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Abstract—The recently proposed covariance region descriptor
has been proven robust and versatile for a modest computational
cost. The covariance matrix enables efficient fusion of different
types of features, where the spatial and statistical properties, as
well as their correlation, are characterized. The similarity between
two covariance descriptors is measured on Riemannian manifolds.
Based on the same metric but with a probabilistic framework, we
propose a novel tracking approach on Riemannian manifolds with
a novel incremental covariance tensor learning (ICTL). To address
the appearance variations, ICTL incrementally learns a low-di-
mensional covariance tensor representation and efficiently adapts
online to appearance changes of the target with only O(1) com-
putational complexity, resulting in a real-time performance. The
covariance-based representation and the ICTL are then combined
with the particle filter framework to allow better handling of back-
ground clutter, as well as the temporary occlusions. We test the
proposed probabilistic ICTL tracker on numerous benchmark se-
quences involving different types of challenges including occlusions
and variations in illumination, scale, and pose. The proposed ap-
proach demonstrates excellent real-time performance, both quali-
tatively and quantitatively, in comparison with several previously
proposed trackers.

Index Terms—Covariance descriptor, incremental learning,
model update, particle filter, Riemannian manifolds, visual
tracking.
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I. INTRODUCTION

ISUAL tracking is a challenging problem, which can be
V attributed to the difficulty in handling the appearance
variability of a target. In general, appearance variations can
be divided into two types, i.e., intrinsic and extrinsic. The
intrinsic appearance variations include pose change and shape
deformation, whereas the extrinsic variations include changes
in illumination and camera viewpoint, and occlusions. Conse-
quently, it is imperative for a robust tracking algorithm to model
such appearance variations to ensure real-time and accurate
performance.

Appearance models in visual tracking approaches are often
sensitive to the variations in illumination, view, and pose. Such
sensitivity results from a lack of a competent object descrip-
tion criterion that captures both statistical and spatial properties
of the object appearance. Recently, the covariance region de-
scriptor (CRD) is proposed in [39] to address these sensitivities
by capturing the correlations among extracted features inside an
object region.

Using the CRD as the appearance model, we propose a novel
probabilistic tracking approach via incremental covariance
tensor learning (ICTL). In contrast to the covariance tracking
algorithm [33], with the tensor analysis, we simplify the
complex model update process on the Riemannian manifold
by computing the weighted sample covariance, which can
be incrementally updated during the object tracking process.
Thus, our appearance model can more efficiently update, adapt
to extrinsic variations, and afford object identification with
intrinsic variations, which is the main contribution of our paper.
Further, our ICTL method uses a particle filter [13] for motion
parameter estimation rather than the exhaustive search-based
method [33], which is very time consuming and often distracted
by outliers. Moreover, the integral image data structure [32] is
adopted to accelerate the tracker.

In summary, our proposed tracking framework includes two
stages, i.e., probabilistic Bayesian inference for covariance
tracking and ICTL for model update. In the first stage, the
object state is obtained by a maximum a posterior (MAP) esti-
mation within the Bayesian state inference framework in which
a particle filter is applied to propagate sample distributions
over time. In the second stage, a low-dimensional covariance
model is learned online. The model uses the proposed ICTL
algorithm to find the compact covariance representation in
the multimodes. After the MAP estimation of the Bayesian
inference, we use the covariance matrices of image features
associated with the estimated target state to update the compact
covariance tensor model for each mode. The two stage archi-
tecture is repeatedly executed as time progresses, as shown in
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Fig. 1. Overview of the proposed tracking approach.

Fig. 1. Moreover, with the use of tensors of integral images, our
tracker achieves real-time performance.

II. RELATED WORK

There is a rich literature in visual tracking and a thorough
discussion on this topic is beyond the scope of this paper. There
are many uses of covariance information in target tracking such
as covariance intersection for measurement-based tracking from
multiple sensors [14], covariance control for sensor scheduling
and management [16], [41], etc. Given the widespread use of
covariance analysis in target tracking, in this section, we review
only the most relevant visual tracking work that motivated our
approach, focusing on target representation and model update.

A. Target Representation

Target representation is one of major components in typical
visual trackers, and extensive studies have been presented. His-
tograms prove to be a powerful representation for an image re-
gion. Discarding the spatial information, the color histogram
is robust to the change of object pose and shape. Several suc-
cessful tracking approaches utilize color histograms [8], [26].
Recently, Birchfield and Rangarajan [6] proposed a novel his-
togram, named spatiogram, to capture not only the values of the
pixels but their spatial relationships as well. To calculate the his-
togram efficiently, Porikli [32] proposed a fast way to extract
histograms called the integral histogram. Recently, sparse repre-
sentation has been introduced for visual tracking via the £;-min-
imization [23] and has been further extended in [17], [21], [22],
[25], [42], and [44].

The CRD proposed in [39] has been proven to be robust
and versatile for a modest computational cost. The CRD has
been applied to many computer vision tasks, such as object
classification [12], [36], [38], human detection [28], [40], face
recognition [29], action recognition [10], and tracking [33],
[43], [45], [46]. The covariance matrix enables efficient fusion
of different types of features, and its dimensionality is small.
An object window is represented as the covariance matrix of
features, where the spatial- and statistical-feature properties,
as well as their correlations are characterized within the same
representation. The similarity of two covariance descriptors
is measured on Riemannian manifolds, which we call the
manifold covariance similarity (MCS) metric. Porikli et al. [33]
generalized the covariance descriptor to a tracking problem
by exhaustively searching the whole image for the region that
best matches the model descriptor, i.e., maximum likelihood

estimation (MLE). Using the MLE covariance descriptor is
time consuming, computationally inefficient, easily affected by
background clutter, and ineffective over occlusions.

Improvement for such situations is one of the benefits of our
proposed probabilistic ICTL tracking approach. Relying on the
same MCS metric to compare two covariance descriptors, we
embed it within a sequential Monte Carlo framework. To utilize
the MCS requires building Riemannian manifold local likeli-
hoods, coupling the manifold observation model with a dynam-
ical state space model, and sequentially approximating the pos-
terior distribution with a particle filter. Using the sample-based
filtering technique enables tracking multiple posterior modes,
which is the key to mitigate background distractions and to re-
cover after temporary occlusions.

B. Appearance Variations Modeling

To model the appearance variations of a target, there have
been many visual tracking approaches reported in the last
decades. Zhou et al. [48] embedded appearance adaptive
models into a particle filter to achieve a robust visual tracking.
In [34], Ross et al. proposed a generalized visual tracking
framework based on the incremental image-as-vector subspace
learning methods with a sample mean update. The sparse
representation of the target [24], [25] is updated by introducing
importance weights for the templates and identifying rarely
used templates for replacement. To handle appearance changes,
SVT [3] integrates an offline-trained support vector machine
classifier into an optic-flow-based tracker. In [7], the most
discriminative RGB color combination is learned online to
build a confidence map in each frame. In [4], an ensemble
of online-learned weak classifiers is used to label a pixel as
belonging to either the object or the background. To encode
the object appearance variations, Yu et al. [47] proposed to use
cotraining to combine generative and discriminative models
to learn an appearance model on the fly. In [15], Kalal ef al.
proposed a learning process guided by positive and negative
constraints to distinguish the target from the background.

For visual target tracking with a changing appearance, it is
likely that recent observations will be more indicative of its ap-
pearance than more distant ones. One way to balance old and
new observations is to allow newer images to have a larger in-
fluence on the estimation of the current appearance model than
the older ones. To do this, a forgetting factor is incorporated in
the incremental eigenbasis updates in [19]. Furthermore, Ross
et al. [34] provided an analysis of its effect on the resulting
eigenbasis. Skocaj and Leonardis [37] presented an incremental
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method, which sequentially updates the principal subspace con-
sidering weighted influence of individual images, as well as in-
dividual pixels in an image.

However, appearance models adopted in the aforementioned
trackers are usually sensitive to the variations in illumination,
view, and pose. These tracking approaches lack a competent ob-
ject description criterion that captures both statistical and spa-
tial properties of the object appearance. The CRD [39] is pro-
posed to characterize the object appearance, which is capable
of capturing the correlations among extracted features inside
an object region and is robust to some appearance variations.
In the recently proposed covariance tracking approach [33], the
Riemannian mean under the affine-invariant metric is used to
update the target model. Nevertheless, the computational cost
for the Riemannian mean rapidly grows as time progresses and
is very time consuming for long-term tracking. Based on the
log-Euclidean Riemannian metric [2], Li et al. [20] presented an
online subspace learning algorithm, which models the appear-
ance changes by incrementally learning an eigenspace represen-
tation for each mode of the target through adaptively updating
the sample mean and eigenbasis.

Our paper is motivated in part by the prowess of covariance
descriptor as appearance models [39], the effectiveness of par-
ticle filters [13], and the adaptability of online update schemes
[34]. In contrast to the covariance tracking algorithm [33], our
algorithm does not require a complex model update process on
Riemannian manifold but learns the compact covariance tensor
representation incrementally during the object tracking process.
Thus, our appearance model can more efficiently update. Fur-
thermore, our method uses a particle filter for motion parameter
estimation rather than the exhaustive search-based method [33],
which is very time consuming and often distracted by outliers.
Moreover, with the help of integral images [32], our tracker
achieves real-time performance. A preliminary conference ver-
sion of this paper appears in [43].

III. PROBABILISTIC COVARIANCE TRACKING

In this section, we first review the covariance descriptor [39]
and the particle filter [13], then the probabilistic covariance
tracking approach is introduced.

A. Covariance Descriptor

Let I be the observed image and F' be the W x H x d dimen-
sional feature image extracted from I, F(z,y) = ®(I,x,y),
where ® can be any mapping such as color, gradients, filter re-
sponses, etc. Let {f;}¥; be the d-dimensional feature points
inside a given rectangular region R of F. Region R is repre-
sented by the d x d covariance matrix of the feature points, i.e.,

1 X
C=x5—1 ;(fi —w(fi— w7
where N is the number of pixels in region R and p is the mean
of the feature points.

Element (4, j) of C represents the correlation between fea-
tures ¢ and 7. When the extracted d-dimensional feature includes
the pixel’s coordinate, the covariance descriptor encodes the
spatial information of features.

With the help of integral images, the covariance descriptor
can be calculated efficiently [39]. Specifically, d(d + 1)/2 inte-
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gral images are used such that the covariance descriptor of any
rectangular region can be computed independent of the region
size.

1) Metric on Riemannian Manifolds: Supposing no features
in the feature vector would be exactly identical, the covariance
matrix is positive definite. Thus, the nonsingular covariance ma-
trix can be formulated as a connected Riemannian manifold,
which is locally similar to a Euclidean space. For differentiable
manifolds, the derivative at point X lies in its tangent space de-
noted as T'x. Each tangent space has an inner product (-, -) x,
and the norm for a tangent vector is defined by ||y||% = (v, ¥)x-

An invariant Riemannian metric on the tangent space is de-
fined as (y,z)x = tr(X~1/2yX—12X~(1/2)) The expo-
nential map associated to the Riemannian metric is given by
expy (y) = XY 2 exp(X~1/2y x=(1/2)) X'1/2 The logarithm
uniquely defined at all the points on the manifold is logy (y) =
X1/2 IOg(X_<1/2)yX_(1/2))X1/2.

For a symmetric matrix, its exponential and logarithm are
given by exp(X) = U exp(D)UT and log(¥) = Ulog(D)UT,
respectively, where ¥ = UDU? is the eigenvalue decompo-
sition of the symmetric matrix 3. exp(D) and log(D) are the
diagonal matrix of the eigenvalue exponentials and logarithms,
respectively.

The distance between symmetric positive definite matrices is
measured by

d2(X,Y)=(logx (V),logx (V) y =tr (10g2 (X—%YX— )) .

B. Sequential Inference Model

In the Bayesian perspective, object tracking can be viewed as
a state estimation problem. At time ¢, denote the state of a target
and its corresponding observation as z; and y,, respectively. The
state set from beginning to time ¢ is x¢.;, where ¢ is the initial
state and the corresponding observation set is ¥g.¢.

The purpose of tracking is to predict the future location and
estimate the current state given all previous observations or to
equivalently construct the filtering distribution p(z+|yo.+). Using
the conditional independence properties, we can formulate the
density propagation for the tracker as follows:

panlyon) o plyler) / Pl )P [yo—1)dre 1.

For visual tracking problems, the recursion can be accom-
plished within a sequential Monte Carlo framework where
posterior p(z¢|yo.+) is approximated by a weighted sample

set {7, wi'}N= | where 27]:21 wy = 1. All the particles are

sampled from a proposal density g(x}|z}_;,y:). The weight
associated with each particle is formulated as follows:

n  Pded)platle ) o,
o w

! q(zplap_y) T

To avoid weight degeneracy, the particles are resampled so
that all of them have equal weights after resampling.

The common choice of proposal density is by taking
q(ze|zi—1,y:) = p(xt|zi—1). As a result, the weights
become the local likelihood associated with each state
wy o p(y:|z}). The Monte Carlo approximation of ex-
pectation #; = (1/Ny) Zg;l x} = F(2¢|yo.t) is used for state
estimation at time {.
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C. Probabilistic Covariance Tracking

Based on the same MCS metric to compare two covariance
descriptors on the Riemannian manifolds, the probabilistic co-
variance tracking approach embeds the MCS metric within a
sequential Monte Carlo framework. To develop the manifold co-
variance approach requires the building of a local likelihood on
Riemannian manifolds, the coupling of the observation model
with a dynamical state space model, and the sequential approx-
imation of the posterior distribution with a particle filter. The
sample-based filtering technique enables tracking the multiple
posterior modes, which is the key to mitigate the effects of back-
ground distractors and to recover from temporary occlusions.

Specifically, to measure the similarity between covariance
matrices corresponding to the target model C* and candidate
C(z}), we use the MCS metric on Riemannian manifolds. An
exponential function of the distance is adopted as the local likeli-
hood in the particle filter p(y;|z7) o< exp{—Ad?(C*,C(2™))}.

IV. INCREMENTAL COVARIANCE TENSOR LEARNING FOR
MODEL UPDATE

The main challenge of visual tracking can be attributed to
the difficulty in handling the appearance variability of a candi-
date object. To address the model update problem, we present a
model update scheme to incrementally learn a low-dimensional
covariance tensor representation and consequently adapt online
the appearance changes with a constant computational com-
plexity. Moreover, a weighting scheme is adopted to ensure that
less modeling power is expended to fit older observations with
existing models. Both of these features significantly contribute
to improve overall real-time tracking performance. In the fol-
lowing, we provide a detailed discussion of our proposed ICTL
algorithm for model update.

A. Object Representation

In our tracking framework, an object is represented by mul-
tiple covariance matrices of the image features inside the ob-
ject region, as shown in Fig. 2. These covariance matrices cor-
respond to the multiple modes of the object appearance. Without
loss of generality, we only discuss one mode in the following.

As time progresses from ¢ = 1,...,T, all the object ap-
pearances form the object appearance tensor A = {A4; €
Rm*n1 T and the d-dimensional feature vector is extracted
for each element of A; forming a fourth-order object feature
tensor F € R™*"X4XT Flattening F, we can obtain the
matrix comprising its mode-3 vector (i.e., each column is a
d-dimensional feature vector), i.e.,

F=(firnfire - figa-fo11- frye - fromm)
where f; , » denotes a d-dimensional feature vector at location

(z,y) at time ¢. Reforming = and y into one index ¢, F' can be
neatly represented by

F=(fir N fifon)=F-F---Fr)
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Fig. 2. Illustration of object representation, the flattening of F, and two dif-
ferent formulations for C'r-. The input sequence is shown in the upper part of
(a), whereas the fourth-order object feature tensor F is displayed in the middle
of (a). The result of flattening  is exhibited in the bottom of (a). The appearance
tensor A with mode division is shown in the top of (b), whereas the covariance
tensor for one mode in the middle of (b). The bottom of (b) displays two dif-
ferent formulations for C'r-.

where N = mxnand Fy; = (fe1-- fri- - fen) € RO,
The column covariance of F} can be represented as

N

Cy = N_1 Z(ft,i - Mt)(ft,z‘ - Mt)T

=1

where p; is the column mean of F;. This covariance can be
viewed as an informative region descriptor for an object [39].
All the covariance matrices up to time 7', {C; € R™>4}T_ |
constitute a covariance tensor C € R4*T We need to track
the changes of C and, as new data arrives, update the compact
representation of C.

A straightforward compact representation of C is the mean of
{Cy € R*}T_,  Porikli et al. [33] calculated the mean of sev-
eral covariance matrices through the Riemannian geometry. The
metric they used is the affine-invariant Riemannian metric. The
distance between two covariance matrices X and Y under this
Riemannian metric is computed by || log(X /2y X~ (1/2)))|.
An equivalent form is given in [9]

d
p(X,Y) = | D I A (X,Y) M
k=1

where A\, (X,Y") are the generalized eigenvalues of X and V.
Under this metric, an iterative numerical procedure [30] is ap-
plied to compute the Riemannian mean. The computational cost
for this Riemannian mean linearly grows as time progresses. In
the following, we propose a novel compact representation of C,
which can be updated in constant time by avoiding the compu-
tation of the Riemannian mean.
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B. ICTL

From a generative perspective, y; and C; are generated from
F, and the covariance tensor C is generated from the feature
tensor F. Therefore, the compact tensor representation can be
directly obtained from F. We get the compact representation by
computing the column covariance of F, i.e.,

A ) T N
Cr = NT 1 Z Z(ft,i — fir)(fei — )"

t=1 i=1

where [i7 is the column mean of F'. Although (4.2) is arguably
straightforward, it is computationally expensive and needs a
large amount of memory to store all the previous observations.
Here, we propose a novel formulation that could be efficiently
computed with only O(d?) arithmetic operations.

We treat (4.2) as a sample covariance estimation problem by
considering each column f;; of F' as a sample. As time pro-
gresses, the sample set £’ grows, and our aim is to incrementally
update the sample covariance. In order to moderate the balance
between old and new observations, each sample f; ; is associ-
ated with a weight, allowing newer samples to have a larger in-
fluence on the estimation of the current covariance tensor rep-
resentation than the older ones. As a result, the covariance esti-
mation problem can be reformulated as estimating the weighted
sample covariance of F'. Furthermore, under formulation (4.2),
it is unnecessary to normalize the object appearance to the same
size as [20]. In the following, we use V; to denote the size of
the object at time .

One of the critical issues for our formulation is the design
of the sample weight. Four issues are considered to chose the
sample weight: 1) the weight of each sample should vary over
time 7'; 2) the samples from the current time 7" should have
the higher weights than previous samples; 3) the weight should
not affect the fast covariance computation using integral im-
ages; and 4) the weight should not affect the ability to incre-
mentally obtain the covariance tensor representation. Therefore,
when the current time is 7, the sample weight at time ¢ is set as
wT=t, where w € [0,1] and t € [1, T]. With this weight setting,
the samples at the same time share the same weight, and the
weighted sample covariance of F' can be incrementally updated.

To obtain an efficient algorithm to update the covariance
tensor representation, we put forward the following definitions
and theorem.

Definition 1: Denote the weighted samples up to current time
T as

Fr=A{friwreit,; Tyi=1,...,N;

where wr ¢ ; is the weight of sample f, ;. Let the number of
samples in FT be NT and the sum of weights in FT be wr,
namely, Np = Zthl N, and W = Z?:l Zf\il Wt

Definition 2: Let Cy and u; be the weighted covariance and
the weighted sample mean at time ¢, respectively. Denote the
weighted covariance and the weighted sample mean of Fr as
C’T and [i1, respectively. The formulation of C’T and [ are as
follows:

thL

~(fri—

Cr = . ir)(fri — i)t ()

— W
T ¢=1 i=1 T
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where

T N 2 T N,
_9 WT t,i
wr=3 > (=
‘ wT

t1L1

Let weights of all samples at time ¢ be equal. The formula-
tions of C; and i are as follows:

L

Cy = N, —1 ;(ftz - Mt)(ft,z’ - Ht)

1 &
Ht = ﬁt ;ft,i-

Theorem 1: Given Cr, ur, éT_l, fir—1, Wwr—_1, and @%_1,
if wr; = wT " and w € [0, 1], it can be shown that

A 1
Cr=—F-—"—"
" r (1—w2)

W Y N
+%(MT fir— 1)(MT—MT—1)T} 3)

{IUIZ)T_l (1—@%«_1) C’T_1+(NT—1)CT

where wp = wir_1 + Np, fir = (wibp_y/d7)jr—1 +
(N7 /wr)pr, and 0F = ((Wp_1©F_y—Nr-1)w?+Nr [107).
The initial conditions are C; = C4, i1 = p1, w1 = Ny, and
w? = 1/Nj.

To make the proof of Theorem 1 concise, we give some
lemmas first. The proof of all the lemmas appears in the
Appendix.

Lemma 1: If wr;; = w™' w € [0,1], we have wr =
U)UA)T_l +NT and w% = ((12)%_1711%«_1—NT_l)wz-l-NT/?I}%).

Lemma 2: EtT 1 Ziv:tl wrei(fei — fir) = 0, and
Zt 1 Zt L wrei(fri — fir)" = 0.

Lemma 3: If weights of all the samples at time T" are equal,
then SN (fri — jur)(fri — fir)T = (N = 1)Cr+Nr(pr —
fir)(pr — pr)"

Lemma 4: If wry; = w'=" w € [0,1], we have
fir = (wibp_y/wr)ir—1 + (Np/br)ur, fir—1 — fir =
(N /wr)(pr — fir—1), and pr — fir = (wibr—1 /W) (pr —

T—

fir—1).
Lemma 5: If wry; = w'=' w € [0,1], we have
= Zthl wri(fri — br)(fri — dr)'= wir_1(1 —

@%_1)CT 1+ wbp_1(fir—1 — fir)(fr—1 - NT)T~
Proof of Theorem 1: By definition, CT = (1/1 —
W2) S SN (i i) (s — fer) (foi — o) thus, we
have the equation shown at the bottom of the page O
If we treat all samples equally, i.e., set w to 1, we can obtain
the sample covariance of F' from (3), i.e.,

~ 1 ~ ~
Cr = — {(NTl — 1)CT71 + (NT — 1)0'1"
Np_y

NN .
&(NT — fir_ 1)(NT - uTl)T} -
N

When w is set to 0, C'T is equal to C, which means only in-
formation at the current time is used to represent the covariance
tensor.
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Expanding C’T_l in Theorem 1 iteratively, we can reformu-
late Ct as follows:

T T
OT = Zwt,CCt + Zwt,p(,u/t — fie—1) (e — ﬂt—1)T

t=1 t=2

where wy o = (w?'(Ny — 1)/whir(1 — w%)) and we,, =
(wT ey Ny Jw' = iy (1 — 02)).

It is interesting to see that our formulation is a mixture model,
which is a weighted sum of all the covariance up to time 7" with
a regularization term, and the weight of each kernel covariance
is dynamically adapted.

Consequently, the proposed ICTL algorithm is shown in
Algorithm 1.

Algorithm 1 The ICTL algorithm

1: Given Cr, pip, Ny, Cp_1, fip—1, W1, Np_1, w3_,, and
wr; = wl—t w € [0, 1], compute Cr.

2: Update the sum of sample weights up to time 7"

wr = wir—_1 + Nr.

3: Update the squared sum of normalized sample weights up to
time T: w2 = ((w%_,w3_, — Nr_1)w? + Nr)/032.

4: Update the weighted mean of all samples up to time 7'

fr = (wr_1/Wr)fr—1 + (Nr/dr)pr.

5: Update the weighted covariance Cr by Theorem 1.

6: The initial conditions are é’l
and w? = 1/Nj.

= (y, /11 = M1, = Ny,

V. EXPERIMENTS

In our experiments, the target is manually initialized. The
tracking parameters are tuned on one sequence and applied to
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all the other sequences. During the visual tracking, a 7-D fea-
ture vector is extracted for each pixel, i.e.,

(@9, R(z,y), G(z,y), B(z,y), L(2,9), L,(2,y))

where (z,y) is the pixel location; R, G, and B are the RGB
color values; and I, and I, are the intensity derivatives. Conse-
quently, the covariance descriptor of a color image region is a 7
x 7 symmetric matrix. The state in the particle filter refers to an
object’s 2-D location and scale, namely, (z, y, s). The state dy-
namics p(z¢|x¢—1) is assumed to be a Gaussian distribution as
N(zt;24-1,%), where X is a diagonal covariance matrix whose
diagonal elements are (0,07,02) = (5%,5%,0.02%), respec-
tively. The number of particles is set to 100 for our tracker, and
win (3) is set to 0.95. The observation model p(y:|z+) is the cru-
cial part for finding the ideal posterior distribution. It reflects the
similarity between a candidate sample and the learned compact
covariance tensor representation. The target appearance model
is represented by M modes {Cr ; },. Each mode C; () of the
candidate sample x; is compared with the corresponding model

by (1). Thus, p(y:|z+) can be formulated as
P(ye|zt) ox exp{ )\Ele ) [C’T, C’,(x,)]}

where w; is the weight for the ith mode (w; = 1/M in our
experiments). After the MAP estimation, we use the covariance
matrices of image features associated with the estimated target
state to update the compact covariance tensor model for each
mode.

By our definition, each particle corresponds to an upright rec-
tangle. Therefore, it is possible to improve the computational
complexity of covariance computation using the integral his-
togram techniques [32]. After constructing tensors of integral
images for each feature dimension and multiplication of any two
feature dimensions, the covariance matrix of any arbitrary rect-
angular region can be computed independent of the region size.
In our case, 28 integral images are constructed for fast covari-
ance computation. The approach was implemented using C++

T N,

=Y > wrpilfei = fr)(fri — )"

t=1 i=1
T—-1 N;

.
= Wr t,i ff i /J/T)(ff 1
t=1 =1

i (1 -

ﬂT)T + Z 'U)T,t,q',(fT,i - /be)(fT,qt - ﬂT)T

wibr—1 (1 — w§_1)Cr—1 + wibr_1 (fir—1 — fir)(fir—1 — fir)"
+ (N7_1)Cr + Np(pr — jir)(ur — fir)*

N

(Lemmas 3 and 5)
i=1

(Lemma 4)

. A . Nr\? X X
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wa 1

+NT<
W

—’wa 1(1—11}% 1)CT 1+(NT—1)CT+
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T
(Lemma 1)

n N . N
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TABLE I
TRACKING ERROR. THE ERROR IS MEASURED USING THE EUCLIDEAN DISTANCE OF TWO CENTER POINTS,
‘WHICH HAS BEEN NORMALIZED BY THE SIZE OF THE TARGET FROM THE ANNOTATION

| [ GKT [35] | MIL [5] | MS [8] | CPF [31] | COV [33] | IVT [34] | OAB [11] | VTD [18] | Frag [1] | ICTL |
car 127242 | 1.5211 | 3.6382 | 45717 | 33430 | 60876 | 32358 3.0016 | 2.6072 | 09118
dog 0.1933 | 0.1350 | 0.1757 | 0.0946 | 02124 | 0.7230 | 0.1843 0.1372_| 0.1434 | 0.1671
face 0.1490 | 0.2798 | 0.1877 | 02757 | 04031 | 0.1611 0.2026 0.1897 | 0.1005 | 0.1256
race 00768 | 0.0541 | 0.0784 | 0.0931 02537 | 00317 | 00523 00320 | 0.0533 | 0.0456
tnpike | 0.0213 | 0.0210 | 0.0271 | 0.3961 02563 | 0.0080 | 0.0091 0.0051 | 00168 | 0.0127
noise 04706 | 0.0199 | 00539 | 0.3000 | 0.1406 | 0.0081 | 0.0065 0.0061 | 0.0258 | 0.0209
crossing | 04564 | 00196 | 0.0351 | 02254 | 00883 | 0.1902 | 0.0110 00974 | 02359 | 0.014
couple | 13426 | 10522 | 34404 | 26670 | 04898 | 2.1280 | 3.0110 25734 | 1.0000 | 0.3433
jogging | 03069 | 08211 | 07028 | 0.1885 | 0.0865 | 0.7808 | 0.0570 0.7916 | 0.6383 | 0.0364
woman | 0.6305 | 06972 | 0.5714 | 02813 | 03178 | 05846 | 0.6700 0.7337 | 0.0664 | 0.0366
subway | 3.0806 | 0.1061 | 3.0340 | 05036 | 02772 | 2.9237 | 3.2289 32080 | 0.1577 | 0.0880
[ Ave. | 17692 | 04297 | 10859 | 0.8725 | 05335 | 12388 | 09699 | 00878 | 0.4588 | 0.1639 |
TABLE Il

TRACKING QUALITY. THE QUALITY IS MEASURED USING THE AREA COVERAGE BETWEEN THE TRACKING RESULT AND THE ANNOTATION

| [ GKT [35] [ MIL [5] | MS [8] | CPF [31] | COV [33] | IVT [34] | OAB [11] [ VTD [18] | Frag [1] | ICTL

car 0.0176 03939 | 02924 | 0.2186 0.2791 0.4664 0.3978 04224 | 03902 | 0.5547
dog 0.2876 03423 | 03187 | 03753 0.2665 0.1865 0.2939 0.3962 0.3524 | 0.3087
face 0.7346 05792 | 0.6714 | 0.5800 05138 0.6901 0.6572 0.6301 0.7822 | 0.7118
race 0.4934 05236 | 04784 | 04275 03516 0.6430 0.5334 0.6906 | 0.5216 | 0.6372

turnpike | 0.6568 0.6506 | 0.6344 | 0.1643 0.3582 0.7730 0.7628 0.8118 0.7129 | 0.7560
noise 02112 0.6580 | 04873 | 0.1969 05343 0.7985 0.7856 0.7828 0.6250 | 0.6567

crossing | 0.0133 0.6078 | 04876 | 0.0836 03285 0.2696 0.6258 04076 02941 | 05947
couple 03422 04396 | 0.0517 | 0.0363 04337 02129 0.0675 0.0647 02317 | 0.5125
Jjogging | 0.3449 0.1761 | 0.1449 | 04141 0.5369 0.1339 0.5333 0.1694 0.1643 | 0.6838
woman | 0.0202 0.0767 | 0.0521 | 0.0856 0.0996 0.0641 0.0740 0.0661 0.5455 | 0.5938
subway | 0.1146 | 05724 | 0.0540 | 0.1623 03644 0.0707 0.0808 0.0781 0.5404 | 0.5589

[ Ave. | 02047 | 04564 | 03339 | 02495 | 03697 | 03921 | 04375 | 04109 | 04691 | 0.5972 |

TABLE III

FAILED TRACKING STATISTICS. THE NUMBER FOR EACH SEQUENCE IS CALCULATED USING A THRESHOLD (1/3 1S USED TO GENERATE THIS TABLE)
TO FILTER THE AREA COVERAGE BETWEEN THE TRACKING RESULT AND THE GROUND TRUTH

| [ #frame | GKT [35] | MIL [5] | MS [8] | CPF [31] | COV [33] | IVT [34] | OAB [11] | VTD [18] | Frag [1] | ICTL ]

car 252 246 118 123 188 163 88 118 102 127 36
dog 127 89 71 77 69 o1 95 96 56 73 80
face 890 0 201 0 140 214 0 10 2 0 0
race 320 33 pp) ) 6 132 0 pp) 0 27 3
turnpike | 290 0 0 0 235 142 0 0 0 14 0
noise 290 190 0 I 202 60 0 0 0 14 0
crossing | 120 118 0 7 114 63 71 2 iz 68 0
couple | 140 58 44 128 133 39 94 128 128 95 25
jogging | 300 119 231 232 ) 43 236 35 231 232 1
woman | 542 531 478 510 83 503 74 74 490 84 43
subway | 154 125 3 147 127 70 137 136 137 15 8

[ Total | 3425 | 1500 | 1168 | 1324 | 1819 | 1520 | 1195 | 1021 | 1190 | 749 | 241 |

and performed on a personal computer with a 1.6-GHz cen-
tral processing unit. Without code optimization, our tracker can
achieve around 20 fps for image sequences with a resolution of
320 x 240.

We compared the proposed ICTL tracker with nine state-of-
the-art visual trackers, namely, generalized kernel-based tracker
(GKT) [35], multi-instance learning-based tracker (MIL) [5],
incremental principal-component-analysis-based tracker (IVT)
[34], online-boosting-based (OAB) tracker [11], visual tracking
decomposition (VTD) tracker [18], fragment-based (Frag)
tracker [1], color-based particle filtering (CPF) tracker [31],
covariance (COV) tracker, [33] and mean shift (MS) tracker
[8]. In our experiments, using the public trackers, we used the
same parameters as the authors. Eleven sequences, most of

them have been widely tested before, are used in the compar-
ison experiments. The quantitative results are summarized in
Tables I-III and Fig. 10. Below is a more detailed discussion of
the comparison tracking results.

A. Speed Comparison for Model Update

From (3), it is clear that the update for Cr is independent
of T and needs only O(d?) arithmetic operations, whereas the
computational complexity of the Riemannian mean used in [33]
is O(Td?). In our experiment setting, when 7' = 50 and d = 7,
the computational time for both algorithms are 0.1 and 10 ms,
respectively.

The computation times for model update are given in Fig. 3 in
log-linear scale. The figure shows that the proposed ICTL has
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Fig. 3. Speed comparison for model update.

a constant time complexity and is significantly faster than the
original covariance tracker.

B. Qualitative Evaluation

Pedestrian Tracking: We first test our ICTL algorithm to
track a pedestrian using sequences crossing, couple, jogging,
subway, and woman.

Fig. 4(a) shows the comparative results on crossing. Although
the target has the similar color feature as the background, our
tracker is able to track the target well, which can be attributed to
the descriptive power of the covariance feature and the model
update scheme. Notice that the nonconvex target is localized
within a rectangular window, and thus, it inevitably contains
some background pixels in its appearance representation. From
#48, the target rectangular window contains some light pixels.
The weighted incremental model update adapts the target model
to the background changes. The results show that our algorithm
faithfully models the appearance of an arbitrary object in the
presence of noisy background pixels.

Fig. 4(b) shows the tracking results using sequence couple,
captured from a hand-held camera. The couple represents a sit-
uation of group tracking where one or more objects move to-
gether in a sequence. Notice that there is a large-scale variation
in the target relative to the camera (#3, #139). Even with the
significant camera motion and the low frame rate, our ICTL al-
gorithm is able to track the target better than other trackers (see
Table I). Although our tracker loses the target in #91 due to the
sudden fast camera motion, it redetects the target in #116 and
tracks the target to the end. Furthermore, the compact tensor
representation is constructed from scratch and is updated to re-
flect the appearance variation of the target.

Fig. 4(c) shows the tracking results on sequence jogging.
Note that our ICTL method is able to track the target under-
going gradual scale changes (#22 and #300). Furthermore, our
method is able to track the target with severe full occlusion
(#68 and #77), which lasts around 20 frames. Compared with
the results of COV, our method is able to efficiently learn a
compact representation while tracking the target without using
Riemannian means. Moreover, our tracker is more stable when
the target is under occlusion. The multimode representation
and the Bayesian formulation contribute to the successful
performance.

Our algorithm is also able to track objects in cluttered en-
vironment, such as the sequence of a human walking in the
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subway, shown in Fig. 4(d). Despite many similar objects in the
scenario and the indistinctive texture feature to background, our
algorithm is able to track the human well.

Sequence woman, as shown in Fig. 4(e), contains a woman
moving in different occlusion, scale, and lighting conditions.
Once initialized in the first frame, our algorithm is able to track
the target object as it experiences long-term partial occlusions
(#68, #146, and #324), large-scale variation (#540), and sudden
global lighting variation (#45 and #46). Notice that some parts
of the target are occluded, and thus, it inevitably contains some
background information in its appearance model. The multi-
mode representation enables the tracker to stably work and es-
timate the target location correctly.

Vehicle Tracking: Sequence race, as shown in Fig. 5(a), con-
tains a car moving in different scales and poses, where the back-
ground has a similar color as the target. Once initialized in the
first frame, our tracker is able to follow the target object as it ex-
periences large-scale changes (#4, #64, and #254) and pose vari-
ations (#4 and #185). Notice that the COV tracker cannot handle
scale changes and is not stable during the tracking sequence.

Fig. 5(b) shows the tracking results on sequence car. The
target is undergoing long-term partial occlusions (#165 and
#170), which lasts around 40 frames, and large-scale variation
(#16 and #197). In this sequence, GKT loses the target quickly,
and all the other trackers cannot estimate the scale and the
ICTL method. When the car changes its pose (#252), together
with scale variation, only our tracker can follow the target.
The tracking success for partial occlusions and scale variation
results from the part-based representation and the proposed
model update approach.

Fig. 5(c) shows the tracking results on sequence turnpike. The
color -based CPF tracker drifts off the target from #60 and then
quickly loses the target. Similarly, the COV tracker also loses
the target and is attracted to the nearby car with similar color.

Noise: To test the robustness to noise, the Gaussian noise
was added to sequence furnpike, and the generated sequence is
named noise. The comparative results are shown in Fig. 5(d).
Compared with Fig. 5(c), we can see that the performance of
GKT is dramatically decreased. The poor performance of the
GKT is because its appearance model is not robust to the noise.
Note that the covariance descriptor is robust to the Gaussian
noise and the performance of our tracker is almost the same as
noise-free sequence.

Long-Term Sequence Tracking: Long-term sequence
tracking has recently drawn many researchers’ attention
[15] due to its challenges and practical applications. We test the
proposed method on one long sequence, i.e., doll [24], which is
taken by a hand-held camcorder and lasts 3871 frames. Some
samples of the tracking results are shown in Fig. 6. It shows the
tracking capability of our method under scale, pose changes,
and occlusions.

More Other Cases: Fig. 7(a) and (b) shows more tracking
results on sequences face and dog, respectively. In face, the
target is frequently undergoing long-term partial occlusion. Our
tracker again outperforms all the other trackers. The successful
performance can be attributed to the adopted part-based repre-
sentation. COV poorly performs on this sequence. In sequence
dog, the dog is running and undergoing large pose variation.
Although our tracker cannot estimate the accurate scale of the
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Fig. 4. Pedestrian tracking results of different algorithms. (a) Crossing, (b) couple, (c) jogging, (d) subway, and (e) woman.

Fig. 5. Vehicle tracking results. Legend is the same as in Fig. 4. (a) Race, (b) car, (c) turnpike, and (d) noise.

target due to the severe pose change, our ICTL tracker follows
the dog throughout the sequence.

C. Qualitative Analysis of ICTL

We use sequence crossing to test the effectiveness of the
proposed ICTL. Three trackers are exploited for the qualitative
analysis, i.e., Tracker-A uses the proposed ICTL approach with

default parameter setting; Tracker-B uses the sample covari-
ance for model update, i.e., parameter w in (3) is set to 1; and
Tracker-C is a tracker without model update. To test if adding
more features could improve the tracking performance, we
construct Tracker-D by adding Tracker-C with two additional
features, i.e., two directional second-order intensity derivatives,
and the size of covariance descriptor for Tracker-D is 9 x 9.
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Fig. 8. Effectiveness test of ICTL using three modification of ICTL: (white)
Tracker-A, (red) Tracker-B, (blue) Tracker-C, and (yellow) Tracker-D.

tracking performance using different sample weights on sequence crossing
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Fig. 9. Tracking performance with respect to the weight selection.

The results are illustrated in Fig. 8. As shown in the figure,
when the target window includes more background clutter
(white pixels), Tracker-C drifts and loses the target after #77.
Tracker-B drifts from #76 and loses the target in #79. Even
with more visual features, Tracker-D could not track the target
robustly, whereas our proposed Tracker-A is able to track
the target throughout the sequence. The success of the ICTL
performance can be attributed to the weighting scheme adopted
in the proposed ICTL.

To further realize the tracking performance with respect to the
weight selection, we carried out different trackers with different
weights on sequence crossing, where the weight’s range is from
0 to 1 with a space of 0.05. This is illustrated in Fig. 9. We can
see that an improper weight may degenerate the performance.
Weights in the range of [0.8, 0.95] may be a good choice for the
tracker.

D. Quantitative Evaluation

To quantitatively evaluate all the trackers, we manually
labeled the bounding box of the target in each frame. In Table I,

we give the average tracking errors of each approach in all
sequences. From the statistical results, we can see that, although
many of the state-of-the-art tracking approaches have difficulty
tracking the targets throughout the sequence, our proposed
tracker can track the target robustly.

To measure the tracking quality of each approach, we use the
area coverage between the tracking result and the annotation as
the criterion. The range of this measure is [0, 1]. The average
quality is shown in Table II. If we treat the coverage lower than
1/3 as a poor tracking result, we can get the poor tracking sta-
tistics table, as shown in Table III. We can see that all the ap-
proaches cannot perform well on the dog sequence because the
target is undergoing large deformation together with the scale
change. The car and race sequences are also challenging se-
quences due to the large scale variation. Particularly on jog-
ging and woman, our tracker performs much better than other
trackers.

Fig. 10 illustrates the tracking error plot for each algorithm
on each testing sequence. Each subfigure corresponds to one
testing sequence, and in each subfigure, different colored lines
represent different trackers. Our proposed tracker excellently
performs, in comparison with other state-of-the-art trackers.

The reason that our ICTL tracker performs well is three-
folded: 1) multiple covariance feature matrices are used to
characterize the object appearance; 2) the particle filter is
adopted for posterior distribution propagation over time; and
3) the ICTL learns the compact covariance model to handle
appearance variation.

E. Discussion

Our proposed tracker is based on the multimode represen-
tation, the covariance descriptor, the incremental appearance
learning, and the particle filter. The robustness of the tracking
performances are joint result of these components. In partic-
ular, multimode representation addresses partial occlusion and
scale estimation, covariance matrix brings rich information for
target representation, and particle filter is more powerful than
searching-based approach. That said, there are challenging
cases when our tracker meets problems, such as when dealing
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Fig. 10. Tracking error plot. Legend is the same as in Fig. 4.

Fig. 11.

with severe motion blurs, large- and fast-scale change, abrupt
motion or moving out of the frame, etc. These challenges are
likely to happen particularly in long sequences. Fig. 11 shows
some failure or inaccurate tracking results of the proposed
tracker.

Some of the compared trackers are without a model update
procedure, such as the CPF tracker. As a result, they cannot
handle the appearance variations of the target. Their tracking
performance could be improved by adopting some advanced
model update scheme, such as the approach adopted in [26]
for the CPF tracker. This may also give a good motivation of
choosing covariance descriptor. We would investigate this in our
future work.

To fairly compare different trackers is not an easy work. Dif-
ferent evaluation criterion may generate different performance.
For example, on sequence subway, the center error criterion is
not consistent with the area coverage criterion. The center error
criterion is widely used in the visual tracking domain, whereas
the area coverage criterion is commonly used in the object de-
tection area. From the performance generated by area coverage,
we can get much more information than the center error, e.g.,
the quality of tracking. Therefore, we think the area coverage is
a better criterion for tracking performance measurement.

VI. CONCLUSION

In this paper, we have presented a real-time probabilistic
visual tracking approach with incremental covariance model
updating. In the proposed method, the covariance matrix of
image features represents the object appearance. Furthermore,
an ICTL algorithm adapts and reflects the appearance changes
of an object due to intrinsic and extrinsic variations. Moreover,
our probabilistic ICTL method uses a particle filter for motion
parameter estimation and the covariance region descriptor
for object appearance, and with the use of integral images,
it achieves real-time performance. The use of a part-based
representation of the object model, in addition to the ICTL and
Bayesian PF updates, also affords tracking through scale, pose,
and illumination changes. Compared with many state-of-the-art

Some failed or inaccurate tracking results by the proposed tracker.

trackers, the proposed algorithm is faster and more robust to
occlusions and object pose variations. Experimental results
demonstrate that the proposed method is promising for robust
real-time tracking for many security, surveillance, and moni-
toring applications.

The proposed probabilistic tracker is more suitable for multi-
target tracking. Due to the integral images used for fast calcula-
tions of covariance matrix, when tracking multiobjects, the com-
putational cost grows less than the linear of the tracked target
number. When the covariance-based object detector [40] is used
to initialize the targets, the computational cost would lower than
the independent detector and tracker. This is because the de-
tector shares the same base features (integral images) with the
tracker. Furthermore, the boosted particle filter [27] can be used
to improve the multiobject tracking performance.

APPENDIX A
PROOF OF ALL LEMMAS
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