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Context-Aware Video Retargeting via Graph Model
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Abstract—Video retargeting is a crowded but challenging re-
search area. In order to maximally comfort the viewers’ watching
experience, the most challenging issue is how to retain the spatial
shape of important objects while ensure temporal smoothness
and coherence. Existing retargeting techniques deal with these
spatial-temporal requirements individually, which preserve the
spatial geometry and temporal coherence for each region. How-
ever, the spatial-temporal property of the video content should be
context-relevant, i.e., the regions belonging to the same object are
supposed to undergo uniform spatial-temporal transformation.
Regardless of the contextual information, the divide-and-rule
strategy of existing techniques usually incurs various spatial-tem-
poral artifacts. In order to achieve satisfactory spatial-temporal
coherent video retargeting, in this paper, a novel context-aware so-
lution is proposed via graph model. First, we employ a grid-based
warping framework to preserve the spatial structure and tem-
poral motion trend at the unit of grid cell. Second, we propose a
graph-based motion layer partition algorithm to estimate motions
of different regions, which simultaneously provides the evaluation
of contextual relationship between grid cells while estimating
the motions of regions. Third, complementing the salience-based
spatial-temporal information preservation, two novel context
constraints are encoded for encouraging the grid cells of the same
object to undergo uniform spatial and temporal transformation,
respectively. Finally, we formulate the objective function as a
quadratic programming problem. Our method achieves a sat-
isfactory spatial-temporal coherence while maximally avoiding
the influence of artifacts. In addition, the grid-cell-wise motion
estimation could be calculated every few frames, which obviously
improves the speed. Experimental results and comparisons with
state-of-the-art methods demonstrate the effectiveness and effi-
ciency of our approach.

Index Terms—Context-aware, grid graph model, spatial-
temporal correlation, video retargeting.

I. INTRODUCTION

IDEO retargeting is to adapt videos to various display
devices with clear and smooth imaging quality. Given a
display device screen, the original video is adapted to a suit-
able version in terms of scale and aspect ratio. With the de-
velopment of multimedia and Internet techniques, video retar-
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geting becomes a crowded research area due to the prolifera-
tion of video data presented across various digital display plat-
forms, from TVs, PCs, PDAs, to cell phones. The key issue of
high-quality video retargeting is retaining the temporal smooth-
ness and coherence as well as avoiding spatial shape distortion
and maximally comfort the video viewers’ watching experience.

Most existing retargeting techniques accomplish this pur-
pose by preserving the spatial and temporal information of
different regions, respectively, which are based on the spatial
salience map and temporal motion estimation (e.g., flow esti-
mation method). However, for video retargeting, this respective
strategy usually incurs two inevitable problems. First, the
salience map across same object is usually nonhomogeneous,
which results in nonuniform spatial deformation in retargeting.
This leads to noticeable damage to object geometry. Second, the
regional motions of same object are generally continuous, and
yet the existing approaches preserving the temporal coherence
of regions individually cause the regions belonging to the same
object undergo inconsistent temporal transformation and results
in the corresponding temporal artifacts, such as background
waving and foreground flicker. These spatial-temporal artifacts
degenerate the quality of retargeting significantly.

Thus, an ideal spatial-temporal coherent retargeting frame-
work should embody the awareness of contextual relationship,
that is to say, regions belonging to the same object should ex-
perience similar spatial-temporal transformation. However, the
object identification and segmentation is still a challenging issue
in computer vision, and the direct application of these algo-
rithms is neither practical nor economic for boosting the re-
targeting performance. Fortunately, it is easy to notice that the
temporal motion and spatial content in video are correlated due
to the following facts: 1) compared with the regions belonging
to different objects, those belonging to same object are visu-
ally similar and 2) the regional motions across same object are
usually continuous and have the similar direction and inten-
sity. Correspondingly, the neighboring regions with similar vi-
sual content and motion more likely belong to the same ob-
ject. Therefore, we believe that these correlations are helpful
for modeling the contextual relationship between regions, which
would improve the quality of retargeting significantly.

In this paper, we propose a novel graph model-based con-
text-aware video retargeting framework. First, we employ a grid
based warping algorithm to preserve the spatial structure and
temporal motion of source videos at the unit of grid cell. Com-
pared with others, this method provides a smoother imaging
quality and a higher operation efficiency. Second, instead of the
pixel-wise optical flow, we propose a graph-based motion layer
partition algorithm to estimate the grid-cell-wise motion. Com-
paring with pixel-wise flow estimation, the coarse grid and the
consideration on visual similarity of neighboring regions help
to suppress the vulnerability to noise disturbance and produce
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robust and reliable motion estimation. More importantly, due
to the structure of a grid graph model, the motion information
and visual similarity of regions are reflected by the weights of
different edges respectively, which just corresponds to the def-
inition of spatial-temporal correlation. Consequently, in addi-
tion to motion estimation, the graph model provides the mea-
surement of contextual relationship between regions simulta-
neously, which factually reflects the possibility that the neigh-
boring regions belong to same object. This means the graph
method can be fused into our context aware framework seam-
lessly. Thirdly, complementing salience based spatial-temporal
information preservation, we encode the context awareness as
two constraints, which aim at encouraging uniform spatial-tem-
poral transformation across same object. Finally, minimizing
the total objective function is formulated to solve a quadratic
programming problem.

In our solution, instead of a divide-and-rule strategy, we adopt

a context-aware manner to preserving the spatial geometry and
temporal coherence. The main contribution of this paper are
summarized here.

* A grid graph model is proposed for grid-cell-wise motion
layer partition and measurement of contextual relationship.
Compared with optical flow, this method produces more
robust and reliable estimation. Most importantly, with the
inherent concern of the spatial-temporal correlation, the re-
sulting motion layer not only can deliver the temporal mo-
tion information but also include the information of con-
textual relationship implicitly, which plays a critical role
for achieving context-aware retargeting.

* We encode the context awareness as two novel con-
straints during the process of optimization. These two
energy penalty terms guiding the regions of same object
undergo consistent spatial and temporal transformation,
respectively, which refrain retargeted video from obvious
spatial-temporal artifacts.

e The aligned grids and grid-cell-wise motion estimation
greatly reduce the amount of variables involved in the
process of optimization, which make our system work in
a highly efficient manner.

II. RELATED WORK

A. Image Retargeting

Many content-aware image retargeting approaches have
been proposed, such as cropping [1]-[4], seam carving [5]-[8],
warping [9]-[11], and hybrid approaches [12]-[14].

Cropping-based approaches [1]-[4] search for a window of
target aspect ratio which covers the most important contents and
take this window as the output while completely discarding the
part outside.

Seam-based approaches [5] search for an optimal seam which
actually is a continuous chain of the pixels from each row or
column with the least importance and resize an image by re-
ducing or adding seams iteratively. Several notable works are
proposed for improving the original Seam Carving, which can
be found in [6][8].

Warping-based approaches attempt to transform images con-
tinuously. Deformation is more or less allowed in unimportant
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regions, while the geometry is retrained well for important re-
gions. There are one-directional image warping [9] and omni-di-
rectional image warping methods [10]. Li et al. propose a dy-
namic grid partition strategy to preserve the important region
precisely [11]. Panozzo et al. in [15] use axis-aligned deforma-
tion grids for image retargeting.

For hybrid approaches, Rubinstein ez al. [12] propose a multi-
operator strategy, where seam carving is combined with crop-
ping and scaling. This approach improves the retargeting quality
through maintaining the spatial structure of whole image. In
[13], Sun et al. combines a discrete seam-carving algorithm
with continuous warping for thumbnail browsing. In [14], seam
carving and scaling are used in combination to preserve impor-
tant regions and global visual effects. Liu et al. [16] define a
compound operator of cropping and warping to improve the aes-
thetic composition of images.

Some other works [17]-[19] use coarser patches instead of
pixels to quantify the coherence between the original image and
target image. The shift-map methods [20], [21] are to optimize
the cropping and blending of the important image regions to
construct the target image. Pritch et al. [20] achieve a better
result at the cost of significant change on the image structure.
Since the nonuniform salience map usually influences the per-
formance of imaging obviously; in [21], an importance filter
is employed for constructing a structure-consistent importance
map in order to improve the shift-map.

B. Video Retargeting

Compared with image retargeting, video retargeting is more
challenging, since the target video is required to retain not only
the aspect ratio and completeness of important object spatially,
but also the object motion temporally.

The cCropping strategy is introduced to resolve the video
problem in [22]-[25]. The primary strategy could be described
as searching for an optimal series of cropping windows to per-
form a smooth virtual camera motion and presenting the most
salient content simultaneously.

Rubinstein ef al. extend the seam approach for video retar-
geting in [7]. Through graph-cut, they iteratively carve the 3-D
manifolds out from a video cube to adapt the video-to-target as-
pect ratio. In [8], Grundmann et al. relax the constraints to the
spatial-temporal structure of seams for motion-aware video re-
targeting.

In [26]-[28], the warping-based is are proposed for video re-
targeting, where the preservation of temporal coherence is em-
bodied by constraining regions from temporally inconsistent de-
formation. Since the motions in video are not given sufficient
consideration, these methods usually produce unsatisfactory re-
sults when the video contains complex motions. Wang et al. in
[29] calculate the camera motion and foreground motion, re-
spectively, to ensure the consistent resizing of same objects.
In addition, Greisen ef al. in [30] use axis-aligned deformation
grids for video retargeting.

Wang et al. in [31], [32] further propose the hybrid ap-
proaches, where the cropping is combined with warping.
However, the spatial-temporal coherence of local regions in
video is preserved independently of each other, which usually
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Fig. 1. Pipeline of our algorithm, the graph model guides the optimization both temporally and spatially.

causes the inevitable artifacts both in spatial domain and tem-
poral domain.

In addition to the multimedia techniques, some related In-
ternet techniques are developed to jointly promote the online
mobile video services. The former is to maximize the informa-
tion delivered from the terminal displaying platform to users,
while the latter is to maximize the information delivered from
server to client in network. The related network techniques aim
at transmitting video from the server to diverse user terminals
with the best possible quality, and the work discussed in [33]
and [34] solves this through coupling the scalable video coding
with multipath routing techniques. These techniques mostly rely
on the different available paths, the corresponding bandwidth,
and the terminals hardware ability while not taking the content
of video itself into account.

III. OVERVIEW

For video data, there exist some correlations on both spa-
tial and temporal domains according to the content. The re-
gions belonging to the same object are usually visually sim-
ilar and have continuous temporal motion. Therefore, our con-
text-aware video retargeting framework is based on this kind of
spatial-temporal correlation. Fig. 1 shows the basic pipeline of
our retargeting approach. A graph model is proposed instead of
a flow method, which could produce the simultaneous measure-
ment of context relationship as well as motion estimation. Then,
the context awareness is embodied by two constraints during the
process of optimization.

First of all, each frame of input sequence is partitioned into
uniform grid cells. The objective function is formulated in terms
of the coordinates of grid vertices, where the spatial-temporal
deformation of regions are calculated at the unit of grid cell.
For each frame, the graph model is constructed to estimate the
grid-cell-wise motion. Then, the graph-cut algorithm is exe-
cuted to partition the grid into two motion layers, and the mul-
tilayer partition is obtained through iterations. Due to the in-
herent concern of spatial-temporal correlation, the resulting mo-
tion layers deliver not only the temporal motion information but
also the information of contextual relationship implicitly. Next,

the objective function of optimization is formulated as two parts.
On one hand, according to the salience map and motion esti-
mation, the spatial shape and temporal motion of grid cells are
preserved differently. On the other hand, the contextual infor-
mation is encoded into two additional constraints, which en-
courages the grid cells of the same object to undergo consistent
transformation in both space and time domains. Minimizing the
objective function leads to the new coordinates of grid vertices,
and the output video is rendered by texture mapping.

IV. GRAPH-BASED MOTION-LAYER PARTITION

In [35] and [36], Boykov ef al. introduced graph into the vi-
sion category for energy minimization. Wang et al. [37] em-
ployed a graph cut for moving object segmentation. Here, we
expand the graph model for grid-cell-wise motion estimation.
Since the graph model inherently raises the contribution of vi-
sual similarity between neighboring grid cells to motion estima-
tion in an explicit manner, our approach could suppress the dis-
turbance of noise to some extent and produce more robust and
reliable motion estimation than pixel-wise optical flow. More
importantly, due to the correspondence with spatial-temporal
correlation, the resulting motion layer includes the information
of contextual relationship implicitly, which can be revealed as
follows: each connected motion layer usually approximates to
a single object.

A. Grid Graph Construction

First, one single frame is uniformly partitioned into m X n
grid cells. Denoting the set of grid cells in the [th frame as
Q' = {d,db, ..., ¢\ .}, the set of vertex coordinates of ¢!
is defined as P! = {péivl),pl(i'z),pl(m).,pl(M)., } € RZ, and the
centroid coordinate p! can be calculated as the linear combina-
tion of vertex coordinates. Then, a grid graph model G = (V, E)
is constructed to represent this frame, which consists of a set of
nodes V' and a set of undirected weighted edges . All of the
grid cells in the current frame are represented by the regular
nodes. Source node s represents the current motion layer candi-
date, and sink node ¢ represents the original motion layer of each
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Fig.2. (a) Construction of the graph model given two temporally neighboring frames, where three horizontally neighboring grid cells are used for a 2-D illustration
only. (b) Potential motion trend of each grid cell, which are symbolized as numbers and shown in different colors, for example, f ;= 18 means that the content
i

ing! ; will moves to the position of q j:/ _, in next frame. (c) Resulting motion layer partition.

TABLE I

WEIGHTS OF EDGES CONNECTING THE NODES IN GRAPH
edge weight edge weight
tg distp,(q1, ¢4 () tg‘a disty, (g3, q5(fq3))
g distp, (g2, g5 (c)) 2
£ disty, (g3, g4 () €{q1,a} p(1 — disty(q1,492))
g, distn(q1, 91 (far ) €la,q2}
g distp, (92, 95(fa2)) €{g0,q3} p(1 — distp(g2,93))

grid cell. The 7 edge linking regular node to terminal node mea-
sures the accuracy that the grid represented by the former has the
motion represented by the latter; while the e edge between reg-
ular nodes reflects the visual similarity of the neighboring grids.
As shown in Fig. 2(a), three horizontally neighboring grid cells
d1,q2,qs3 is used for a 2-D illustration only. In practice, all grid
cells will be included in the graph, where the vertically neigh-
boring grids are treated in same manner. We denote the original
motion labels of ¢1,¢2. g3 as fy,, fq, fq5- Given motion layer
candidate «, we define ¢'(«) as the corresponding grid cell, in
next frame, of ¢, and the weights of edges are defined as in
Table I. The graph-cut algorithm introduced below would de-
cide whether the grid cells are partitioned to new motion layer
s or stay the same.

In Table 1, disty (g1, g2) means Bhattacharyya distance be-
tween histogram between ¢; and g2, which is used to measure
the similarity of them. p is a coefficient for adjusting the con-
tribution of visual similarity of neighboring grid cells to motion

layer partition. « is an auxiliary node, which is constructed to
preserve the min-cut energy in each iteration.

B. Graph Cut

When the grid graph model is constructed, a max-flow/
min-cut algorithm [35], [36] is executed for searching an
optimal cut, i.e., the green line in Fig. 2(a), and, consequently,
all of the grid cells are partitioned into different motion layers.
To be more exact, the max-flow/min-cut algorithm is applied to
minimizing the energy function as follows:

E(F) = Fiata + /)Esmooth (1)

mn,n

Egata(F) = Z distn(qij. q;;(f)) ()
i,

Esmooth(F) = Z |af/dl‘ . (l - diSth(qiﬁ qi+1j))+
.J

10f/03] - (1 — distn(qij, gij+1))  (3)
where ¢;;(f) is the corresponding grid cell, in the next frame,
of g¢;; according to the motion label f. F' represents the cur-
rent motion layer partition on all of the grid cells, i.e., F' =
{f1, f2: -+ fnxn }- Minimizing equation (1) is to find the op-
timal F'. Equation (2) is responsible for providing the grid cells
the motion estimation as accurate as possible at a grid-cell level
and corresponds to the £ edges in graph. The left-hand terms of
(3) are used to finally produce a smooth layer partition; the right-
hand terms further encourage the visually similar and neigh-
boring grid cells to be partitioned into the same layer with spe-
cial emphasis and correspond to the e edge. For the sake of the
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huge difference between the grid-cell-level motions, the defini-
tion of (3) can be further simplified as follows:

m,n

Esmooth(F) = th . (1 - dT‘/Sth((]t‘j? qt+lJ))+
i.J

fj - (1= distn(qij, gij+1))  (4)
[ { Loif fig # fivni ¢ _ { Loif fij # fija )
' 0 if fij = fiyrs 7 0 if fij = fij+1

which completely corresponds to the graph structure defined by
Fig. 2(a) and Table 1.

In this solution, 25 potential motion layers are deemed suf-
ficient to estimate the grid-cell-wise motions, which are shown
in Fig. 2(b). Since the graph-cut is a binary partition process,
for multilayer partition, the graph-cut algorithm is executed 25
times for one iteration in our configuration. As the proposed mo-
tion model needs to execute a graph-cut many times, the min-cut
energy obtained by previous graph-cuts should be preserved in
the current graph structure to ensure that the resulting motion
partition achieve global energy minimization. For this purpose,
the auxiliary node « is introduced. Once two neighboring grids
originally in same layer are partitioned into different layers by
the current cut, in the next graph structure, an auxiliary node
will be inserted between them. This node and the related edges
ensure that for the next graph-cut process, if no grid cell is par-
titioned into the new layer, the corresponding min-cut will pass
through only the edges linking to the sink node ¢ and keep the
equal energy to the previous one.

In addition, since the motion between consecutive frames
may be too small to be captured by our grid-cell-wise approach,
we estimate the motion between frames at some regular interval.
According to our experiments, 2 ~ 4-frame interval is appro-
priate in most cases.

C. Measurement of Contextual Relationship

As shown in Fig. 3, the proposed motion model is compared
with the state-of-the-art optical flow technique [38]. Optical
flow achieves the better pixel-wise accuracy in estimation,
while is weak in reflecting the wholeness of objects. This is
because the smooth process of optical flow considers the influ-
ence of all of the neighboring pixels indiscriminately and lacks
the consideration on spatial information. As shown in Fig. 3,
the flow estimation on the distant part of “bridge” is more
influenced by the background and become undistinguishable.
On the other hand, although the grid graph model sacrifices the
pixel-wise accuracy, this loss actually exerts limited negative
influence to the quality of retargeting. More importantly, the
grid graph model raises the contribution of visual similarity
of neighboring regions to motion estimation in an explicit
manner and tends to partition the visually similar grids into the
same layer. As a result, the resulting motion layers keep the
wholeness of moving objects better and include information
of contextual relationship implicitly. As shown in Fig. 3, the
resulting motion layers describe the left “character” and right
“bridge” more completely. In addition, the grid graph model
provides a more efficient motion estimation with an average
conversion time of 8.6 s compared with 51.7 s of optical flow.
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Optical flow

Motion layer partition

Fig. 3. Comparison of motion layer partition and optical flow. The flow algo-
rithm process the frames with the same interval as the proposed approach.

According to the optimal motion partition of a grid
cell denoted as fJP, fJP, and f/P, we define a set
B = {... . b4 4, bgsqs, ..} to present the contextual rela-
tionship between neighboring grid cells approximately. For the
neighboring grid cells g1, g2, by, 4, is defined as follows:

_ L =T
btnqz - { 07 lf glp # (;)2}'). (6)
Equation (6) quantifies the spatial-temporal correlation between
neighboring regions binarily, which factually reflects the possi-
bility that grid cells ¢; and ¢-» belong to the same object. This
measurement of a contextual relationship plays an critical role
for smooth and spatial-temporal consistent retargeting.

V. CONTEXT-AWARE GRID OPTIMIZATION

Here, we describe the optimization procedure of our
grid-based retargeting framework. Due to the motion estima-
tion and measure of context relationship obtained in Section IV,
the total objective function incorporates two additional con-
straints as well as spatial-temporal coherence preservation in
order to achieve the context aware retargeting. The objective
function is formulated in terms of the coordinates of grid ver-
tices. Minimizing the energy function under some constraints
results in the new vertex positions, and the output video is
rendered through texture mapping.

A. Salience-Based Spatial-Temporal Coherence Preservation

Spatial Shape Preservation: As discussed above, the energy
function is formulated in terms of the deformed vertex coordi-
nates. We employ the centroid coordinate p; to present the posi-
tion of grid cell ¢;, which can be calculated according to the four
vertex coordinates directly. In our solution, the grid is further re-
quested to be axis aligned, i.e., the grid cells in the same row (or
column) have the same height (or width). This aligned structure
decreases the amount of variables and reduces the computation
complexity dramatically, which provides a convenient way for
multiframe video retargeting. We formulate the spatial deforma-
tion energy of a single frame with /m 4+ 1 4+ n 4 1 variables as
follows, which reaches up to 2 x (m + 1) X (n + 1) in a non-
aligned grid framework [10] as follows:

mxXrn

N 2
B SRR SR

?

where D, is the deformation accumulation of all m x n grid
cells in the /th frame, ¢; represents the output grid, and w; and
h; represent the width and height of ¢;, respectively, and s; is
defined as the visual importance of grid cell ¢;, which ranges
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from 0.2 to 1. The lower limit of s, is set to be nonzero so as
to prevent the deformed grids from undue distortion and the in-
correct overlap between grids; ars is the aspect ratio of original
grid cell.

Equation (7) is supposed to preserve spatially the aspect ratio
of important regions in the targeted video.

Temporal Motion Preservation: Beside preserving the spatial
content, the temporal motion should be maintained consistent
with the source video. In Section IV, the grid graph model has
estimated the motions of grid cells in each frame. Given the
motion labels f, ! and f, L the corresponding grid cells of ¢} and

¢} in the I + 1th frame are represented as ¢/*1 and ¢/l We
formulate an energy term D! to preserve the motions of grid
cells, especially for the salient ones and define it as follows:

ZH (i - 5l) Ha-st @®)

—Pi

where p; represents the centroid point of ¢;, and kp =
[kpx, kpy]™ is a scale factor controlling the motion difference
between the grid cells in output and those in source. In practice,
we make kp work in a heuristic way: in retargeted video,
we believe the changes of object movements in horizontal
direction and vertical direction should be proportional to the
width change and height change of video, i.e., kpx = Wr /W,
kpy = Hr/Hg, where the resolution of the source and target
video are Wg x Hg and W x Hrp, respectively. Equation (8)
ensures the salient regions have consistent motion trends with
in source video.

—kp- (5

B. Context-Aware Spatial-Temporal Constraints

1) Spatial Constraints: According to the salience map, we
preserve the spatial coherence at the unit of grid cell. Unfor-
tunately, the importance map is not always consistent with the
spatial structure of original image such that the map usually
changes a great deal for the same object. This variety results
inevitably in the nonuniform deformation of the object, which
leads to the obvious damage to geometrical property. Some re-
searchers have noticed this problem and have begun to solve it.
In[21], Ding et al. employ an importance filter for redistributing
the salience map on the same object to be homogeneous. Unlike
them, we suppress the nonuniform deformation of object via a
spatial context constraint.

As discussed in Section IV, the resulting motion-layer parti-
tion implicitly includes the information of contextual relation-
ship, and each connected motion layer usually approximates to
one single object. Here, we formulate a spatial context con-
straint as a penalty term of energy function

= 3 diff, (¢, ) -8 ®

b, €B
(t-it)’

diff, (¢, ¢}) = (! — b)) +
where B = {..., bf’;j, ...} is the set defined in Section IV,
which can be considered as the quantification of spatial-tem-
poral correlation between neighboring grid cells. The element
l . . oqe . .
b; i approximately reflects the poss1b111t}./ that the neighboring
grid cells ¢/ and qé- belong to the same object, di f f (-, -) evalu-
ates the difference of spatial structure between neighboring grid

(10)
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Fig. 4. Example of video retargeting with spatial constraint. The first column
shows the source frame, the salience map, and the motion layers labeled by
graph model, respectively. (a) Resizing through preserving the content of
each grid cell independently. (b) Resizing by taking the spatial constraint into
account.

cells, and w and & are the width and height of the corresponding
grid cell, respectively. Equation (9) demonstrates that the re-
gions of the same object undergo consistent spatial deformation.

Fig. 4 demonstrates the effectiveness of this kind of spatial
constraint. In Fig. 4(a), the source frame is resized through de-
forming each grid cell independently according to the salience
map. Note that, because of the nonhomogeneous salience map,
the bridge is distorted significantly, while our algorithm parti-
tions most of the grid cells lapping over the bridge into the same
layer by the graph model and consequently makes them main-
tain a similar aspect ratio, as shown in Fig. 4(a). As result, the re-
targeted video avoids the spatial distortion effectively, as shown
in Fig. 4(b).

2) Temporal Constraints: The lack of consideration of con-
textual relationship leads to not only spatial distortion but also
temporal artifacts, such as the foreground jitter and background
waving. This is because the regional motions of the same ob-
ject are generally continuous, while the respective manner of
preserving temporal coherence of regions may make them un-
dergo nonuniform temporal transformation and damage the con-
tinuity. For example, the left column of Fig. 5 shows two tem-
porally neighboring source frames and the corresponding mo-
tion-layer partition. The retargeting results of MVR [31] are
shown in the middle column, which neglects the contextual re-
lationship between grid cells. We track two points on the girl’s
face and label them in red and orange, respectively. Note that
the motion vectors of two points differ from each other both in
amplitude and direction obviously, which consequently allows
the face to go through temporally inconsistent deformation.

To achieve the context-aware temporal coherence preserva-
tion, we encode the temporal context constraint by the set B in
Section IV as follows:

Ptl: Z diff; (qz,q]) I“

bl €B

diff, (a.4) = [|(7"" ~

(11)

i) - i

- (12
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MVR [31]

Fig. 5. Example of video retargeting with temporal constraint. The first column includes two temporally neighboring frames and the corresponding motion-layer
partition. The second and third columns show the retargeted frames by MVR [31] and our approach, respectively, and our approach could make the motion vectors

of two chosen points more consistent.

where dif f,(q},q}) evaluates the difference of motion of ¢}
and qﬁ Equation (11) assures that the regional motions of
the same object undergo consistent temporal transformation.
In other words, the energy term equation (11) develops the
grid-cell-level temporal consistency achieved through (8)
into the object-level temporal consistency. In addition, some
existing work includes the previous grid deformation as an
additional temporal constraint, and the combination of (8) and
(11) factually does the same job in this method. The combined
effect of both temporal energy terms plays a critical role for the
proposed context-aware retargeting solution.

Fig. 5 demonstrates the effectiveness of temporal constraint.
The right column shows our retargeting results, where the mo-
tion vectors of two chosen points are basically consistent. Com-
pared with other methods, our approach achieves the temporal
smoothness and avoids the noticeable temporal artifacts. More
proof can be found in our supplementary material.

C. Energy Minimization

By combing spatial energy and temporal energy together, the
total objective function is finally formulated as follows:

D =) (D, + AP, + D; + 6P,) (13)
{

where A and § are the weights of spatial and temporal con-
straints, respectively, and our approach works well when A =
0.4 and 6 = 10. When A = 0.4, the spatial context constraint
is sufficiently powerful to repair the nonuniform deformation
occurring on same object, which results from the nonhomoge-
neous salience map, while not unduly influencing the flexibility
of distributing distortion. The value of delta is relatively high
due to the following fact: in the process of retargeting, the mo-
tion difference of the neighboring grids belonging to the same
layer is usually very small. Hence, in relation to the other energy
terms, a high ¢ is expected to make sure the temporal context
constraint play its due role.

TABLE 11
PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART TECHNIQUES. THE
RESULTING TIME MEASURES ONLY OPTIMIZATION WHILE NOT INCLUDING
THE SALIENCE MAP, FACE DETECTION, AND MOTION ESTIMATION. THREE
ALGORITHMS HANDLE THE VIDEO SEQUENCES OF ABOUT 700 x 300
RESOLUTION AND 200-FRAMES LENGTH WITH A GRID CELL OF 10 x,10

Method MVR][31] SCVR[32] Ours
Time 63s 10s 9s
Hardware | 2.66GHz CPU 8GB RAM | 2.9GHz CPU 4GB RAM

The total objective function is a quadratic function in terms of
the vertex coordinates of grids. Linear equality constraints are
imposed to make sure that each deformed frame has targeted
width and height. Thus, the optimization is to solve a convex
quadratic programming, which can be achieved through numer-
ical method. In this solution, a CPU-based conjugate gradient
solver is used to minimize the objective function, and the opti-
mization is initialized with the uniform grids satisfying all con-
straints. There are N unknowns and four equality constraints
for each frame and I frames involved in optimization, and the
computation complexity is O(4L - L - N).

VI. EXPERIMENTAL RESULTS

We test our algorithm by retargeting videos to 50% of the
original width. At first, a shot detection algorithm [39] is em-
ployed, and each shot is retargeted individually. For the salience
map, we apply the visual attention-based method [40] together
with the face detector [41]. For comparison, we run our ap-
proach on the dataset provided in [32], which includes a va-
riety of videos in order to reflect the universality. This data set
ranges from scenes with relatively fixed foreground to scenes
containing noticeable object movement, from scenes containing
single moving object to scenes containing multiple moving ob-
jects, from scenes captured with no camera motion to scenes
captured with typical camera motion (e.g., pan or scan). The ex-
perimental materials are with the spatial resolution of 700 x 300
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Fig. 6. Failing example.

and temporal resolution of 30 fps, and the length ranges from 80
to 230 frames.

In our solution, both the spatial and temporal deformations
are calculated at the grid cell level, and the frame interval relates
to the grid size. A fine grid leads to a high quality of output but
introduces a smaller frame interval, more variables in optimiza-
tion, and higher computation time consequently. Based on prac-
tical experience, we found the grid cell size of 8 x 8 and motion
estimation of a two-frame interval, together with A = 0.4 and
& = 10, strike a good balance between the imaging quality and
operation efficiency in most cases.

A. Performance

Benefitting from the aligned grid structure and grid-cell-wise
motion estimation, the proposed system could work in a high-ef-
ficiency manner. In our experimental setting, the whole video
sequence of one shot is used as the input for the globally op-
timal spatial-temporal effectiveness. Table II shows the time
cost comparison with the state-of-the-art grid-based techniques
on handling the video sequences of similar resolution and length
with same grid size. The proposed approach achieves a compat-
ible performance. Note that SCVR, which achieves the optimal
performance, benefits from the parallel processing comparing
with our single thread process. On the other hand, the formu-
lated objective function, relying on the current frame and the
next frame only, makes it possible to process videos scalably,
even in real time on incoming video. For the video stream of the
same resolution, the computation time is approximately 11 ms
per frame.

B. Quality

Our approach is compared with state-of-the-art methods
including stream video retargeting (SVR) [28], motion-based
video retargeting (MVR) [31], and scalable and coherent video
retargeting (SCVR) [32]. Some of experimental results are
shown in Fig. 7. In general, our method achieves the satis-
factory temporal-spatial coherent retargeting while avoiding

various artifacts and shows obvious superiority over other
methods.

For SVR [28], the content lying in the middle of frame is re-
tained preferably. When there is no complex foreground motion,
SVR can produce compatible results with ours. However, when
the video contains complex motion, the abrupt artifacts usually
appear near the edge, e.g., the car body in the first row, the un-
natural shoulder of the black man in the second row, and the
distortion of window frame in the sixth row in Fig. 7 This can
be explained as lack of motion awareness. In addition, the girl
in the fifth row and the cartoon in the ninth row suffer more
distortion compared with our method. MVR [31], taking the
motion information into account explicitly, usually provides a
satisfactory performance. However, the noticeable artifacts still
happen. As shown in Fig. 7, serious distortion occurs on the
foreground in the second, fourth, fifth, seventh, and eighth rows.
The background waving occurs in the third row; the cartoon is
down-scaled a lot in the ninth row. Since the cropping strategy
has been incorporated to improve the quality of retargeting,
there are always some content discarded directly. SCVR [32]
achieves a great balance between retaining prominent content
and preserving temporal coherence. Similar to MVR, SCVR
also incorporates cropping to free up more space for preserving
salient content. Although SCVR usually brings viewers com-
fortable watching experience, inevitable loss of visual informa-
tion is incurred at the same time, e.g., the building next to the
street in the first row, the window frames in the sixth row, and
the excavator in the seventh row in Fig. 7.

C. User Study

In order to evaluate our approach objectively, we perform a
user study. There are altogether 18 video sequences and 46 vol-
unteers involved, and SVR [28], MVR [31], SCVR [32], and our
approach are compared in this study. Each pair of approaches
was tested 4968 times in all. Thirty-four participators have the
higher education background, and 18 of them come from nat-
ural science realm while the remaining 16 come from the social
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Fig. 7. Experimental results. (a) Original. (b) SVR [28]. (¢) MVR [31]. (d) SCVR [32]. (e) Ours.

science realm. In addition, 12 participants are teenagers, who
are usually more familiar with dynamic photograph means and
are aesthetically more sensitive to the videos containing com-
plex movements. Different methods are compared in pairs at a
random order. Not influencing the participants’ aesthetic con-
cept, no hints or a priori knowledge are delivered to them in
advance. The participators are asked to vote their preference be-
tween the two versions of retargeting.

The statistics of all of the feedback are shown in Table III.
Comparing with SVR, our method is preferred at the rate 71.7%.
It results fthat our method considers the motions in video more
directly. Compared with MVR, our method shows more popu-
larity with the preference of 73.9% participators. This is because
our method suppresses the distortion of foreground in output ef-
fectively. Compared with SCVR, the percentage becomes 63%,

where our approach shows the superiority on avoiding temporal
artifacts. In the comparisons, the overall percentage of pref-
erence to our method is 69.5%, which demonstrates that our
method can produce more acceptable retargeting results in con-
trast to 39.2% of SVR, 33.3% of MVR, and 58% of SCVR.

D. Failing Case

Although our approach takes the context awareness into ac-
count, visual artifacts still occur occasionally. A failing example
is shown in Fig. 6. Note that the bottom of the frame retargeted
by our approach is vertically stretched by mistake, which dam-
ages the structure of the tree and leads to an unfavorable com-
parison with other retargeting methods. In essence, this artifact
comes from the rectangularity of grid cell. Compared with the
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TABLE III
STATISTICS OF USER STUDY. THE TABLE PRESENTS THE PERCENTAGE OF
PREFERENCE TO EACH APPROACH

% of preference to — | Ours SVR MVR SCVR | Mean
Ours - 717 739 63 69.5

SVR [28] 28.3 - 56.6 32.6 39.2
MAR [31] 26.1 434 - 30.4 333
SCVR [32] 37 674  69.6 - 58

unconfined grid used by MVR [31], rectangular grid cells sim-
plify the computation for video issue significantly but sacrifice
the flexibility in redistributing the spatial distortion. In Fig. 6,
the average importance of the bottom of the frame is relatively
lower than other regions. As result, the grid cells in the bottom
row have to suffer more vertical stretch.

Moreover, when the salient regions are distributed across the
whole frame uniformly, our approach may not produce a better
result than cropping incorporated methods such as MVR. Com-
pared with our approach, MVR factually frees up more space
for absorbing the spatial distortion by directly cropping out the
leftmost and rightmost columns. This can be reflected by the ex-
ample shown in Fig. 6.

VII. CONCLUSION

In this paper, we propose a context-aware framework instead
of the divide-and-rule strategy for video retargeting. The graph
model is employed for modeling the contextual relationship
between grid cells binary as well as the grid-cell-wise mo-
tion estimation. The context awareness is embodied through
encoding the measurement of contextual relationship as two
additional constraints in the space and time domains, respec-
tively, during the optimization. Compared with state-of-the-art
techniques, our approach refrains the regions of the same
object from the inconsistent spatial-temporal transformation
and shows obvious superiority in suppressing spatial-temporal
artifacts. Beyond that, the high efficiency achieved by the
aligned grid and grid-cell-wise motion estimation promises that
our approach is a good practical prospect.
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