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Abstract—Human action recognition and annotation is an
active research topic in computer vision. How to model various
actions, varying with time resolution, visual appearance, and
others, is a challenging task. In this paper, we propose a boosted
exemplar learning (BEL) approach to model various actions in
a weakly supervised manner, i.e., only action bag-level labels are
provided but action instance level ones are not. The proposed
BEL method can be summarized as three steps. First, for each
action category, amount of class-specific candidate exemplars are
learned through an optimization formulation considering their
discrimination and co-occurrence. Second, each action bag is de-
scribed as a set of similarities between its instances and candidate
exemplars. Instead of simply using a heuristic distance measure,
the similarities are decided by the exemplar-based classifiers
through the multiple instance learning, in which a positive (or
negative) video or image set is deemed as a positive (or negative)
action bag and those frames similar to the given exemplar in
Euclidean Space as action instances. Third, we formulate the
selection of the most discriminative exemplars into a boosted
feature selection framework and simultaneously obtain an action
bag-based detector. Experimental results on two publicly avail-
able datasets: the KTH dataset and Weizmann dataset, demon-
strate the validity and effectiveness of the proposed approach for
action recognition. We also apply BEL to learn representations
of actions by using images collected from the Web and use this
knowledge to automatically annotate action in YouTube videos.
Results are very impressive, which proves that the proposed
algorithm is also practical in unconstraint environments.

Index Terms—Action annotation, action recognition, AdaBoost,
mi-SVM, multiple instance learning (MIL).

I. INTRODUCTION

UMAN MOTION analysis has attracted increasing inter-
est from computer vision researchers [1], [2]. In partic-
ular, human action recognition has a wide range of promising
applications, e.g., video surveillance, intelligent interface, and
video retrieval. Generally, there are two important components
in action recognition. One is how to extract useful information
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from raw video data, and the other is how to model different
actions and measure their similarities for recognition. We focus
on the latter one in this paper.

Recent papers [3]-[8] have shown that action recognition
based on key poses from single video frame is feasible.
This kind of method attempts to represent an action video
with a set of representative frames called exemplars and then
models various actions into a space defined by distances (or
similarities) to these exemplars. However, varying from actors,
environments, or cameras, videos of the same action may
contain dissimilar frames as well as different lengths or time
resolutions [as shown in the sequences (a) and (b) of Fig. 1].
Furthermore, videos from different actions may also include
similar frames [as in sequences (a)—(d) of Fig. 1]. All these
issues, but not limited to them, will increase the difficulties to
recognize various actions from videos.

Inspired by the exemplar-based approach, we try to build a
more generic system to recognize action in different kinds of
environments. So far, most research in human action recogni-
tion has focused on videos taken in controlled environments.
Standard datasets, like Weizmann [9] and KTH [10], supplied
for this purpose are well-explored in various studies [5], [11]-
[14]. However, real-world uncontrolled videos seldom exhibit
such consistent and relatively simple settings. Therefore, ac-
tion recognition in real-world videos is more difficult and
challenging. To tackle this problem, the proposed methods
require training with large amounts of videos and select many
discriminative exemplars. It is quite challenging to find enough
labeled video data covering a diverse set of poses. The Web
may provide this information including many action images
taken under various conditions and their roughly annotations,
e.g., their surrounding text is a clue to the semantics of their
content. We can make full use of such a collection of images to
learn the exemplar-based action model. By doing this, we can
benefit our action recognition model learning from the Web.

The images collected from the Web contain a huge range
of variability (see Fig. 2), which include images of actions
taken from multiple viewpoints in a range of environments,
performed by people who have varying body proportions and
different clothing. Thus, we believe that these images have
covered various key poses in the action although some noises
may exist. In many cases, the background clutter impedes good
exemplar-based action recognition using existing algorithms.
From these views, how to select the key-pose images as
the suitable exemplars and how to learn a suitable distance

1051-8215/$26.00 (© 2011 IEEE



854 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 7, JULY 2011

Fig. 1. Some examples of different actions from different subjects and
different cameras. (a) Walk. (b) Walk. (c) Skip. (d) Run.

metric between the key-pose images are two important and
challenging issues in the exemplar-based model.

Many research efforts have been conducted in the literature
to select the exemplars. For instance, some methods proposed
to sub-sample or cluster the space of exemplars [15], [16].
Such methods required nevertheless very large sets of ex-
emplars. Moreover, the clustering might miss some impor-
tant exemplars [4]. Daniel and Edmond [7] and Weinland
et al. [4] selected some discriminative exemplars with forward
selection, which was particularly robust against over-fitting.
However, the forward selection algorithm was slow calculation
because of the repetitive learning and evaluation cycles.

For the second issue, usually, heuristic distance metrics
or specified matching approaches, such as squared Euclidean
distance [7] or hidden Markov model (HMM)-based match-
ing [4], were proposed to measure the relation among exem-
plars. However, these approaches ignored the distribution of
frames in the feature space and might fail to achieve the best
discriminativity for action recognition. As shown in Fig. 3,
given a frame m, not all its similar frames evaluated by a
heuristic distance, e.g., Euclidean distance, belong to the same
action to the frame m. Therefore, it is necessary for every
frame to learn its similar frames across all samples from
the same action, instead of using a predefined and heuristic
distance.

In this paper, we propose a boosted exemplar learning
(BEL) approach (as shown in Fig. 4) to recognize various
actions. First, amount of class-specific candidate exemplars
are learned through an optimization formulation considering
their discrimination and co-occurrence to each action category.
Second, for each candidate exemplar, we employ the multiple
instance learning (MIL) to learn the exemplar-based classifier
to measure the similarity. For the MIL problem, each action,
such as in a video clip, is considered as an action bag,
and components of action, such as frames of the video clip,
are viewed as action instances. As a result, if we obtain M
candidate exemplars, each action bag is described as a M-
dimensional vector of similarities between the M exemplars
and the action bag. Third, we apply AdaBoost algorithm
to integrate the further selection of representative exemplars
and action modeling together. That is, through the boosting
learning, the most discriminative exemplars are selected, and
simultaneously the similarities based on the selected exemplars
as the weak classifier are combined to obtain an action bag-
based detector. Experimental results on publicly available
challenging datasets demonstrate the validity and effectiveness
of the proposed approach.

In our previous paper [17], preliminary results of video
action recognition on two public datasets were reported. Com-
pared with [17], a number of improvements have been made
in this paper. First, in [17], the candidate exemplars were all
randomly selected from the datasets, which was indiscrimi-
native and less efficient. In this paper, we develop a novel
method to select semantic exemplars. The proposed method
takes the discrimination and co-occurrence of exemplars into
consideration, hence, it is efficient to obtain semantic candi-
date exemplars and reduce the computational cost, especially,
selecting exemplars from the Web. Second, we broaden our
application to action annotation in videos of uncontrolled
environments, like YouTube videos. This application shows
that our algorithm is also suitable for real-world videos except
for videos taken in controlled environments working with
limited action vocabularies.

The paper is organized as follows. In Section II, we review
related work. The detailed implementation of the proposed
BEL method is introduced in Section III. In Section IV, we
evaluate our approach on three publicly available datasets. We
conclude the paper with future work in Section V.

II. RELATED WORK

Exemplar-based embedding methods have already been
proposed in computer vision field [15], [18]. Athitsos and
Sclaroff [15] presented an approach for hand pose estima-
tion based on Lipschitz embeddings. Guo et al. [18] used
an exemplar-base embedding approach to match images of
cars over different viewpoints. In these approaches, complex
distances between signals were approximated in a Euclidean
embedding space that was spanned by a set of distances to
exemplar measures.

Recently, some attempts have been made to apply such
exemplar-based approaches to action recognition. Wang
et al. [19] utilized deformable template matching for comput-
ing the distance between human poses, so that similar poses
could be grouped together. Thurau and Hlavac [6] approached
the problem by using non-negative matrix factorization on
pose primitives. In the work of Carlsson and Sullivan [3], class
representative silhouettes were matched against video frames
to recognize forehand and backhand strokes in tennis record-
ings. Dedeoglu et al. [20] proposed a real-time system for
action recognition based on key-poses and histograms. Daniel
and Edmond [7] adopted the exemplar-based approach to
transform length-variant orderless feature set of action videos
into matching distances to exemplars, and then a classifier was
trained based on this fixed length representation. Essentially,
the pose primitives were learned from non-cluttered videos
and applied to images to find the closest pose. In this paper,
we try to select representative exemplars from the Web, fit an
action model, and use this to annotate actions in the cluttered
videos.

To select the discriminative exemplars, Daniel et al. [7] and
Weinland et al. [4] used the forward selection algorithm. Other
exemplar-based approaches [4], [16], [21], [22] attempted to
learn HMMs with observation probabilities based on matching
distances to exemplars. However, the similarities between
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Fig. 2.
(b) dancing, (c) playing golf, (d) running, and (e) sitting, respectively.

Video:

Frame:

Fig. 3. Learning similar frames to frame m. (a) Frame m, which is one
frame of run action video. (b) Learning a classifier to describe the similarity
of other frames to m. *“ e” represents similar frames from the same kind of
action with m, and “ o” represents unrelated frames.

frames and exemplars were measured using heuristic distance.
This might be not correct (as shown in Fig. 3). Therefore,
it is necessary to adopt an efficient approach to select the
discriminative exemplars. Instead of using heuristic distance,
we learn the similarity metric by MIL.

There is little work in literature dealing with generic
videos like YouTube videos, where the resolution is low and
the recording environment is nonuniform. A lot of existing

Some examples of collected images from the Web in [8]. These show the output of the person detector. The rows correspond to actions (a) walking,

work [23], [24] recognized human action in such videos.
Hu et al. [25] proposed a novel multiple-instance learn-
ing framework, named simulated annealing multiple instance
learning support vector machines (SVMs), to learn human
action detector based on imprecise action locations on real-
world video database. Tran er al. [14] detected actions in
YouTube Badminton videos with fairly static backgrounds.
Our method is applicable to videos with a broader range of
settings. Ikizler er al. [8] used images collected from the Web
to learn representations of actions and used this knowledge
to automatically annotate actions in videos. Different from
the previous methods, we adopt MIL to describe different
kinds of actions from complexity data sources and present
a BEL method to learn the similarity metric and select some
representative exemplars from the Web. Experimental results
show that our method is much better than [8].

III. BEL FOR ACTION MODELING

In this section, we explain how to select a set of discrimina-
tive exemplars for action modeling. There are four challenges
for our discriminative exemplar-based action model: 1) how
to describe each action instance; 2) how to select candidate
exemplars for large-scale dataset to reduce computational
cost; 3) how to describe action bag based on the candidate
exemplars when only action bag label is given; and 4) how to
explore action bags into an overall classifier for the action of
interest given descriptions for action bags. In this paper, we
present a unified and effective solution to these challenges.

Our approach proceeds as illustrated in Fig. 4. Each action
instance is described using simple features, such as histogram
of silhouette, histogram of edge, or histogram of oriented
gradients. Based on this description, for each kind of action,
some candidate exemplars are selected and their corresponding
classifiers are trained via MIL. Based on the classifier of each



856 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 7, JULY 2011

i Action Bag
| Deseription

AdaBoost Classifier

(Discriminative
Exemplars Selection))

Video Action

7
-
- : .’\TI;‘.‘_“_ Instance > +
Training Sample escnplion
=1V —
=
=
e Y
Candidate :
= |_:m;]|:]__“.: Multiple Instance
Selection l.!.‘&fllillg (mi-SVM
on
=
vha, Action [nstance > +
6 l'esting Sample I’ Description o
F

o Action Bag
| Deseription 2

Recognition and
Annotation

Fig. 4. Framework of our approach.

exemplar, similarities between the exemplar and instances in
an action bag can be obtained. Then, the action bag can be
described using the similarities as its features. Considering
the large intra-class variation of different actions, AdaBoost is
employed to select the most discriminative features to form a
strong classifier.

First, we introduce some concepts and notation. An action
bag can be a video clip or a set of sampled patches from a
single image, and an action instance is a frame of a video
clip or a sampled patch of a single image. Denote v; as the
i action bag and I, ; is the feature of the jth instance of
bag v;. Based on this description, for an action bag v;, it
can be represented as a set of histogram features. The formal
definition of action v; is as follows: v; = {1, ;|j =1,2,...,n;},
where n; is the number of instances from action bag v;. Let v}
denote a positive action bag and v; denote a negative action
bag. vj; is the jth instance of a positive action bag vf and
v;; denotes the jth instance of a negative action bag v; . Let
{vr,v3,...,v5, v, v5,..., v} denote the set of s positive
and ¢ negative training action bags. I(v;) € {+1, —1} is the bag
label of v; and [(v;;) € {+1, —1} is the instance label of v;;.
For the negative action bags, their all instances are negative.
However, for the positive action bags, their all instances must
contain at least one true positive instance, and they may also
contain many negative instances.

Next, we begin by introducing how to select candidate
exemplars in Section III-A, then we present the MIL for
action bag description in Section III-B, and the AdaBoost-
based action classifier in Section III-C.

A. Candidate Exemplars Selection

If we take each action instance as an exemplar, it leads
to a large number of candidate exemplars. Therefore, the
computational cost is very high to train each exemplar-based
classifier. One possible remedy is to select a representative set
of instances (candidate exemplars). The candidate exemplars
selection has two phases. In the first phase, we use k-means
to create an initial vocabulary by grouping similar action
instances based on their features for each action category, and
select instances nearest to each cluster as initial exemplar set.
For an exemplar m, I, is denoted as its feature vector. The
initial exemplar set has two drawbacks. First, the performance
is sensitive to the size of the exemplar set. Generally, larger

exemplar set size performs better since the most discriminative
instances are contained. Second, the instances in the exemplar
set are not necessarily semantically meaningful, because k-
means only considers the similarity in the feature space. In the
second phase, compact yet discriminative candidate exemplars
are required to obtain from the initial exemplar set for the
sake of efficiency and effectiveness. Next, we introduce how
to select meaningful exemplars from the initial set as the
candidate exemplars.

1) Problem Formulation: The goal of the selection of
candidate exemplars related to an action class is attempting
to select the most informative exemplars to represent the
corresponding action class. Therefore, two criteria are desired
for selecting the exemplars: 1) the exemplars in the class-
specific candidate exemplars should have much discrimination
to classify action bags labeled with the given class and action
bags without the class, and 2) they should appear more
simultaneously in action bags labeled with the given class than
in action bags without the class. In the following, we propose
an optimization scheme to effectively incorporate these two
criteria in the process of selection of class-specific candidate
exemplars from an initial exemplar set obtained by k-means
with the given class.

Assume we have a collection of action bags V =
{Vi,..., Ve, ..., Vc}, in which the action bags annotated with
a given class ¢ form a subset V., = {v;, v2,..., vy} and N,
is the number of the action bags in V.. The number of action
bagis N = Ny +...+ N.+ ...+ N¢, and C is the number
of action class. We suppose there is an initial exemplar set
E.={e, ez, ..., ey} for class ¢, where M, denotes the size
of the exemplar set. We define f,, € [0, 1] as the probabilistic
score to measure the possibility of an exemplar e, being
descriptive to the action corresponding to class ¢, and the
scores for the all exemplars in E. can be represented as a
vector f=[f1, for-s four-o- fur 1l

Based on the first criterion, the discriminative information
of each exemplar is important for identifying its descrip-
tiveness. Besides, co-occurrence information between a pair
of exemplars is another important clue, since co-occurrence
exemplars in a given action class ¢ are more likely to appear
simultaneously on the action bag corresponding to the class c.
Based on these two clues, the task of selection of class-specific
candidate exemplars from a large-scale instance is formulated
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as

M,
E() = Y (=Pl 42D wan(fn = fu)?
m=1 mn

st0 < fu<lm=1,...,M, (1)
where the value of p,, measures the discrimination of exemplar
e, and can be adopted as a prior probability to estimate
the descriptive capability of exemplar e,,. How to obtain the
value of p,, is introduced in Section III-A2. w,, denotes
the co-occurrence frequency between exemplars e, and e,
which is defined as w,,, = Co(ey,, €,)/N., where Co(ey, e,)
denotes the number of action bags that simultaneously contain
exemplars e,, and e,. X is a parameter that controls the tradeoff
among these two terms and is manually set to be 0.8 by
experimental validation. The first term in the objective function
measures the data fitting capability, namely, the deviation
between the estimated probabilistic confidence score and the
prior probability. The second term measures the smoothness of
confidence score for different exemplars, i.e., two exemplars
with high co-occurrence should also have similar confidence
scores of being selected to be descriptive.

2) Discrimination p,: If the exemplar ¢, represented by
I, is a positive exemplar, it will be discriminative. Therefore,
the discrimination of p,, can be calculated by its classification
capability.

We assume that given a positive exemplar m, the probability
that an instance v;; is positive is calculated as follows:

2 = ]

Pr(l(v) = +1|m) = exp(— >

) (@)

where | e| represents L2-norm, and §,, is a parameter learned
from the training data. The probability that an action bag v;
is a positive action bag is defined as follows:

Pr(l(v;) = +1|m) = max Pr(l/(v;;) = +1|m)
Vi €V;

_ _Hlm_lv[,jHZ _ _dz(”h ) 3
-{},_}ggfexp( T)—CXP( T) 3)

where d(m, v;) = min Hlm — Ivf,jH' In other words, the dis-

v €V;
tance d(m, v;) betwéen an exemplar m and all instances of an
action bag v; is simply equal to the distance between m and
the nearest instance of v;. Then Pr(l(v;) = +1|m) — Pr(I(v;) =
—1|m)= 2exp(—dz(5mf2”’”")) — 1. If Pr(l(v;) = +1|m) = Pr({(v;) =
—1|m), we get d(m, v;) < 8,+/In2. For a negative instance
(i.e., false positive instance), however, its distances to the
positive and negative action bags do not exhibit the same
distribution as those from m. Since some positive action bags
may also contain negative instances just like the negative
action bags, the distances from the negative instance to the
positive action bags may be as random as those to the
negative action bags. This distributional difference provides an
informative hint for identifying the positive exemplars (true
positive instances). Therefore, given a positive exemplar m,
there exists a threshold 6,, which makes the decision function
defined in (4) labels the action bags according to the Bayes

decision rule as follows:

m _ +1, if d(mv Ui) <9m
g, (Vi) = { -1, otherwise )
where 6,, = §,,+/In2 determined by training data as follows:
Pm = l’l'éaX P (On) )

m

where P,,(6,,) is an empirical precision and defined as follows:

1SN+ (v)l(vy)
Pm em = mj-
©m) s+t ;21 2

(6)

In this way, for each exemplar, we can obtain its discrimi-
nation p,, as shown in (5).

3) Optimization Solution: Since the objective function
in (1) with respect to f is a formulation of quadratic pro-
grams [26], which can be solved efficiently with global op-
timum using existing convex optimization packages, such as
Mosek [27]. Based on the above solution, the class-specific
candidate exemplars for the given class ¢ is constructed by
selecting the top M( exemplars with the highest confidence
scores. In this way, we can obtain candidate exemplars for
each kind of action, and the total number of exemplars is
M=Mp+, ..., +M+, ..., +M.

B. MIL for Action Bag Description

In this section, we introduce how to describe each action
bag as a set of similarities between its instances and candidate
exemplars, which are selected for each class ¢ in Section III-A.

We assume that M; exemplars from positive action bags
are obtained {[,|lm = 1, ...,M;}, where [, represents the
feature for the mth exemplar. For exemplar m in the action
bag of category c, it is possible that some instances from the
same action to m are less similar than the ones from other
actions when a uniform distance metric is adopted (as shown
in Fig. 3). To tackle this problem, we propose a discriminative
solution to get semantic similarity by learning exemplar-based
classifiers. Here, we formulate the similarity measure learning
as a problem of MIL [28] and mi-SVM [29] is employed to
solve the problem.

We introduce how to train an exemplar-based classifier for
the action category c. This process can be repeated for training
all exemplar-based classifiers for different kinds of actions. For
anexemplarm(m =1, ..., ML_) from the action of category c,
a corresponding mi-SVM classifier is trained and denoted by
mi — SVM,,. The training samples are the bags in ¢ denoted
as positive bags and those in other categories denoted as
negative ones. Some action bags may contain a large number
of instances. If we use all the instances to train the mi-
SVM classifier, its computational and storage requirements
may become too large. To reduce the computational burden
and learn efficient classifier, we adopt an efficient strategy to
obtain action bags by filtering out the instances which are
very different from m for each action bag v;. This strategy
enables the classifier to be learned only in the local feature
space. Specifically, mi-SVM classifier is trained in the hyper-
sphere centered at I, with radius of r,, in the feature space (as
shown in Figs. 6 and 14). Define the distance from exemplar
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m to action bag v; as d,, ;, = min ||Im — 1, ||, where |el
J

represents L2-norm. In practice, it is found quite robust and
in majority of cases the positive instance in the positive action
bag v; is just

{Iv;,j*|j*=argmin||lvf,j_ImH}~ @)
J
Based on this observation, r,, is set as follows:
ry = mean(dy, jm) + B x std (dy, jm) ()
v;epos v; € pos

where f§ is a tradeoff between efficiency and accuracy. The
larger B, the less probability that one positive instance will
be filtered out before training, and the more instances will be
involved during solving the mi-SVM.

It is observed in experiments that there may be too many
instances falling into the hyper-sphere. To be more efficient
and make classifiers different, within the hyper-sphere, at most
k, nearest instances to I,, are selected for each positive action
bag, and k, for each negative action bag. Figs. 6 and 14 show
two examples for each exemplar and its corresponding action
bag of v;. Experiments demonstrate that this strategy can
greatly reduce the computational burden and has no significant
impact on the final results.

Denote y,, ; to be the instance label of I, ; and Y,, the label
of action bag v;, where I, ; is the feature of the instance j in
the action bag v;. mi-SVM is formulated as follows:

1
min min lwl? + CZE,}[J

{yu.j} w.b.§ X
Vi, J

i+
s.t.z% > 1,Vy st Yy, =1
J

Yy, j = —LVust Y, =—1
V.] : yv,_j(<w’ IU,‘,j> +b) 2 1 - %-v,»,jy év,-,j 2 0 (9)
yvi,j € {_11 1}

where &, ; is slack variable.

For the mth classifier mi — SVM,,, an action bag v; can
be projected to real value with a function. For simplicity, the
projection function is defined as follows:

max mi_SVM,y (1, ;) 3Ly, j, s.t. || L. j — In|| <
gm(vi) = J

-1, otherwise

(10)
where mi_ SVM,,(1,, ;) € R is the output of mi — SVM,, with
the input I, ;.

In this way, we can obtain g,(v;) as the similarity for
action bag v; with the learned classifier of exemplar m. If
we have selected M = M;+, ...,+M;+, ---’+M/c exemplars
for all kinds of action in training dataset, we can get M
classifiers trained using mi-SVM, respectively. Based on the
M classifiers, each action bag v; can be measured using M-
dimensional features (g{(vi), ..., gn(Vi), ..., gu())T.

C. AdaBoost Classifier

To learn a diverse collection of features we turn to boost-
ing [30]. In boosting, multiple weak learners, each of which

Algorithm 1 Proposed BEL algorithm

1: Given: N-labeled training examples (v;, y;) with y; € {-
1,1} and v; = {[,, 1, ..., I,»}, and initial distribution of
weights w; = %,i: 1,..., N.

2: Select M candidate exemplars for all kinds of action
using the proposed method in Section III-A and train
their corresponding classifiers using mi-SVM to obtain
{gm)li = 1,...,N,m = 1,..., M} for action bag
description. The g,,(v;) can be viewed as the mth feature
of action bag v;.

32 fort=1,...,T : do

:  Train: Find M hypotheses #,,, by training the base
learner on each feature g, of the given training set,
using current weighting w;.

Calculate: The weighted training error for each hypoth-
esis h,,

N
em = 2 Wi 1V 7 P (gm(vi))).
i=1
5: Select: Hypothesis 4, with the lowest ¢,,, set h; = h,,

and g; = ¢,,.
:  Calculate: Hypothesis coefficient o, = %log(lg—f’).
7. Update: Sample weights Wisl,i =

Z%w,,[ exp(—a;yih,(v;)), where Z, is a normalization
coefficient such that > ;(w ) = 1.

end for ,

: Output: The BEL classifier H(v) = sign(}_ o (v)).

t=1

o ®

may have fairly high error, are combined into a single strong
classifier with a low overall error. Weak classifiers are trained
sequentially with the weights of the training samples adjusted
so that incorrectly classified examples receive more weight.
Boosting is ideally suited for combining diverse classifiers into
an overall classifier.

The discrete version of AdaBoost [30] defines a strong
binary classifier H as follows:

T
H(v) = sgn(}_ ahi(gn(v0)))

t=1

(1)

using a weighted combination of T weak learners A, with
weights o;. Each weak learner

1, if g,,(v;) > threshold

hi(gm(vi)) ={ —1, otherwise (12

may explore any feature g, (v;) of the action bag v;.

Based on the features of action bags, the optimal threshold
in (12) is determined and weak learners are trained and
combined to get a strong classifier for action recognition,
In fact, because each feature corresponds to an exemplar,
the discriminative exemplars from the candidate frames are
selected during the AdaBoost learning process. For details,
please see the proposed BEL algorithm 1.

IV. EXPERIMENTAL RESULTS

Video action recognition and video action annotation are
adopted to validate the efficiency and effectiveness of our
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proposed method. All of our experiments are conducted on
a server with four Quad-Core Intel Xeon E7320 (2.13 GHz)
processors and 16 GB memory. In all experiments, 8 in (8)
is empirically set to be 2.5. For the multi-class classification
problem, we deal with it as a series of two-class problems, for
which one-against-all strategy is adopted.

A. Video Action Recognition

For video action recognition, we have tested our algorithm
on two standard datasets: Weizmann human action dataset [9]
and KTH human motion dataset [10]. Weizmann and KTH
provide a few action classes recorded in controlled and
simplified settings. We use simple features to describe each
frame, such as histogram of silhouette on Weizmann dataset
and histogram of edge on KTH dataset. Next, we introduce
how to describe action instance and construct action bag in
Section IV-A1l. Then, experimental results on Weizmann and
KTH datasets are reported in Sections IV-A2 and IV-A3,
respectively.

1) Action Instance Description and Bag Construction: The
input to our action recognition algorithm is a stabilized se-
quence of cropped frames, which are centered on the human
figure. For each cropped frame, a template image as in [31]
with similar size is adopted to describe the silhouette or edge.
Fig. 5 shows an example of the template image, which is
divided into many pie slices covering some degrees each.
The maximum distance between the pixels and the center in
each cropped frame is quantized into R;;, bins, which makes
the description insensitive to the scale variance. For the rth
bin, each pie slice covers g degrees without overlaps. In our

Rpin
experiments, 6 is 30°, and Ry, is 8. Then ) % bins are

used to generate a histogram-based descripic;lr. The value of
each bin is integrated over the domain of every slice. Then we
obtain a 417-D histogram as the descriptor, as shown in Fig. 5.
To obtain compact description and efficient computation, the
dimension of the feature is further reduced using principal
component analysis (PCA).

For a candidate exemplar m and a video, at most k, nearest
frames to I, are selected for each positive action bag, and
k, for each negative action bag. Fig. 6 shows an example for
each exemplar and its corresponding action bag of video v;.

2)  Results on Weizmann Dataset: The Weizmann
dataset [9] (see Fig. 7) contains ten actions: bend (bend),
jumping-jack (jack), jump-in-place (pjump), jump-forward
(jump), run (run), gallop-sideways (side), jump-forward-one-
leg (skip), walk (walk), wave one hand (wavel), wave two

Action: v,

Fig. 6. Action v; and its corresponding action bag for each exemplar. Note
each action has M action bags corresponding to M exemplars.

(f) (g) (h) (i) )

Fig. 7. Example actions from the Weizman dataset. (a) Bend. (b) Wavel.
(c) Walk. (d) Run. (e) Skip. (f) Pjump. (g) Jack. (h) Side. (i) Wave2.
(j) Jump.

hands (wave2), performed by nine actors. In these experiments,
the background-subtracted silhouettes provided by the Weiz-
mann dataset are used. All recognition rates are computed with
the leave-one-out cross-validation. Details are as follows. Eight
out of the nine actors in the database are used to select the
discriminative exemplars and train the AdaBoost classifier, the
ninth is used for the evaluation. This is repeated for all nine
actors and the rates are averaged. The discriminative exemplars
are constantly selected from all eight actors, but never from
the ninth that is used for the evaluation.

Considering the temporal correlation, we first uniformly
subsample the sequences by a factor 1/2 and use k-means
to cluster the remaining frames. The cluster number is set to
be 200 for each class, and the proposed method in Section
III-A is used to select 20 candidate exemplars for each class.
To train each exemplar-based classifier, k, = 10 and k, = 20
are adopted to obtain training samples. It takes about 98 ms to
train an mi-SVM for one exemplar using a single core. Finally,
the most discriminative exemplars are selected by AdaBoost
to form a strong classifier.

Experimental results show that our approach can reach
recognition rates up to 100% with approximately nine dis-
criminative exemplars. In Fig. 7, we have shown some sample
frames of the Weizmann dataset. In Fig. 8(a), we show recog-
nition rates for the individual classes. The average recognition
rate on the test set and with respect to the number of weak
learners is shown in Fig. 8(b). The confusion matrix of our
result is shown in Fig. 8(c). In comparison, the space-time vol-
ume approach proposed by Blank ez al. [9] had a recognition
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Experimental results on Weizman dataset. (a) Recognition rates per action versus number of weak learner. (b) Average recognition rates versus

Fig. 9. Discriminative exemplars are selected for different actions by the final AdaBoost classifiers for the Weizmann dataset. (a) Bend. (b) Jack. (c) Wavel.

(d) Wave2. (e) Pjump. (f) Side. (g) Jump. (h) Skip. (i) Walk. (j) Run.

(d) (f)

Fig. 10. Example actions from the KTH data set. (a) Boxing. (b) Hand
clapping. (c) Hand waving. (d) Walking. (e) Jogging. (f) Running.

rate of 99.61%. Wang and Suter [32] reported a recognition
rate of 97.78% with an approach that used kernel-PCA for
dimensional reduction and factorial conditional random fields

to model motion dynamics. The work of Ali et al. [33] used a
motion representation based on chaotic invariants and reports
92.6%. Daniel and Edmond [7] reported a recognition rate of
100% with approximately 120 exemplars, which were more
than the number of our approach. Note, however, that a precise
comparison between different approaches is difficult, since
experimental setups, e.g., number of actions and length of
segments, slightly differ with each approach.

In Fig. 9, we show the selected discriminative exemplars in
the first six iterations of AdaBoost for ten different actions
on Weizman dataset only using histogram of silhouette. It
is observed that all these exemplars are representative. This
phenomenon partly proves that our algorithm is capable of
discovering intrinsic characteristics of the videos belonging
to the same category. When specifically looking into “walk”

and “run,” “wave2” and “jack,” one might note that they may
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Experimental results on KTH dataset. (a) Recognition rates per action versus number of weak learner. (b) Average recognition rates versus number

Fig. 12. Discriminative exemplars are selected for different actions by the final AdaBoost classifiers for the KTH dataset. (a) Boxing. (b) Handclapping.

(c) Handwaving. (d) Jogging. (¢) Running. (f) Walking.

TABLE I
COMPARISON OF DIFFERENT METHODS ABOUT MEAN ACCURACY ON
KTH DATASET

Methods Mean Accuracy (%) Feature

Schuldt et al. [10] 71.71 Spatio-temporal interest points
Niebles and Li [11] 81.50 Spatio-temporal interest points
Saad and Mubarak [35] 87.70 Optical Flow

Liu and Mubarak [36] 94.15 3-D interest points

Our method 95.33 Histogram of edge

have some similar exemplars. However, these actions are dis-
tinguished by AdaBoost classifier via a weighted combination
of these exemplars.

3) Results on KTH Dataset: The KTH human motion
dataset (see Fig. 10) contains six types of human actions
(walking, jogging, running, boxing, hand waving, and hand
clapping). Each action is performed several times by 25
subjects in four different conditions: outdoors, outdoors with
scale variation, outdoors with different clothes, and indoors.
In this experiment, we use edge filtered sequences instead of
background subtracted silhouettes. Edges are detected inde-
pendently using a Canny edge detector. Based on the locations
of people detected by using the method in Sabzmeydani and
Mori [34], the histogram of edge for each cropped frame can
be extracted.

Because this dataset contains tens of thousands of cropped
frames, we first adopt k-means to cluster frames for each kind

of action. The cluster number is set to 500 for each class,
and the proposed method in Section III-A is used to select 80
candidate exemplars for each class. For each exemplar, k, =3
and k, = 3 are adopted to obtain training samples for training
an mi-SVM classifier. After obtaining all mi-SVM classifiers,
each action video can be described. We use videos of 24 actors
as training dataset and the rest as testing videos, and the results
are reported as the average accuracy of 25 runs.

In Fig. 11(a), we show recognition rates for the individual
classes. The average recognition rate on the test set and
with respect to the number of weak learners is shown in
Fig. 11(b). From Fig. 11(b), we can see that our recognition
rate is about 95.33% with only 33 exemplars. The confusion
matrix for this experiment is shown in Fig. 11(c) and the
average accuracy is 95.33%. In Fig. 12, we show the selected
discriminative exemplars in the first six iterations of AdaBoost
for six different actions on KTH dataset just using histograms
of edge. From Fig. 12, we can see that our approach is effective
to select discriminative exemplars. Moreover, it is worth
noting that “jogging” and “running” share similar exemplars,
which results from the essential similarities between these two
actions.

We also compare our performance with other state-of-art
algorithms on KTH dataset. The performance is reported in
Table I. It can be seen that performance using our proposed
BEL approach exceeds other methods. We believe that the
improvement attributes to the efficient similarity measure
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TABLE I
COMPARISON OF DIFFERENT METHODS ABOUT MEAN ACCURACY AND
COMPUTATIONAL TIME ON WEIZMANN AND KTH DATASETS

Dataset Methods #Exemplars | Accuracy (%) | Computational Time
Weizmann [17] 2500 100 S5m
Our method 200 100 0.5m
KTH [17] 6000 94.33 13.8h
Our method 480 95.33 1.1h

“#Exemplars” represents the number of candidate exemplars.

750 dimensional hi;logmm

2340 dimensional HOG afier PCA ]

Feature extraction.

Fig. 13.

learning and the effectively selected and combined discrimina-
tive exemplars via BEL approach. The results demonstrate the
effectiveness of our method for recognizing different actions.

For video action recognition, we compare our method
with [17] on accuracy and computational time on Weizmann
and KTH datasets. The computational cost for each exemplar-
based classifier depends on the number of training samples
and the dimension of histogram feature. The computation time
includes both training and testing time for all exemplar-based
classifiers. On Weizmann dataset, our approach and [17] reach
recognition rates up to 100%. However, [17] requires about
13 exemplars, and our method just uses nine discriminative
exemplars. Because the dataset is small scale, there is not
much difference in computational time. The computational
time is Smin and 0.5min, respectively. On KTH dataset,
our method costs 1.1h to train exemplar-based classifiers
compared with 13.8h used in [17], and the performance has
also been improved.

B. Video Action Annotation

In this experiment, we make use of image dataset (see
Fig. 2) from the Web provided by Ikizler et al. [8] for training
our action models, and annotate human actions in uncon-
trolled videos, such as YouTube videos, which compose Web
dataset [37]. How to describe action instance and construct
action bag is presented in Section IV-B1, and experimental
results on the Web dataset are given in Section IV-B2.

1) Action Instance Description and Bag Construction: We
use the implementation of Felzenswalb et al.’s human detec-
tor [38], which has been shown to be effective in detecting
people in different poses. Once the humans are centralized, we
extract an image descriptor for each detected area. In human
detection, the histogram of oriented gradients (HOGs) has been
shown to be successful [39]. We follow the construction in [39]
to define a dense representation of an image at a particular res-
olution. The image is first divided into 8 x 8 non-overlapping
pixel regions, or cells. For each cell we accumulate a 1-D

Action:

Fig. 14. Action v; and its corresponding action bag for each exemplar. Note
each action has M action bags corresponding to M exemplars.

histogram of gradient orientations over pixels in that cell.
These histograms capture local shape properties but are also
somewhat invariant to small deformations.

The gradient at each pixel is discretized into one of nine
orientation bins, and each pixel “votes” for the orientation
of its gradient, with a strength that depends on the gradient
magnitude at that pixel. For color images, we compute the
gradient of each color channel and pick the channel with
the highest gradient magnitude at each pixel. Finally, the
histogram of each cell is normalized with respect to the
gradient energy in a neighborhood around it. We look at the
four 2 x 2 blocks of cells that contain a particular cell and
normalize the histogram of the given cell with respect to the
total energy in each of these blocks. This leads to a 9 x 4-
D vector representing the local gradient information inside a
cell. In our implementation, we resize each image to 128 x 64
and then extract HOGs in 8 x 8 cells. Our final feature vector
is the 2340-D normalized HOG cell vector. After PCA, the
dimension of the feature is further reduced to 750 to obtain
compact description and efficient computation. Fig. 13 shows
the process of feature extraction.

Next, we introduce how to construct action bags given a
detector location. By shifting the obtained detection bounding
box by ten pixels in x and y direction five times, respectively,
we get 25 cropped frames in total. These cropped frames are
considered as an action v;. Fig. 14 shows an example for
person detection and its corresponding action v;. For each can-
didate exemplar, at most k, nearest frames to it are selected for
each positive action bag, and k,, for each negative action bag.

2) Results on Web Dataset: We use the image dataset (see
Fig. 2) provided by Ikizler et al. [8] for training our action
models. The image dataset contains five different actions:
running, walking, sitting, playing golf, and dancing, which are
collected from the Web. The final set contains 384 running,
307 walking, 313 sitting, 162 playing golf, and 561 dancing
images. After person detection, we obtain 2454 action bags:
746 running, 479 walking, 349 sitting, 327 playing golf, and
746 dancing bags.

We use the video dataset provided by Niebles et al. [37] for
testing our action models. This dataset consists of YouTube
videos that have considerably low resolution and moving
cameras. This dataset has been used for person detection
purposes and does not include action annotations. Ikizler
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Fig. 15. Experimental results on Web dataset. (a) Recognition rates per action versus number of weak learner. (b) Average recognition rates versus number

of weak learner. (c) Per frame confusion matrix for action annotation on YouTube videos.

TABLE III
COMPARISON OF DIFFERENT METHODS ABOUT MEAN ACCURACY AND
COMPUTATIONAL TIME ON WEB DATASETS

Methods # Exemplars |Mean Accuracy (%)|Computational Time
Zhang et al. [17] 2000 84.16 28.9h
Our method 500 90.40 6.8h

“#Exemplars” represents the number of all candidate exemplars.

et al. [8] annotated 11 videos from this dataset, 775 frames in
total, which includes the five actions in combination. Based
on this dataset, we obtain 777 action bags: 193 running, 106
walking, 44 sitting, 202 playing golf, and 232 dancing. Note
that each video may contain more than one action, and since
we will do frame by frame annotation, our method does not
require action segmentation prior to application.

Because the training dataset contains tens of thousands
of cropped frames, we use k-means to cluster the cropped
frames and the cluster number is manually set to 400 for
each kind of action. Then, the frames closest to the cluster
are viewed as exemplars. After candidate exemplar selection
in Section III-A, we obtain 100 candidate exemplars for each
kind of action. For each exemplar, k, = 4 and k, = 2 are
adopted to obtain some training samples for training an mi-
SVM classifier. After obtaining all mi-SVM classifiers, each
action bag is described and the discriminative exemplars are
selected by AdaBoost classifier.

Compared with [17], our method proposes a discriminative
process for candidate exemplars selection. The results are
given in Table III, and we can see that our method is more
effective and efficient than [17]. This is because the proposed
candidate exemplar selection considers the discrimination of
exemplars. Using k-means to obtain candidate exemplars
in [17] loses some discriminative exemplars and leads to
the lower performance. In addition, to avoid losing some
discriminative exemplars, the number of clusters of k-means
is manually set to 400 for each action class. This leads to the
cost of computational time about 28.9 h. However, our method
adopts an efficient strategy to obtain discriminative exemplars
and reduce the computational time (6.8h) and improve the
performance (90.40%).

The experimental results on Web dataset are shown in
Fig. 15. The recognition rates for the individual classes are

TABLE IV
COMPARISON OF DIFFERENT METHODS ON YOUTUBE ACTION
ANNOTATIONS
Methods Mean Accuracy (%) Feature
Ikizler et al. [8] 75.87 PbHOGs
Our method 90.40 HOG

Percentages shown are the average accuracies per frame.

given in Fig. 15(a), and the average recognition rate with
respect to the number of weak learners is shown in Fig. 15(b).
From the Fig. 15(b), we can notice that our recognition rate is
increasing with the number of exemplars and is up to 90.40%
with about 150 exemplars. The confusion matrix for the five
different kinds of action is shown in Fig. 15(c). From the
confusion matrix, we can see that the average accuracy is
90.40%, and most of the confusion occur between dancing and
running actions. This is not surprising, because some of the
dancing poses look very similar to running. We also show the
selected discriminative exemplars in the first eight iterations
of AdaBoost for five different kinds of action in Fig. 16. From
Fig. 16, some more discriminative exemplars are obtained and
this validates the effectiveness of our proposed method. We
also observe that some selected discriminative exemplars are
not the precision detection obtained by human detection, and
most of discriminative exemplars are obtained by shifting the
precision detection bounding box. This phenomenon shows
that it is effective and true to adopt action bag instead of the
precision detection, and formulate the selection of discrimina-
tive exemplars as the MIL problem. Moreover, one might note
that “running” and “dancing” have some similar exemplars.
That is because the two actions are very similar, and it leads
to the confusion between dancing and running actions.

The comparison between our method with other state-of-
art algorithm on the YouTube dataset is reported in Table IV.
It can be seen that performance using our proposed BEL ap-
proach exceeds the method in [8]. Especially, we do not create
separate tracks for each person and use temporal smoothing
over each track. We get the final annotations for each frame
using our action models learnt from Web images. Some results
are shown in Fig. 17. Compared with [8], our method does not
require head detection to achieve an alignment of the poses. In
addition, the clutter in Web images makes it difficult to obtain
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Fig. 16. Discriminative exemplars are selected for different
(c) Playing golf. (d) Running. (e) Sitting.

Fig. 17.

a useful frame description. In most cases, a simple gradient fil-
tering based HOG descriptor is affected significantly by noisy
responses. Therefore, Ikizler et al. [8] used the probability
of boundary (Pb) operator and then extracted HOG features
based on the responses. However, we only use the HOG feature
and obtain a significant performance. Again, we believe that
the improvement attributes to the efficient similarity measure
learning and the effectively selected and combined discrimina-
tive exemplars via BEL approach. The results demonstrate the
effectiveness of our method for recognizing different actions.
As for the complex Web dataset, we think our method is more
efficient and effective.

Here, we show some experimental results to demonstrate
the filtering strategy proposed in Section III-B on Web dataset.
First, we select 200 action bags for each class as the training
samples and use k-means to cluster the cropped frames on
each action category as an initial exemplar set. The cluster

Example annotated frames from YouTube videos of Niebles et al. [37]. We run the person detector [38] on these frames. Then, by applying our
action models learnt from Web images, we get the final annotations. Note that, our method inherently handles multiple people and multiple actions. Correct
classifications are shown in green and misclassifications are in red.

number is manually set to 300 for each kind of action, and
the frames closest to the cluster are viewed as exemplars. After
candidate exemplar selection in Section III-A, we obtain 100
candidate exemplars for each kind of action. For each action
bag, there are 25 instances at most. To train each exemplar-
based classifier, we manually set k, = k, for simplicity
and do five different experiments to show how k, and k,
affect the recognition performance and efficiency. The results
are shown in Table V. We can see that the five different
experimental results have similar recognition performances,
but the computational cost is increasing rapidly with the
increased value of k, and k,. We do not set k, = k, = 25,
because it causes that each exemplar-based classifier shares
the same training samples.

In addition, our primary aim is to select some discrimi-
native exemplars. These discriminative exemplars exist only
in positive bag, and not in negative bag. Therefore, for an
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TABLE V
ACCURACY AND COMPUTATIONAL TIME FOR DIFFERENT kp AND kj,

k,=k,=1 k =k =5|k =k =10k =k =15| k =k =20
Accuracy (%) 60,86 65.37 6532 6443 6338
Time cost 08h ilh 102h 25.7h 393h

exemplar, if it is similar to one instance in each positive
bag, and no instance in each negative bag, we can confirm
that this exemplar is very discriminative. Therefore, MIL is
very suitable for training each exemplar-based classifier. To
demonstrate this point, we compare our method with SVM
classifier on Web dataset. When k, = k, = 5, the accuracy is
about 61.53% using SVM classifier. We can see the mi-SVM
has much better result 65.37%. The improvement is because
our method is very suitable to select some discriminative
exemplars compared with SVM.

V. CONCLUSION

We have presented a discriminative BEL approach for action
recognition. Each cropped frame centered on the human figure
was described using simple histogram features. Based on this
description, the MIL was employed to learn the similari-
ties between frames. Based on the learned exemplar-based
classifiers, each action bag can be described, then AdaBoost
was employed to select the most discriminative features to
form a strong classifier. Experimental results illustrated the
effectiveness and efficiency of the proposed method for video
action recognition and annotation. For video action annotation,
we showed that Web images can be used to annotate the
videos taken in uncontrolled environments. However, it should
be noted that not all actions can be discriminated with the
exemplar-based approach. A typical example is an action and
its reversal, e.g., sit-down and get-up. Without taking temporal
ordering into account, it will be very difficult to discriminate
them. In the future, we will investigate to incorporate motion
information to improve our approach.
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