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Recently, sparse coding has become popular for image classification. However, images are often captured
under different conditions such as varied poses, scales and different camera parameters. This means local
features may not be discriminative enough to cope with these variations. To solve this problem, affine
transformation along with sparse coding is proposed. Although proven effective, the affine sparse coding
has no constraints on the tilt and orientations as well as the encoding parameter consistency of the trans-
formed local features. To solve these problems, we propose a Laplacian affine sparse coding algorithm
which combines the tilt and orientations of affine local features as well as the dependency among local
features. We add tilt and orientation smooth constraints into the objective function of sparse coding.
Besides, a Laplacian regularization term is also used to characterize the encoding parameter similarity.
Experimental results on several public datasets demonstrate the effectiveness of the proposed method.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

As a fundamental problem in computer vision, image classifica-
tion has attracted many researchers’ attention. A lot of image clas-
sification models have been proposed to solve this problem, for
example, bag-of-visual words model (BoW) [1], part-based model
[2]. The BoW model is widely used both for its simplicity and good
performance in real world applications. The histogram based rep-
resentation makes the BoW model robust to scale and rotation
variances. Typically, the BoW model can be divided into three
steps: (i) Local region selection and description; (ii) Visual code-
book construction and local feature encoding; (iii) Histogram
based image representation and classifier training.

Among the three steps, the codebook construction and local fea-
ture encoding process plays a vital role for efficient image classifi-
cation. Traditional image classification methods [1] use the k-
means clustering method or its variants to construct codebook
and view the cluster centers as the visual words. Each local feature
is quantized to the nearest visual word using the Euclidean dis-
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tance. However, this hard assignment method can cause severe
information loss [3], especially when the local features are on the
boundary. To alleviate the information loss, many works [3-6]
have been done by softly encoding local features. This helps to im-
prove the final image classification performance. However, the k-
means based codebook construction method should be used with
non-linear kernels for efficient image classification which has a
time complexity of O(n?). This problem is more sever when large
image datasets are used. To reduce the computational cost, Yang
et al. [5] proposed to use sparse coding along with max pooling
for image representation and use linear SVM classifier instead. This
achieved the state-of-the-art performance for image classification
on several public datasets.

Besides, the BoW model has no information of local features’
spatial information which is also very important for robust image
classification. To incorporate the spatial information of local fea-
tures, spatial pyramid matching (SPM) was proposed by Lazebnik
et al. [7]. The SPM tried to combine the spatial information by
dividing each image into increasingly finer sub-regions. This sim-
ple but efficient algorithm is widely used by researchers since its
introduction. Inspired by the SPM, many other methods which con-
sider the spatial information were also proposed [8,9].

The above mentioned methods actually assume that the
extracted local features are discriminative enough for robust and
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efficient image classification. However, images are often captured
under diverse conditions, such as different poses, scales, illumina-
tions or camera parameters. If we can generate more efficient fea-
tures that can cope with these variations, we would be able to
make the image classification algorithm more robust and effective.
Inspired by this, a lot of work have been made by proposing more
discriminative features [10-15], exploring the relationship among
local features [16-20] or making various transformations to
images or local features [21-23]. The invention of new discrimina-
tive features has been a hot research topic in computer vision and
needs careful design and experiments. Before we can get more dis-
criminative features, it would be more effective and efficient if we
can make good use of the existing local features. Inspired by this,
Kulkarni and Li [21] proposed to use affine sparse coding to cope
with the affine transformation of images for better image classifi-
cation. However, the affine sparse coding technique has no con-
straints on the tilt and orientations of the transformation which
are also very useful for image classification. During the local fea-
ture encoding process, besides minimizing the reconstruction er-
ror, the tilt and orientation of local features should also be
combined. Moreover, in affine sparse coding, the mutual depen-
dence among local features are also not considered. This means
similar local features may be encoded with dissimilar parameters.
It is more natural that visually similar local features should be en-
coded with similar coding parameters. If we can take the tilt and
orientation of local features as well as the encoding parameter sim-
ilarities into consideration, we would be able to further improve
the image classification performance over affine sparse coding
[21].

In this paper, we propose a Laplacian affine sparse coding with
tilt and orientation consistency algorithm which combines the tilt
and orientations of affine local features as well as the dependence
among affine local features. To combine the tilt and orientation of
affine local features, we propose to add tilt and orientation smooth
constraints into the objective function of affine sparse coding. Be-
sides, a Laplacian regularization term with histogram intersection
similarity measurement is also used to measure the similarity of
affine local features. This new formulation can generate more dis-
criminative coding parameters which can then be used for image
representation. Besides, the consideration of local features’ similar-
ity during the encoding process also helps to reduce the encoding
error and preserve as much information as possible. Max pooling is
then used to extract the final image representation and multi-class
linear SVM classifiers are trained to predict the category of images.
Experiments on several public dataset demonstrate the effective-
ness of the proposed Laplacian affine sparse coding with tilt and
orientation consistency algorithm (LASC-TOC). We give the flow-
chart of the proposed Laplacian affine sparse coding with tilt and
orientation consistency algorithm in Fig. 1.

The rest of this paper is organized as follows. In Section 2, we
give the related work. The detail of the proposed Laplacian affine
sparse coding with tilt and orientation consistency algorithm is gi-
ven in Section 3. We give the experimental results in Section 4 and
conclude in Section 5.

2. Related work

To classify an image based on its semantic content, the Bow
model [1] has been widely used. However, traditional k-means
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clustering based codebook generation and nearest neighbor
assignment based local feature quantization method may cause
sever information loss [3], especially when the local features are
on the boundary of different visual words. To reduce the informa-
tion loss, many works [4-6] have been done by softly encoding
local features. Gemert et al. [4] used kernel codebook by soft
assignment of local features at heavy computational cost. To
speed up the training process, Yang et al. [5] proposed to use
sparse coding along with max pooling for image representation.
Although proven effective, the sparse coding has no constraints
on the coding parameters. This may cause information loss be-
cause max pooling is then used to extract information for image
representation. Negative coding parameters have no influences on
the final image representation. To solve this problem, Zhang et al.
[6] proposed to use non-negative sparse coding with max pooling
instead.

Moreover, the BoW model has no information about the spa-
tial layout of local features while spatial information plays a vital
role for efficient image classification. Lazebnik et al. [7] proposed
spatial pyramid matching algorithm to combine weak spatial
information. This is achieved by dividing images into increasingly
finer sub-regions. Inspired by this, Bosch et al. [8] represented
shape with a spatial pyramid kernel and improved the final per-
formance. Component based image representation [9] is also pro-
posed to combine the spatial information at heavy computational
cost.

SIFT feature is often used in the BoW model, since the dis-
criminative power of SIFT is limited, Many other features [10-
15] are also used. Belongie et al. [10] proposed to use shape con-
text while Serre et al. [11] tried to categorize objects with fea-
tures inspired by visual cortex. Viola and Jones [12] proposed a
rapid object detection method using a boosted cascade of simple
Harr-like features. Sande et al. [13] proposed to transform images
into different color spaces and use color SIFT for visual applica-
tions. To avoid the scale and orientation calculation of SIFT fea-
ture, Dalal and Triggs [14] proposed to use histograms of
oriented gradients (HoG) for fast computation in object detection.
Xie et al. [15] used bin-ratio information for category and scene
classification. The explore of local feature’s relationship for better
image classification is also studied by researchers [16-20]. Grau-
man and Darrell [16] proposed pyramid match kernel which tried
to explore the relationship of local features in the kernel space.
Wau et al. [17] bundled features together for large scale partial-
duplicate web image search. Wang et al. [18] used feature con-
text for image classification and object detection which achieved
good performance. Yao et al. [19] tried to classify actions and
measure action similarity by modeling the mutual context of ob-
jects and human poses while Lee and Grauman [20] proposed to
use object-graphs for context-aware category discovery. Before
we can get more discriminative features, it would be more effec-
tive and efficient if we can make good use of the existing local
features. Inspired by this, Kulkarni and Li [21] proposed to trans-
form images with affine transformations and then extract SIFT
features to cope with the affine transformation of images for bet-
ter image classification. Zhang et al. [22] made Harr-like transfor-
mation of local features and improved the classification
performance. Zhang et al. [23] proposed a simple but effective
method by resizing images to generate descriptive visual words
for visual applications.

. Max pooling
‘I_:dLIlen & SPM Image class
affine sparse rediction
codes (LASC) P

Fig. 1. Flowchart of the proposed image classification method using Laplacian affine sparse coding with tilt and orientation consistency algorithm.
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3. Laplacian affine sparse coding with tilt and orientation
consistency for image classification

In this section, we give the details of the proposed Laplacian af-
fine sparse coding with tilt and orientation consistency algorithm.
First, affine transformation is used to cope with the tilt and rota-
tion changes caused during image capturing process. Local features
(typically, SIFT feature is used) are then extracted on these trans-
formed images and encoded for image representation. We add tilt
and orientation constraints to the objective function of sparse cod-
ing. Besides, the similarities of local features are also considered
during the sparse coding process. Finally, max pooling with spatial
pyramid matching is used to represent images and multi-class lin-
ear SVM classifiers are trained for image category prediction.

3.1. Affine sparse coding

SIFT feature has been widely used since its introduction for vi-
sual applications. However, images may undergo varied pose, illu-
mination or scale changes which means using the SIFT feature
alone may not be able to cope with these variations. To alleviate
this problem, affine SIFT feature (ASIFT) is proposed [24]. The ASIFT
first makes affine transformation of images and then extract dense
SIFT features on these transformed images. Formally, the affine
transformation map is given by

{cosw —sinz//Ht OHCOW —sinfx}

singy cosy |10 1]|sine cosa

= (M
where /4 > 0 and t controls the tilt, { is camera spin and « € [0, 7). it
is the determinant of A. The affine distortion which is caused by
changes in the optical axis orientation can be described by the lat-
itude and longitude camera parameters o and 0 (t = 1/cos6). The
longitude parameter « can be simulated by horizontally rotating
an image from the frontal position while the latitude parameter
can be simulated by directional t-subsampling [24,25]. Morel and
Yu [24] experimentally found that setting 6 different tilts on a finite
number of rotation angles « is enough for most real world applica-
tions. Without loss of generality, we set {y to O in this paper.
Since images are hardly rotated more than 90°, we use a maximum
of six tilts and corresponding rotations [21]. This is achieved by first
obtain the tilt factor t = 22, where i = 1,2, ..., 6. Then we obtain «
for each tilt factor t as k/t « 72 with k/t « 72 < 180°, k=1,2,3,....
Finally, we calculate the affine transformation of the input image for
all t and o.. Dense SIFT features are extracted from these affine trans-
formed images which are then used for image representation. In
this way, since we can make use of the original image as well as
the transformed images, we can get more discriminative local

features than traditional methods which helps to improve final im-
age classification performance. If we set t =1 and « = 0, the affine
SIFT method will degenerate to traditional SIFT based image classi-
fication method.

After obtaining the affine SIFT features, we can use them to con-
struct the codebook and encoding these features. Recently, the
sparse coding becomes a popular choice because of its good perfor-
mance for image classification. Formally, let X = [x;,x,,...,Xy] be N
affine SIFT features, where x; € R*! i=1,2,... N. The corre-
sponding codebook is B = [by, by, ..., bx] € R™X. Affine sparse cod-
ing tried to minimize the reconstruction error with sparsity
regularization as:

N
mingc Y ||x; — Bill* + Ailcilly (2)

i=1

where C = [y, ¢, ..., cy] are the sparse coding parameters for the N
local features. /; is the parameter which controls the sparsity of C.
For each local region, the sparse reconstruction errors of these cor-
responding affine SIFT features are then calculated. The one with
minimum reconstruction error is chosen to represent this local
region.

3.2. Laplacian affine sparse coding with tilt and orientation
consistency

We can use the affine SIFT features for codebook construction
and local feature encoding directly. However, this strategy does
not consider the correlations among affine SIFT features. For exam-
ple, the tilt and orientation information. Fig. 2 shows a toy example
of this problem. The local features ‘A’ and ‘B’ in the original image
(the left one) are the same as local features ‘a’ and ‘b’ in the rotated
image (the right one), hence the extracted SIFT features should be
very similar. Unfortunately, this is often violated in real applica-
tions, especially when dense sampling of SIFT features are used
which is a favorite choice of researchers. Although the affine sparse
coding algorithm [21] tried to choose the optimal local feature by
minimizing the reconstruction error, there is no guarantee that the
similarity shown in Fig. 2 holds. This means if we can combine the
tilt and orientation information of affine local features, we will be
able to reduce the computational cost by choosing a fraction of the
extracted affine SIFT features instead of using all of them. Besides,
it can also make the final classifier more robust since we can get
ride of some noisy local features. To make use of the tilt and orien-
tation information of local features, we propose to add tilt factor
and rotation angle constraints to the objective function of affine
sparse coding as:

Original image

Rotated 15 degrees clockwise

Fig. 2. A toy example showing the necessity of considering the tilt and orientation of affine local features. The local features ‘A’ and ‘B’ in the original image are the same as
local features ‘a’ and ‘b’ in the rotated image, hence the extracted SIFT features should be very similar. Unfortunately, this is often violated in real applications, especially when

dense local feature extraction is used.
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N
ming ¢y X — Baill* + Zallcilly 3)
i=1
N N , X
st > N Nt =gl + flo — ogl|* < 2
i=1 j=1
where t;, o, i=1,2,...,N are the tilt factor and rotation angle of

the ith SIFT feature respectively. /, is the scale and orientation con-
straint parameter.

Moreover, similar affine SIFT features may be encoded by quite
different parameters due to the sensitiveness of sparse coding. This
means the dependence information of affine SIFT features is lost.
To alleviate this problem, we propose to use a Laplacian constraint
with affine sparse coding. Specifically, we add a regularization
term which considers local feature’s similarity into the optimiza-
tion problem of (3) to ensure that similar affine SIFT features are
encoded with similar parameters. In this way, we can not only in-
crease the effectiveness of affine sparse coding but also reduce the
information loss during local feature encoding process [26]. This is
achieved by solving the following optimization as:

N
ming ¢ |[xi — Baill® + A llcilly + 23/2 e — 6P Wy

i=1 ij

= mingc||X — BC|[7 + 24 |cill; + Z3tr(CLCT) (4)
N N ) .
st Y3 Nt =Gl + llog — o5* < A
i=1 j=1

where /3 is the regularization parameter which control the relative
importance of affine sparse coding parameter smoothness. Let
T = [t1,t2,.. .,tN]ﬁ = [0y, A2, ..., 0n]. W is the similarity matrix. Its
Laplacian matrix is L = D — W where D is a diagonal matrix with
D;i :ZjW,j. To generate the similarity matrix, we can use the
Euclidean similarity, the L; similarity or histogram intersection sim-
ilarity. We choose to use histogram intersection because its effec-
tiveness has been proven by many researchers [26,27]. Besides,
there is no parameter needed to be tuned for the histogram inter-
section similarity. The histogram intersection similarity is defined
as follows:

K
W(ci, ;) = > _min(Cic, i) °
k=1

To save computational cost, we use approximate method to con-
struct the Laplacian matrix W by first finding the k nearest neighbor
of ¢; and calculate the corresponding histogram intersection simi-
larity, the other Wj; are set to 0. We set k =5 in this paper, as [26]
did.

After the encoding parameters are obtained, we can make cate-
gorization of images. We follow [5] and use max pooling to extract
information from the coding parameters as this strategy has been
proven very effective. To combine the spatial information of local
features, spatial pyramid matching (SPM) with three pyramids
(L=0,1,2) is also used [7]. Multi-class linear SVM classifiers are
then trained to predict images’ classes.

3.3. Implementation

Fixing the tilt and orientation constraints, the optimization
problem of (4) is not convex for B and C simultaneously, but is con-
vex for B when C is fixed and vice versa. Hence, we try to optimize
B, C, T and « iteratively while keeping the other three fixed. If we
set Tand « to 0 and do not make affine transformation to images,
the proposed Laplacian affine sparse coding algorithm will degen-
erate to [26]. Hence the Laplacian sparse coding algorithm

proposed in [26] can be viewed as a special case of the Laplacian
affine sparse coding algorithm.

Algorithm 1. The proposed Laplacian affine sparse coding
with tilt and orientation consistency algorithm

Input:
The local features X, 41, 4, /3, threshold parameter y and
max iteration number maxiter;

Output:
The learned codebook B and coding parameters C;

1: construct the Laplacian matrix W

2: for iter = 1,2,..., maxiter

3:  Find the optimal codebook B with C, T and « fixed by
solving problem (6);

4: Find the optimal coding parameter C with B, T and o
fixed by solving problem (7);
5: Check the tilt and orientation constraints in problem (4).
If satisfied
go to step 6
Else
find the local feature with the largest tilt deviation and
delete it;
Find the local feature with the largest orientation
deviation and delete it;
Updata the Laplacian matrix W.
6: Check the change of objective value of (4), stop if it is
below 7; else go to step 2;
7: return B, C;

During the codebook construction process, we first randomly
choose some local features to construct the Laplacian matrix.
When optimizing over B while keeping C, T and « fixed, problem
(4) can be simplified as:

ming|X — BC||2 (6)

The column of B is normalized to avoid scaling problem. When
we try to optimize over C while keeping the others fixed. Problem
(4) can be solved as:

minc|[X — BC|2 + A lcll, + str(CLCT) ()

This can be solved by optimizing over each local feature sepa-
rately by feature sign search [28]. To find the optimal T and o,
we iteratively remove the local feature that causes the largest tilt
and orientation deviation until the constraints in (4) are satisfied.
The Laplacian matrix is also updated at the same time, this can
be achieved by deleting the corresponding row and column of W.
The optimization of o can be done in a similar way as T. This pro-
cess is iterated either a max iteration number is achieved or the
changes of objective function falls below a pre-defined threshold.
Algorithm 1 gives the procedure of the proposed Laplacian affine
sparse coding with tilt and orientation consistency algorithm. After
the codebook is learned, we can encode the extracted affine SIFT
features by solving problem (4) while keeping B fixed.

4. Experiments

We evaluate the proposed Laplacian affine sparse coding with
tilt and orientation consistency algorithm (LASC-TOC) for image
classification on several public datasets: the Caltech 256 dataset
[29], the UIUC-Sport dataset [30] and the Scene 15 dataset [7].
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4.1. Parameter setting

We use the SIFT feature as the local region description, as [4-7]
did. To be consistent with previous work and for fair comparison,
we densely extract SIFT features with overlap. The overlap pixel
is set to 6 and the smallest patch size is 16 x 16 pixels as this set-
ting is found to be more effective than the original settings in [7].
These extracted SIFT features are then normalized with ¢, norm.
The codebook size is fixed to 1000 for all the datasets. To construct
the codebook, we randomly choose 10° features for each dataset.
As to the spatial pyramid matching, we follow [7] and use the first
three layer (1 x 1, 2 x 2, 4 x 4) to incorporate the spatial informa-
tion of local features. We randomly choose the training images and
repeat this process for five times. Instead of re-implementing other
algorithms, we directly compare with the results reported by
researchers for fair comparison. For multi-class SVM classifier
training, we use the code provided by Yang et al. [5].

The three parameters /;, 1, A3 are the most important param-
eters in this paper. Yang et al. [5] found that the performance is
best when 4; is set to 0.3-0.4. Besides, as found by Gao et al.
[26], the performance is good when /3 is set to 0.1 (with
21 =0.3) or 0.2 (with 4; = 0.4). For image sets with large inter class
variation, /4, should be set to a larger value compared to images set
with small inter class variation. Hence, we set 1, according to the
type of image sets. Specifically, for the Caltech 256 and UIUC-Sport
dataset, we set 4; = 0.1, /, = 0.1 N and /3 = 0.3. For the Scene 15
dataset, we set 4; = 0.2, 4, =0.05N and /3 = 0.4. The max itera-
tion number in Algorithm 1 is set to 50. We also use the LLC tech-
nique [31] to speed up the sparse coding process and improve the
performance.

4.2, Caltech 256 dataset

The Caltech 256 dataset has 256 image categories with a total of
29,780 images. This dataset is introduced as an extension of the
Caltech 101 dataset. Images of the Caltech 256 dataset have larger
intra class and inter class variations compared with the Caltech
101 dataset. There are at least 80 images in each class of the Cal-
tech-256 dataset. Fig. 3 gives some image classes with the classifi-
cation accuracy of the Caltech 256 dataset. We evaluate the
proposed Laplacian affine sparse coding with tilt and orientation
consistency algorithm using 15, 30, 45 and 60 training images
respectively. For each class, we randomly pick the training images
and use the rest images for testing.

radio—telescope
Acc. 80. 2%

minaret
Acc. 93. 7%

==

airplanes
Acc. 98. 0%

car—side
Acc. 100%

Table 1
Performance comparison on the Caltech-256 dataset.
Methods 15 Images 30 Images 45 Images 60 Images
KCSPM [4] - 2717 046 - -
SPM [29] - 34.10 - -
SPM [5] 2334 042 2951 £0.52 - -
ScSPM [5] 27.73 £0.51 34.02 £+035 3746 055 40.14 +091
LLC [31] 34.36 41.19 45.31 47.68
LScSPM [26] 30.00 +0.14 35.74 £+0.10 38.54 +0.36 40.43 +0.38
ASC [21] 37.67 43.10 46.90 49.84
LASC 38.36 £0.64 43.85 +0.59 47.15 £0.46 49.90 +0.53
LASC-TOC 38.83+0.56 44.20 +0.72 47.37+£048 49.95 + 0.52
Table 2

Performance comparison on the UIUC Sport dataset.

Methods Classification rate
Li [30] 73.40

ScSPM [5] 82.74 +1.46

HIK + OCSVM [27] 83.54 +1.13
LScSPM [26] 85.31 +0.51
LASC 87.85 +0.64
LASC-TOC 88.53 + 0.68

Table 1 gives the performance comparison of the proposed
LASC-TOC with other methods. To show the effect of imposing tilt
and orientation consistency, we also give the performance of using
laplacian affine sparse coding without tilt and orientation consis-
tency (Abbrev. LASC). This can be achieved by setting 4, to a large
enough number in problem (4). We can see from Table 1 that the
proposed LASC-TOC achieved the state-of-the-art performance.
Compared with LASC, the consideration of tilt and orientation con-
sistency can preserve the structure information to some extent,
hence helps to improve the image classification performance over
LASC. Compared with soft assignment methods, such as kernel
codebook [4] or sparse coding [5], LASC-TOC can alleviate informa-
tion loss by making affine transformation of images and consider
the smoothness of sparse coding. The LScSPM algorithm also con-
siders the similarity of local features during the encoding process,
however, the proposed LASC-TOC algorithm goes one step further
by using affine transformation for feature extraction and tilt and
orientation consistency. The affine transformation enables us to

swan teapot
Acc. 83. 9%

blimp
Acc. 87. 1%

grapes
Acc. 95. 3%

Fig. 3. Performance of LASC-TOC on the Caltech 256 dataset showing some classes with classification accuracies.
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Fig. 4. Confusion matrix on the UIUC Sport dataset. The accuracy decreases from
red to green. It is best viewed in color. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this article.)

Table 3
Performance comparison on the Scene 15 dataset.

Methods Classification rate
SPM [7] 81.40 +0.50
KCSPM [4] 76.67 +0.39
SPM [5] 76.73 +0.65
ScSPM [5] 80.28 +0.93
HIK + OCSVM [27] 84.00 +0.46
LScSPM [26] 89.75 +0.50
LASC 90.17 +0.58
LASC-TOC 90.36 + 0.63

extract more discriminative local features which will eventually
help to improve the final image classification performance. Be-
sides, LASC and LASC-TOC consistently outperform LScSPM by
around eight and nine percent respectively. This demonstrates
the effectiveness of affine transformation as well as tilt and orien-
tation consistency for boosting the image classification perfor-
mance. Moreover, the relative improvement of LASC-TOC over
ASC [21] decreases with the increasing number of training images.
We believe this is because the effect of smoothness constraints is
less important as the training images increases, the learned classi-
fier are more discriminative to make correct categorization of
images with more training samples.
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o =
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bedroom
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Table 4

Mean and standard derivation of the tilt and orientation as well as the average
reconstruction error of 1000 randomly sampled local features on the Scene 15
dataset. ASC: affine sparse coding, LASC-TOC: Laplacian affine sparse coding with tilt
and orientation consistency.

Algorithm Tilt Orientation Reconstruction error
ASC 0.31£0.15 0.27 £0.12 0.28 + 0.09
LASC-TOC 0.19 £ 0.07 0.13 +0.08 0.36+0.17

4.3. UIUC Sport dataset

The UIUC Sport dataset contains eight categories (badminton,
bocce, croquet, polo, rock climbing, rowing, sailing and snow board-
ing) of 1792 images. Each class has 137 to 250 images. We follow
the same experimental setup as [5,26,27] for fair comparison. 70
images per class are randomly selected and we use the rest of
images for testing.

Table 2 shows the performance results on the UIUC Sport data-
set. We also give the confusion matrix in Fig. 4. We can have sim-
ilar conclusions as on the Caltech 256 dataset. The proposed LASC-
TOC outperforms the LScSPM method by about 3.2%, this again
demonstrates the effectiveness of doing affine transformation with
tilt and orientation consistency. Besides, the tilt and orientation
consistency helps to improve the performance of LASC by 0.7%.

4.4. Scene 15 dataset

The Scene 15 dataset has 15 categories (bedroom, suburb, indus-
trial, kitchen, livingroom, coast, forest, highway, insidecity, mountain,
opencountry, street, tallbuilding, office and store) of 4485 images
with 200 to 400 images per category. The images are diverse and
range from indoor to outdoor categories. To compare with previous
work, we randomly choose 100 images per class as the training
data and use the rest images for testing.

Table 3 gives the performance comparison on the Scene 15
dataset. Again the proposed LASC-TOC algorithm achieved good
performance. The improvement of LASC-TOC over LScSPM is not
so obvious compared with the results on the Caltech 256 dataset
and the UIUC Sport dataset. We believe this is because images of
the Scene 15 dataset are relatively easy to separate and the
improvement of affine transformation is not so obvious. To analy-
sis the details of the results, we also give the confusion matrix in
Fig. 5. We can see from Fig. 5 that the indoor classes are harder
to classify than outdoor classes, as [5,7,26] found. This also shows

highway
insidecity
mountain
opencountry
street
tallbuilding
office

store

Fig. 5. Confusion matrix on the Scene 15 dataset. The accuracy decreases from red to green. It is best viewed in color. (For interpretation of the references to color in this

figure caption, the reader is referred to the web version of this article.)



792

-

C. Zhang et al./]. Vis. Commun. Image R. 24 (2013) 786-793

1 T T T T T T

+  Affine sparse coding I

#+ Laplacian affine sparse coding

09} osf
08} . 08} 1
z
£ o7} . 07 1
E .
o L 4 - -
805 { £Eos .
& 5}
2 04 o o 1 o4 1
£ 03l 1 03 ]
% '
02} A . 02 1
*
o1} ¥ 4 A . 0.1 1
L
U * 1 1 1 1 U 1 1 1 1 1 1 1 1 1
0 02 0.4 06 08 1 0 01 02 03 04 05 06 07 08 03 1

SIFT feature similarity

SIFT feature similarity

Fig. 6. Similarity correspondence of Laplacian affine sparse codes and affine sparse codes on the Scene 15 dataset. It is best viewed in color. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this article.)

the effectiveness of the proposed method for robust image
classification.

4.5. Analysis of Laplacian affine sparse coding with tilt and orientation
consistency

The main contribution of our method lies in two aspects. On one
hand, the usage of tilt and orientation constraints help to choose
the most discriminative affine SIFT features jointly instead of
choosing them by merely minimizing the reconstruction error.
On the other hand, the Laplacian regularization term ensures
smoothness of the coding parameters. To show the effectiveness
of the usage of tilt and orientation constraints, we give their mean
and standard derivation as well as the mean reconstruction error
on the Scene 15 dataset in Table 4. This is achieved by randomly
sampling 1000 local features from the dataset. The tilt and orienta-
tion are pre-normalized for easy comparison.

We can see from Table 4 that the mean and standard derivation
of the tilt and orientation of the proposed LASC-TOC is smaller than
affine sparse coding. Besides, the LASC-TOC also performs better
than affine sparse coding for image classification in Table 3. These
results demonstrate the effectiveness of imposing tilt and orienta-
tion constraints into the objective function for image classification.
Moreover, we can see from Table 4 that LASC-TOC performs not as
good as affine sparse coding when minimizing the reconstruction
error. We believe this is because the objective of sparse coding
and image classification are inherently different, the sparse coding
tries to minimize the reconstruction error while image classifica-
tion aims to separate images of different classes correctly. A good
local feature encoding scheme should be able to encode local fea-
tures efficiently for classification instead of merely minimizing
the reconstruction error. In fact, the reconstruction error of affine
sparse coding is the lower bound of LASC-TOC. If we impose no tilt
and orientation as well as smoothness constraints, the reconstruc-
tion error of LASC-TOC will equal to affine sparse coding.

To illustrate the influence of Laplacian regularization for simi-
larity preservation, we plot the similarity correspondence of Lapla-
cian affine sparse codes and affine sparse codes on the Scene 15
dataset in Fig. 6. This is achieved by calculating the similarities of
about 4000 randomly sampled features. We can see from Fig. 6 that
the LASC-TOC preserves more similarity information of local fea-
tures than affine sparse coding. This demonstrates the effective-
ness of Laplacian regularization for preserving the similarities.

5. Conclusions

This paper proposed a novel image classification method by
Laplacian affine sparse coding with tilt and orientation consis-
tency. Besides minimizing the reconstruction error of traditional
sparse coding, we also impose a regularization constraint to ensure
the smoothness of tilt and orientation of affine local features.
Moreover, a Laplacian regularization term with histogram intersec-
tion similarity is also used to characterize the similarity of affine
transformed local features during the sparse coding process. This
helps to reduce the information loss and improve the image classi-
fication performance. Experimental results on several public data-
sets show the effectiveness and efficiency of the proposed
Laplacian affine sparse coding with tilt and orientation consistency
method.

Our future work will concentrate on how to speed up the
encoding process of local features. Besides, the usage of other local
feature transformations will also be studied.
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