 ms. Hence, EEG can provide precise measure-

ments of brain activity.

MEG is another non-invasive technique for the mea-

surement of brain activity, but it records the magnetic fields

produced by naturally occurring electrical currents from the

brain using arrays of superconducting quantum interference

devices. MEG data reflect the magnetic field flux directly

produced by intra-cellular current flow in the asymmetrically

organized dendritic tree arborizations that are principally

found in the isocortical layers of the gray matter (Lewine and

Orrison 1995b). MEG has a temporal resolution comparable

to EEG. But because the different structures of the head

(brain, cerebrospinal fluid, skull and scalp) influence the

magnetic fields less than the volume current flow that affects

EEG, MEG has a higher localization accuracy than EEG.

Additionally, MEG is reference free, so localizing sources at

a given level of precision is more easily done with MEG data

than it is with EEG data (Bastiaansen et al. 2001; Kristeva-

Feige et al. 1997; Scherg 1992).

Not only does their temporal resolution make EEG/MEG

suitable for a brainnetome analysis, but also EEG and MEG

systems can simultaneously provide signals in multiple

channels. For example, EEG can support up to 256 electrodes

to record signals at different sites on the subject’s scalp.

Because the hypothesis about brain activity has progressed

from functional specification to functional integration, a time

series of simultaneous recordings in several regions of the

brain is needed to investigate the integration of the various

brain areas contained in these data.

In summary, both their superb temporal resolution and

multiple-channel recording ability qualify EEG and MEG

for the performance of brainnetome analysis. This is

especially true in the context of source estimation or con-

nectivity analyses, both of which require a high degree of

temporal resolution (Darvas et al. 2004; Schoffelen and

Gross 2009).

Graph theory

The neural network can be represented as a complex network

due to the involvement of multiple brain regions and their

multi-scale organization (Başar 2011; Bassett and Gazzan-

iga 2011). Its network representation inevitably demands

graph theory analysis to investigate the properties of the

brainnetome, such as small-worldness and scale invariance

(Sporns et al. 2000). Studies of brain small-worldness sug-

gested that the brain may be represented simultaneously by

both a highly segregated and a highly integrated networks

(Bullmore and Sporns 2009). This is in line with the phe-

nomenon of metastability of brain activity demonstrated

earlier (for the review, refer to the work by Fingelkurts

(2004)). Metastability represents brain functioning where

the individual parts of the brain exhibit tendencies to func-

tion autonomously at the same time as they exhibit tenden-

cies for coordinated activity (Kelso 1995).

Graph theory originated three 100 years ago from phys-

ics, but has advanced significantly over the last century

because of studies of social networks, for which the critical

properties of specific networks were defined. In graph theory,

a network is composed of nodes and the edges between the

nodes. We will introduce methods for defining nodes and

edges for the EEG/MEG brainnetome in detail in the next

section. First, it is useful to enumerate the properties of graph

theory that characterize a network. Graph topology can be

quantitatively represented by a variety of measures. Among

them are three elementary measures of brainnetome analysis.

Node degree is the number of connections that link the node

to the rest of the network. This reflects the relationship of a

node to the rest of the network—the higher the node degree,

the closer the relationship. The clustering coefficient is the

proportion of the connections between nearest neighbors

relative to the maximum possible number of connections.

This coefficient can be used to detect a hub node, which

directly associates with more nodes than other types of

nodes. Path length is the minimal number of edges that must

be traveled from one node to another (Bullmore and Sporns

2009). The path length reflects the efficiency of information

communication in a network.

The construction of EEG/MEG networks

The construction of an EEG/MEG network first requires

the definitions of nodes and edges. The sensor space where

multi-channel EEG and MEG record signals and the source

space where brain activity actually occurs are two separate

spaces, in which we can define nodes and edges. Thus, an
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EEG/MEG network can be constructed within either or

both of them.

Although a network may be rendered in either of these

two different spaces, the approaches to constructing a

network consist of three similar steps (Lei et al. 2011a). As

illustrated in the green dashed box in Fig. 1, the first step is

to compute a measure of the associations between pairs of

nodes (channels in the sensor space are indicated in the

upper light blue part of the figure, and regions of interest in

the source space are indicated in the lower light blue part of

the figure)(Bonita et al. 2013). The correlation coefficient

is the most frequently used metric for evaluating these

associations, and we will use it in our example here.

Subsequently, these coefficients are organized into a cor-

relation matrix (the strength of each correlation is indicated

by a black–red–yellow–blue scale). Next, a threshold is

applied, and all correlations above the threshold are con-

sidered to be edges connecting nodes. Thus, the correlation

matrix is converted to a binary adjacency matrix, i.e., an

unweighted graph. Finally, the graph is analyzed using a

number of graph metrics, including the clustering coeffi-

cient, modularity and efficiency.

For a scalp EEG measurement, the potential in each

channel is recorded with respect to a reference, i.e., an

arbitrarily chosen ‘‘zero level’’. The reference may have

an effect on the network. A reference standardization

method can be adopted to overcome this limitation (Qin

et al. 2010; Yao 2001). The method proposed by Yao

(2001) bypassed the selection of an arbitrary reference by

first computing which signals had an equivalent proba-

bility of being the source signal from the scalp EEG on a

virtual cortex. This step was not affected by the choice of

a reference. Then signals obtained in each channel from

the person’s scalp were reconstructed from these sources.

Ultimately, these signals were free from the effects of an

arbitrary reference.

Definition of nodes

The first step in initiating network analysis is to define its

nodes. Depending on the space in which the network is

constructed, nodes can be defined either by channels in the

sensor space or by regions of interest in the source space.

Setting each channel as a node is the more direct method.

However, some evidence indicates that estimating causality

using the cortical activity in the source space provides a

more accurate estimation of brain-associated activity

(Ewald et al. 2012; Michel et al. 2004). In addition, con-

structing a network in either space shares similar steps, as

mentioned above, but the network in the source space is

Fig. 1 Schematic illustration of a brainnetome analysis applied to

multi-channel recordings of brain activity (EEG or MEG). The lower

light red region indicates the steps in the source space, and the upper

light blue region indicates those in the sensor space. The left green

dashed box is the first step, the definition of nodes; the middle yellow

dashed box is the second step, the acquisition of the adjacency matrix;

and the right red dashed box is the third step, the calculation of the

metrics for the graph. (Color figure online)
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more complex than that in the sensor space. Therefore, we

will present additional details for the construction of a

source-space network.

The construction of a source-space network includes

three crucial elements: the source reconstruction model,

source estimation methods and spatial a priori assumptions.

To reconstruct signals within the source space, a model

must be chosen in advance. Hence, a source reconstruction

model will be introduced first; an estimation method will

then be presented to obtain a solution for the model.

Finally, we will introduce spatial a priori information,

which has recently been included to improve source

estimation.

Source reconstruction model

Scalp EEG is the summation of the synchronous activity

of large assemblies of neurons across the cortex, and the

summation of each channel is weighted differently, even

from the same source, owing to the volume conduction

effect. Constructing a network based on scalp EEG

directly suffers from this effect. Therefore, building a

network in the source space, where brain activity actually

occurs, is more reasonable. Translating the measurements

of channels into time series of sources requires source

reconstruction, a typical inverse problem in EEG source

analysis (Grech et al. 2008). The problem can be mod-

eled as follows: XðtÞ ¼ LSðtÞ, where XðtÞ denotes the

vector of the measurements of the channels; L is the lead

field matrix; and SðtÞ denotes the vector of the source

activity. Source reconstruction localizes the neuronal

signal generator in the brain. One of the most crucial

aspects of source reconstruction is the selection of source

models. In current practice, the equivalent current dipole

(He and Musha 1992) or the distributed (dipole or

charge) source model (Dale and Sereno 1993) is often

applied in this field. The equivalent current dipole model

estimates the localization and orientation of a few

dipoles that could be used to create the best possible

scalp map to match the representation of the EEG

electrodes. The reconstructed time-course can be further

employed to build the brainnetome. In contrast, the dis-

tributed source model estimates the activity of every

dipole distributed across the cortex. This model is suit-

able for non-local sources but requires assumptions to

solve an ill-posed problem, as the number of unknown

parameters is significantly greater than that of the mea-

surements. Both the equivalent dipole model and the

distributed source model have their own advantages.

Recently, we proposed an integration of these models:

the Gaussian source model (GSM) (Lei et al. 2009). The

GSM can flexibly imitate the equivalent dipole and dis-

tributed source models by adopting the extreme

supporting range parameter of the Gaussian function. For

the distributed source model, because the brain is divided

into a large number of sub-regions, each sub-region can

be employed as a node of a network.

Source estimation methods

Constructing a network using the distributed source model

involves source reconstruction based on the forward theory

of electrical fields of the brain (Yao 2000). With the Lapla-

cian weighted minimum l2-norm constrained, low resolution

electromagnetic tomography (LORETA) reconstructs brain

electric activity at each point on a 3D grid of solution points

(Pascual-Marqui et al. 1994). The l2-norm can constrain the

smoothness of a solution. The underlying assumption of

LORETA is that neighboring grid points are more likely to

have a similar orientation and activation strength compared

to distant grid points. The weighted minimum norm solution

can also be solved iteratively under the l1-norm (Xu et al.

2007) and based on the distributed charge source model (Xu

et al. 2008). The l1-norm constrains the sparsity of a solution.

After recomputing the surface signal into a cortical regional

source time series, the functional connectivity between

regions can be computed at each frequency band (Lehmann

et al. 2012).

In addition to the above three-step network construc-

tion methods, alternative approaches for constructing

networks in the source space have been proposed. The

conventional three-step method can be represented by two

equations: state and space. The state equation represents

the cortical dynamics, while the space equation (a.k.a., the

observation equation) describes the physics that correlates

the cortical signals to the measured EEG. The cortical

signals can be assumed to originate from known regions

of the cortex, while the spatial distribution of the activity

within each region is unknown. Hence, connectivity ana-

lysis of the cortex source based on scalp EEG/MEG can

be modeled using a state-space function (Carmeli et al.

2005). This integrated approach, which estimates spatial

distribution and temporal connectivity simultaneously, is

less sensitive to noise than the three-step approach

(Cheung et al. 2010). Recently, a l0-norm based method

provides a new window for viewing the scalp EEG (Xu

et al. 2010). In fact, source reconstruction removes the

effect of volume conduction on the network and the

dependence on the reference (Yao 2001). Finally, the

problem of EEG/MEG source localization can be cast as

an optimization problem. Jiang et al. (2003) proposed a

hybrid algorithm that combines a genetic algorithm (GA)

and a local search strategy to solve the global optimiza-

tion. The GA algorithm mimics the process of natural

selection and can be used to generate useful, optimized

solutions.
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Spatial a priori assumptions

Although cost functions using l2-norm, l1-norm or both

penalties improve the estimation of the source reconstruc-

tion, information from other neuroimaging modalities can

provide further improvements. Previous studies used fMRI

activity to constrain the spatial locations of EEG sources

(Bledowski et al. 2006; Dale et al. 2000) or to initialize the

dipole seeds (Auranen et al. 2009; Stancak et al. 2005). For

example, the hemodynamic information provided by fMRI

data could be taken into account when determining the

weighted minimal norm estimator. By evaluating the par-

tial directed coherence between regions of interest

according to the Brodmann Atlas, a small-scale network

can be constructed on the cortical surface (Astolfi et al.

2007b; Astolfi et al. 2009). When followed by graph ana-

lysis, this method can identify the functional connectivity

pattern alternatively elicited by different tasks. Using this

technique, Astolfi and colleagues compared the perfor-

mance of various connectivity pattern estimators. They

found that multivariate frequency domain methods, such as

the directed transfer function (DTF), the direct DTF

(dDTF) and the partial directed coherence (PDC), can all

effectively estimate the functional connectivity patterns of

cortical activity (Astolfi et al. 2007a).

Nevertheless, this a priori information produced unde-

sirable effects when fMRI was considered as the ‘‘truth’’

with respect to spatial information (Dale et al. 2000). The

relationship between EEG and fMRI has not been thor-

oughly evaluated (Gonzalez Andino et al. 2001). Thus,

fMRI and biosignal (EEG/MEG) approaches should be

used in a complementary rather than a redundant manner.

A Bayesian framework is an easy way to combine these

modalities, because it does not require a direct correspon-

dence between modalities (Henson et al. 2010). This

framework makes it possible to utilize multiple spatial

priors from fMRI when constructing an EEG/MEG brain-

netome. In our recently developed method, network-based

source imaging (NESOI), measurements of intrinsic brain

activity were combined with blood oxygenation level

dependent (BOLD) fluctuation data to introduce the first

model that constrained the spatial locations of EEG sources

(Lei et al. 2011b). This method employs multiple fMRI

functional coherent networks as source location priors.

Improved estimation of the cortical activity could increase

the accuracy of connectivity pattern estimates.

Definition of edges

Recently, scientists have reached a consensus that brain

connectivity is a critical tool for understanding the orga-

nized behavior of cortical regions. Two main types of brain

connectivity, functional and effective, are frequently

utilized to construct the edges between nodes for EEG/

MEG measurements. Functional connectivity can be eval-

uated via the temporal correlations between spatially

remote neurophysiologic events (Fingelkurts et al. 2005;

Friston et al. 1993; Güntekin and Başar 2010; Ghosh et al.

2008; Wilmer et al. 2010). Traditionally, coherence and

correlation (Thatcher et al. 1986) have been the primary

methods for assessing the degree of functional connectivity

between brain regions. Several methods for calculating

functional connectivity between cortical regions have been

published: partial directed coherence (Baccala and Same-

shima 2001), dynamic imaging of coherent sources (Gross

et al. 2001), phase synchrony based on wavelet transform

(Lachaux et al. 1999) and operational synchrony (Fing-

elkurts and Fingelkurts 2008). Effective connectivity,

however, provides a direct insight into the causality

between signals, which is the influence that one signal

exerts over another (Friston et al. 1993; Kiebel et al. 2008).

Valdes-Sosa et al. (2011) provided a seminal work about

causality connectivity. Here, we focus on the synchroni-

zation likelihood (SL) and the Granger causality to intro-

duce the two different kinds of connectivity in the

brainnetome, as the two functional connectivity metrics are

frequently used in either EEG/MEG or fMRI brainnetome

in the functional network and causal network, respectively.

Synchronization likelihood

A popular method for assessing functional connectivity is

to calculate the SL, which was defined by Stam and van

Dijk (2002). Supposing that M channels record EEG sig-

nals for N samples, xk;i; k ¼ 1; . . .;M; i ¼ 1; . . .;N;

then embedded vectors with a time delay can be repre-

sented as,

Xk;i ¼ xk;i; xk;iþl; xk;iþ2l; . . .; xk;iþðm�1Þl
� �

; ð1Þ

where l is the delay and m is the dimension. At a given time

point i of each channel k, a probability, P�k;i P�k;i, which

measures the likelihood of vectors closer to one another

than a distance e, can be defined as,

P�k;i ¼
1

2ðx2 � x1Þ
XN

j ¼ 1

x1\ji� 1j\x2

/ �� jXk;i � Xk;jj
� �

ð2Þ

Here, �j j is the Euclidian distance, / �ð Þ is the unit step

function and x1 and x2 are the widths of windows that can

correct the autocorrelation effects and sharpen the time

resolution of the synchronization measure, respectively,

satisfying x1 � x2 � N. Given pref , P�k;i

k;i ¼ pref , it is

possible to determine �k;i. The number of channels, Hi;j, for
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each pair (i,j) within x1\ji� jj\x2 is represented by the

equation.

Hi;j ¼
XM

k¼1

h �k;i � jXk;i � Xk;jj
� �

ð3Þ

Then, the SL Lk;i;j for each channel k and each time pair

(i,j) is

ifjXk;i � Xk;jj\�k;i ; then Lk;i;j ¼
Hi;j � 1

M � 1
; ð4Þ

ifjXk;i � Xk;jj � �k;i ; then Lk;i;j ¼ 0 ð5Þ

After averaging over all the js, the SL becomes

Lk;i ¼
1

2ðx2 � x1Þ
XN

j ¼ 1

x1\j j� i j\x2

Lk;i;j ð6Þ

The synchronization likelihood Lk;i evaluates the

strength of the synchronization of the channel k with all

the other M-1 channels at a time point i. Lk;i ¼ pref means

that all M time series are uncorrelated, and Lk;i ¼ 1

corresponds to the maximal synchronization.

Granger causality

Effective connectivity is constructed by using the directed

edges of the EEG network. One popular method is Granger

causality (GC), which estimates the direct influences

between nodes based on temporal information. Supposing

two signals, Si and Sj, a statistical interpretation of causality

can be implemented in which Si ‘‘Granger causes’’ Sj if

knowing the past value of Si can help predict Sj better than

knowing the past value of Sj alone (Ding et al. 2006;

Granger 1969). The standard implementation of GC is

achieved via vector autoregressive (VAR) modeling, in

which a set of time series are modeled as the weighted

sums of past values. Let S(t) = [s1(t), s2(t),���,sk(t)]
T be a k-

dimensional random process defined in a segment of win-

dowed time series data, where T stands for matrix trans-

position. Assuming the stationarity of the process S(t),

SðtÞ ¼
Pp

m¼1

�AmSðt � mÞ þ EðtÞ, one can describe S(t) by a

pth-order autoregressive process:

E tð Þ ¼
Xp

m¼0

AmS t � mð Þ; ð7Þ

where A0 is the identity matrix and Am (m = 1, 2,…, p) are

k 9 k coefficient matrices. E(t) is a k-dimensional, zero

mean, uncorrelated noise vector. Am matrices can be esti-

mated using the Levinson-Wiggins-Robinson (LWR)

algorithm (Haykin 2002). The covariance matrix of the

noise (E(t)) is estimated by the Yule-Walker equations of

the model. The multivariate Bayesian Information Crite-

rion (BIC) is calculated to determine the VAR model order,

p. Once Am and the covariance matrix of the noise (E(t))

are estimated, the Granger causal influence from S2 to S1

can be inferred if knowing S2 reduces the variance in the

prediction error of S1 when all other variables S3 … Sn are

also included in the regression model. The derivation of

GC is not reviewed here; for details, please refer to the

literature (Ding et al. 2006; Geweke 1984).

Frequency-domain method

Equation (7) is transformed to the frequency domain to

investigate the spectral properties of the brainnetome:

E fð Þ ¼ Bf S fð Þ; ð8Þ

where

Bf ¼
Xp

m¼0

B mð Þe�j2pfDtm ð9Þ

Note that Dt is the temporal interval between two

samples. Eq. (9) can further be rewritten as

S fð Þ ¼ B�1
f E fð Þ ¼ Cf E fð Þ ð10Þ

The element Cf(i, j) represents the connection between

the ith input and the jth output of the network. The DTF,

which describes the causal influence of the ith waveform

on the jth waveform, is defined as in Kaminski et al.

(2001):

DTFf ði; jÞ ¼
jCf ði; jÞj2
Pn

k¼1

jCf ði; jÞj2
ð11Þ

Another estimator of direct causal relationships is the

PDC, defined as in Baccala and Sameshima (2001):

PDCf ði; jÞ ¼
Bf ði; jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn

k¼1

Bf ðk; jÞB�f ðk; jÞ
s ð12Þ

The element PDCf ði; jÞ describes the directional flow of

information from the activity in the ith channel to the

activity in jth channel.

Fusing the brainnetome of EEG/MEG with other

modalities

The dynamic information provided by an EEG/MEG-

derived network might allow for a precise definition of the

timing and location of cognitive processes. For example,

noninvasive dynamic imaging of the epileptic brain can

enhance our understanding of seizure generation and
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propagation (Tyvaert et al. 2009). However, because

individual EEG/MEG information provides limited results,

advancing the EEG/MEG network requires the integration

of EEG/MEG with other imaging modalities. The brain-

netome can be utilized as a bridge to span the distinction

between modalities and link them together.

Fusion of EEG and fMRI based on neural networks

To reconstruct the dynamics of large-scale neuronal

systems, measurements with both high temporal and

spatial resolution are essential. In addition, complemen-

tary neuro-electric and hemodynamic signals are helpful

for explaining the complex relationships between differ-

ent brain regions. For fMRI, the temporal dynamics of

the components obtained by independent component

analysis (ICA) have been utilized to examine causality

between various brain networks (Demirci et al. 2009;

Jafri et al. 2008). Unlike functional connectivity, which

focuses upon the relationships between single nodes,

functional network connectivity (FNC) is emerging as a

powerful method for characterizing the relationships

between distributed brain networks (Stevens et al. 2009).

A straightforward extension of fMRI analysis, FNC also

can be useful for analyzing the interaction between EEG

components. The interactions between independent com-

ponents (ICs) in each modality can be determined via

Granger Causality Analysis. Based on the NESOI-esti-

mated matching between the EEG and fMRI ICs, multi-

modal FNC (mFNC) facilitates the fusion of data into a

large-scale brain network (Lei et al. 2011a; Lei et al.

2012). mFNC may help explain the complex relationships

between distributed cerebral sites in the brain and pos-

sibly provide new insights into neurological and psychi-

atric disorders (Lei et al. 2011a). In addition to the fusion

of fMRI and EEG/MEG functional signals, a bimodal

system, called the Near infrared spectroscopy and elec-

troencephalography (NEG) system, which is designed to

be able to measure neuronal electrophysiological signals

and the cerebral circular hemodynamic response simul-

taneously, is under development in the Brainnetome

Center.

A systematic perspective for network integration

Although EEG and MEG data are not only generated by

pyramidal cell activity, the activity of these cells appears to

contribute a considerable portion of each signal. Moreover,

because EEG has a high temporal resolution and provides

recordings from multiple regions, EEG networks can be

constructed from these abundant dynamic information.

This combination of dynamic information with the

involvement of pyramidal cells allows for a precise

definition of the timing of a cognitive process. Although

the relationship between postsynaptic potentials and other

physiological information is unknown, network integration

among modalities will provide valuable complementary

information for understanding the brainnetome. Conven-

tional approaches tend to examine converging evidence

between EEG networks and other modalities. However,

some neural processes are independent between modalities;

that is, some types of brain networking may be visible in

only one modality. Analysis of these components would be

equally important for our understanding of various cogni-

tive processes (Lei et al. 2010).

Applications of the EEG/MEG network

The EEG/MEG network has been employed in neurosci-

ence research and in exploring the prognosis or pre-surgi-

cal brain mapping of neurological disorders. Here, we will

introduce the applications of these networks to the

brainnetome.

The EEG/MEG network in brain disorders

Simultaneous functional and effective networks derived

from EEG/MEG data have been used to study neurolog-

ical disorders (Başar 2011; Fingelkurts and Fingelkurts

2010), although conventional ERP analysis was also used

in one study (Wang et al. 2013; Yener and Başar 2010).

Its application to Alzheimer’s disease (AD) dates back to

1998 when Wada et al. (1998) employed EEG coherence

to evaluate the functional correlation between patients and

normal aging and found that the functional correlation

was significantly reduced in AD patients. Babiloni et al.

(2009) examined abnormalities in EEG directionality in

mild cognitive impairment (MCI) and AD based on the

effective connectivity of the fronto-parietal network. The

loss of gamma band synchronization in AD patients was

detected from a MEG network analysis by Stam et al.

(2002).

Peled et al. (2001) used functional connectivity to detect

the disconnection syndrome in schizophrenic patients and

demonstrated that patients failed to activate networks in the

fronto-temporal regions. Effective connectivity has also

been utilized to analyze schizophrenia. A study by Win-

terer et al. (2003) showed a reduction in fronto-temporal

coherence in schizophrenia patients. In addition researchers

have performed a number of studies related to epilepsy. For

example, Lemieux et al. (2011) reviewed the current pub-

lications related to the characterization of the propagation

of epileptic activity using regional EEG networks and

suggested the full characterization of epileptic networks

using neuroimaging data.
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The EEG/MEG network in cognition

Depending on individually applied strategies, complex

mental processes such as mental arithmetic, art perception,

and mental rotation are discussed to both share widespread

neural network resources, but also recruit distinct neural

network-parts (Fehr 2013; Fingelkurts and Fingelkurts

2010). Specificities in the respective functional network

coupling as, for example, reported for experts as compared

to non-experts in a particular domain (Bhattacharya and

Petsche 2002), provide important insights in how the

respective mental processes and involved mental sub-pro-

cesses are organized at the neural level (Başar 2011; Fehr

2013). Based on these results, these researchers suggested

that measuring the couplings between different brain

regions might provide a good measure of the cognition

state. Since then, evidence has accumulated that higher

cognitive functions require functional interactions, or

connectivity, between multiple, distinct neural networks

(Stam and Reijneveld 2007). Functional networks revealed

by a graph analysis of EEG or MEG data represent a

physiological substrate for high-speed processing of seg-

regated and distributed information.

In the resting state, the ‘basic’ brainnetome gives rise to

constantly changing, weakly synchronized networks. This

process of constantly creating and dissolving functional

networks is called ‘fragile binding’ and is thought to

underlie spontaneous information processing. The optimal

normal brain dynamics are thought to be near the phase

transition between low and high levels of synchronization

(Stam and Reijneveld 2007). Another study, using a

method to extract cerebral networks from the EEG data

described previously by Stam (2004), showed that (un-

weighted, undirected) networks produced more small-

world characteristics during all sleep stages compared to

the awake state and that these features were even more

pronounced during special cyclic alternating pattern sleep

phases (Ferri et al. 2007). Thus, network features can

change during a cognitive task, as well as under the

influence of sleep.

Future research directions

Methodological issues

Converting a correlation matrix into a binary matrix

necessitates the selection of a threshold. However, the

proper method for determining the appropriate threshold is

not yet known. One alternative may be the direct analysis

of weighted graphs, although only a few measures are

currently available (Onnela et al. 2007). Studying the entire

range of thresholds and test graph theoretical properties is

typically performed in many studies. Another problem is

that some nodes may become disconnected from the whole

network when converting a binary matrix into a graph. This

leads to difficulties in estimating clustering coefficients and

path lengths.

Conceptual issues

Future studies are justified for some conceptual issues

regarding the use of EEG and MEG to elucidate the

brainnetome. First, verifying which EEG (or MEG) net-

work properties are the best predictors of cognitive dis-

turbances is difficult. A popularly accepted, but not entirely

supported, hypothesis is that a ‘‘diseased’’ network is far

from the optimal small-world network and that combining

local segregation with global integration for optimal cog-

nition is difficult in the disease state. Second, how to

describe human brain development with respect to network

properties is unclear. Using a large genetic information

sample of twin families, the synchronization likelihood of

the alpha frequency appears to be highly heritable (Post-

huma et al. 2005).

Relationships between brain rhythms

The brain rhythms of different frequency bands have been

reported to interact with each other in several contexts,

suggesting the possibility that different frequency oscilla-

tions might carry different dimensions of the integration

process (Varela et al. 2001). In decision-making, the

amplitudes of high-frequency oscillations were dynami-

cally modulated by the phase of concurrent theta-band

oscillations (Tort et al. 2008). One important conclusion of

a cross-frequency coupling analysis is that the beta rhythm

is robust for long-distance synchrony, whereas gamma

rhythms tend to be more stable for local patches of syn-

chrony (Foster and Parvizi 2012). Cross-frequency cou-

pling may be a pervasive mechanism used by the brain to

perform the network-level dynamic computations that

underlie brain integration. Furthermore, the extension of

the brainnetome will consider the cross-talk between fre-

quencies and develop more novel methods of analysis.

Conclusions

Brainnetome analysis indicates that the brain’s functions

do not operate solely within specific regions. Concentrating

on individual brain regions cannot possibly reveal the

operations underlying a person’s brain function nor clarify

the abnormal mechanisms of specific neuropsychiatric

diseases. The consensus that functional integration is the
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main feature of mental processing stimulated the evolution

of neuroimaging modalities in order to capture dynamic

information across individual brains. Among these

modalities, EEG and MEG were designed to measure the

electromagnetic signals generated by neuronal activity at a

high level of temporal resolution and with multiple-region

recording.

Because of these properties, as well as because they are

free of radiation and easy to set up, EEG and MEG are

generally accepted in both neuroscience research and

clinical applications as a source of data for performing

brainnetome analyses. Networks derived from EEG/MEG

data can be built in either sensor space or source space, but

those formed using source space data may provide more

accurate information about interacting sources than those

formed using sensor space data. Both functional and

effective connectivity can be used to define edges between

nodes. The former reflects the coherence or correlation

among nodes, while the latter represents the causal rela-

tionship of one node over another. The properties of a

brainnetome analysis can be related to any of a number of

factors that are important in either neuroscience research or

clinical applications. For example, these properties may be

able to be utilized to indicate differing levels of cognition

or to reflect the conditions present in a neurological dis-

ease. Although EEG and MEG have been applied to the

analysis of the brainnetome, methodological and concep-

tual issues as well as the relationship with other applica-

tions should be investigated further.
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