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Abstract Explosive multimedia resources are generated
on web, which can be typically considered as a kind of
multi-view data in nature. In this paper, we present a Semi-
supervised Unified Latent Factor learning approach (SULF)
to learn a predictive unified latent representation by leverag-
ing both complementary information among multiple views
and the supervision from the partially label information.
On one hand, SULF employs a collaborative Nonnegative
Matrix Factorization formulation to discover a unified latent
space shared across multiple views. On the other hand, SULF
adopts a regularized regression model to minimize a predic-
tion loss on partially labeled data with the latent representa-
tion. Consequently, the obtained parts-based representation
can have more discriminating power. In addition, we also
develop a mechanism to learn the weights of different views
automatically. To solve the proposed optimization problem,
we design an effective iterative algorithm. Extensive exper-
iments are conducted for both classification and clustering
tasks on three real-world datasets and the compared results
demonstrate the superiority of our approach.
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1 Introduction

With the popularity of internet technologies, there are explo-
sive multimedia resources available online. This necessi-
tates effective techniques on data analysis and manage-
ment [13,14,20,26]. We deem such massive web resources
have the multi-view attribute in nature, i.e., they are pos-
sibly correlated to reflect a common topic. For instance, a
news document can be reported in multiple languages, an
image can be described from different visual aspects, such
as color, texture, shape, etc., and a video is a natural aggre-
gation of textual, visual and audio information. Accordingly,
the proper exploration of the complementary information (or
correlations) across multiple views is helpful to boost the
performance of data analysis on web data.

Numerous efforts have been made on learning from multi-
view data. Generally speaking, there are two main directions.
One direction is the co-training style scheme. A prominent
achievement in this area is the Co-training algorithm [3],
which trains two classifiers separately on two different views
and uses the predictions of one classifier on unlabeled exam-
ples to augment the training set of the other. The Co-EM
algorithm [23], a probabilistic version of Co-training, uses
hypotheses learned in one view to probabilistically label the
samples in the other one. The main limitation of the Co-
training style algorithms is that they treat information from
different views on equal terms. It is unreasonable, since data
qualities of different views are varied. Moreover, in each
active learning process, they typically require retraining with
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all available data. This is a heavy burden, especially when
there is a large amount of training data.

The other main direction is the unified latent factor or
subspace learning approach, which aims to obtain a com-
pact latent representation by taking advantage of inherent
structure and relations across multiple views. A classical
example is Canonical Correlation Analysis (CCA) [5,15].
It is designed to discover a common subspace representa-
tion shared by multiple views. Two spectral clustering algo-
rithms [16] are proposed with co-regularizing the clustering
hypotheses across views and apply to multi-view clustering.
Most of these methods are formulated as an unsupervised
learning problem, and so the discovered latent factor or sub-
space has weak prediction ability. Though sufficient labeled
data can be very expensive to obtain, more often than not
there is partially labeled information available with the rapid
increase of free on-line information such as user tagging, rat-
ing, etc. It is no doubt that the latent representations would
be more discriminating if partially label information can be
integrated. Some semi-supervised approaches have been pro-
posed to learn a shared or common latent representation [2,6].
In this work, we propose a new semi-supervised algorithm
based on Nonnegative Matrix Factorization (NMF) to exploit
multi-view data. To our best knowledge, it is the first time to
handle multi-view data for semi-supervised learning based
on NMF.

Nonnegative Matrix Factorization is an effective factor
learning method, and the nonnegative constraint leads to the
parts-based representation of objects, which accords with the
cognitive process of human brain from the psychological and
physiological evidences [17]. Recently, several variants of
NMF have been proposed [4,8,10,19,22]. However, most
work focus on the applications with the single view data
or by simply concatenating the multi-view features. More-
over, NMF, as an unsupervised learning algorithm, cannot
incorporate the class information effectively. Thus, it would
be of great benefit to extend the usage of NMF to explore
the complementary information across multi-view data, and
be able to import some label information into its learning
process.

In this paper, we develop a novel algorithm called Semi-
supervised Unified Latent Factor learning (SULF), to learn a
compact unified latent subspace as well as a discriminating
linear classifier for multi-view data. In SULF, we consider
two aspects of minimizing problems. First, a multi-view col-
laborative NMF model is proposed to jointly minimize the
reconstruction errors of the multi-view data matrices, while
a unified latent space is required to be shared across multiple
views. Second, a l2,1-norm regularized regression model is
employed to minimize the prediction loss on partially labeled
data with the unified latent representation. Besides, the pro-
posed model can also automatically estimate how much each
view should be trusted to accommodate noisy or unreliable

views. To jointly consider the above issues, the obtained
parts-based representation with multi-view data is incorpo-
rated with the complementary information among different
views as well as the supervision from the partially labeled
data, and, therefore, can have more discriminating power.
A multiplicative-based alternative algorithm is developed to
solve the joint optimization problem. At last, experimental
results on three real-world datasets verify the effectiveness
of our method.

The remainder of this paper is organized as follows: In
Sect. 2, we overview some related work on unified latent
factor learning and semi-supervised latent factor learning.
Section 3 gives a brief review of NMF and Semi-NMF. Sec-
tions 4 and 5 elaborate the model of SULF and an efficient
iterative algorithm in detail. The experimental evaluations
and discussions are presented in Sect. 6. Section 7 concludes
this paper.

2 Related work

In recent years, a number of unified latent factor learning
algorithms emerged to discover inherent structure and rela-
tions among multiple views. Among them, CCA and CCA-
based algorithms are representative and widely used. Chaud-
huri et al. [5] projected the data into a latent subspace aiming
to find the directions that maximize the correlation between
the two sets of projected representations. Sun et al. [25] devel-
oped the discriminating CCA for multi-view data, aiming
to reduce feature dimension with discrimination by max-
imizing the within-class correlation while minimizing the
between-class correlation. There are many other types of
unified latent factor algorithms. Kumar et al. [16] proposed
a multi-view clustering approach in the framework of spec-
tral clustering. In essence, it learns a latent representation
by using the philosophy of co-regularization. Chen et al. [6]
learned a predictive subspace representation underlying mul-
tiple views by a large-margin approach which jointly max-
imizes data likelihood and minimizes a prediction loss on
training data. Different from the above methods, our SULF
is based on NMF and tries to learn a parts-based representa-
tion. Besides, most of the above methods are designed to deal
with two-view conditions, while SULF is able to deal with
multiple views. What is more, SULF could learn the weights
of different views automatically which is very crucial, espe-
cially when we have no prior knowledge which view is the
best.

Semi-supervised latent factor learning, which tries to find
compact latent representation using small amount of labeled
data together with large amount of unlabeled data, is of
great interest both in theory and in practice. Chen et al. [7]
proposed a new latent factor algorithm termed as semi-
paired and semi-supervised generalized correlation analysis,

123



Semi-supervised Unified Latent Factor learning 1637

which can deal with semi-paired and semi-supervised multi-
view data. Ando and Zhang. [2] presented a framework for
semi-supervised learning, where a generative model is used
to learn effective parametric feature representations for dis-
criminating learning. There are also some semi-supervised
latent factor algorithms base on NMF. Chen et al. [8] pro-
posed a semi-supervised NMF framework for data clustering.
Users are able to provide supervision in terms of pairwise
constraints on a few data objects specifying whether they
“must” or “cannot” be clustered together. Cai et al. [4] pre-
sented a graph regularized NMF (GNMF) approach to encode
the geometrical information of the data space. When labeled
information is available, it can be naturally incorporated
into the graph structure. This gives rise to semi-supervised
GNMF. Liu et al. [22] developed a semi-supervised matrix
decomposition method, called Constrained NMF (CNMF).
The central idea of this approach is that the data points from
the same class should be merged together in the new repre-
sentation space. Different from the first two work, SULF
tries to learn a parts-based unified latent representation.
And other than these above NMF-based work, SULF is
able to not only utilize the local discriminating informa-
tion captured from the limited labeled data, but also dis-
cover the inherent structures and relations among different
views.

3 A brief review of NMF and semi-NMF

Given an input nonnegative data matrix X ∈ R
M×N , each

column of X is a sample of vector. NMF aims to find two
nonnegative matrices U ∈ R

M×K and V ∈ R
K×N whose

product can well approximate the original matrix X. The
cost function of standard NMF is defined as

min ||X− UV||2F
s.t. U,V ≥ 0 (1)

Although the objective functions (1) are convex in U only or
V only, they are not convex in both variables together. There-
fore, it is unrealistic to expect an algorithm to find the global
minimum. Lee and Seung [18] proposed an iterative undate
algorithm to find the locally optimal solution as follows:

umk ← umk
(XVT )mk

(UVVT )mk

vkn ← vkn
(UT X)kn

(UT UV)kn
(2)

When the data matrix X is unconstrained (i.e., it may have
mixed signs), Semi-NMF restricts V to be nonnegative while
placing no restriction on the signs of U. The cost function of
Semi-NMF is defined as

min ||X− UV||2F
s.t. V ≥ 0 (3)

Ding et.al. [10] computes the Semi-NMF factorization via
updating U and V alternatively:

U = XVT (VVT )−1 (4)

vk j ← vk j

√
√
√
√
(UT X)+k j + ((UT U)−V)k j

(UT X)−k j + ((UT U)+V)k j
, (5)

where we separate the positive and negative parts of a matrix
B as

B+ = (|B| + B)/2 B− = (|B| − B)/2 (6)

4 Semi-supervised Unified Latent Factor learning

Figure 1 illustrates the framework of SULF. Suppose there
are N data points with P views, among which the first R data
points are labeled. Xp ∈ R

M p×N is the data matrix of pth
view. Y ∈ R

C×R is the label matrix, which encodes the label
information as

ycr =
{

1 if the r th data point belongs to the cth class

0 otherwise
(7)

To achieve the ultimate target, SULF involves two com-
ponents: the one to exploit the complementary information
among multiple views, and the other to incorporate the label
information from partially labeled data.

4.1 Multi-view collaborative NMF

Single-view information is usually only a kind of unilateral
or partial reflection of data properties. In order to exploit
multi-view information collaboratively, SULF simultane-
ously performs NMF with different view data matrices based
on the underlying assumption that the distributions of sam-
ples in basis (topic) spaces are consistent across different
views. In other words, different views share a common factor
matrix V.

Though all views share the same V, it is not reasonable
for them to play the same role during the learning process.
This is because different views suffer from varying degrees
of information loss and noise pollution. It is reasonable to
expect that the best view is dominant, but usually we lack the
prior knowledge which view is the best. SULF tries to learn
the weights of different views automatically according to the
reconstruction precision of data matrices.
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Fig. 1 The illustration of
SULF

Thus, the objective function for the multi-view collabora-
tive NMF is defined as

min
P

∑

p=1

π p||Xp − UpV||2F + λ||�||2

s.t. U,V,� ≥ 0,
P

∑

p=1

π p = 1, (8)

where U = {U1,U2, . . . ,UP } is the set of different view
basis matrices. � = (π1, π2, . . . , π P ) is the weight vector
of different views. The parameter λ controls the smooth-
ness of �. The larger value of λ leads to the smoother view
weights.

4.2 l2,1-norm regularized regression with latent
representation

In order to enhance the discriminating power of parts-based
representation, SULF attempts to incorporate the partially
label information. Vl ∈ R

K×R , the first R columns of V, is
the compact representation of the first R labeled data, and
Vul ∈ R

K×(N−R) is the compact representation of the other
N−R unlabeled data, i.e., V = [Vl ,Vul ]. SULF learns a lin-
ear classifier W ∈ R

K×C with respect to Vl to fit the partially
label information Y by minimize the following problem:

min ||WT Vl − Y||2F + γ ||W||2,1
s.t. Vl ≥ 0 (9)

where

||W||2,1 =
K

∑

k=1

√
√
√
√

C
∑

c=1

w2
kc (10)

The l2,1-norm regularization term [11,21] is introduced to
ensure W sparse in rows. In that way, W does a feature selec-

tion during the fitting process that leads to a better reconstruc-
tion of label matrix Y.

The minimization problem in Eq. 9 is similar to the prob-
lem of Semi-NMF [10]. That is, we should factorize the non-
negative matrix Y into a nonnegative matrix Vl and a matrix
W with mixed signs.

4.3 Unified objective function

Considering the objective for multi-view Information and
partially label information simultaneously, we obtain a uni-
fied objective function for SULF:

min
P

∑

p=1

π p||Xp − UpV||2F + λ||�||2

+β||WT Vl − Y||2F + γ ||W||2,1

s.t. U,V,� ≥ 0,
P

∑

p=1

π p = 1, (11)

where β is a nonnegative parameter to trade off the afore-
mentioned two objectives.

5 Optimization

The joint optimization function in (11) is not convex over
all variables U,V,W and � simultaneously. Thus, we pro-
pose an iterative optimization algorithm. For the ease of rep-
resentation, we define

O(U,V,W,�) =
P

∑

p=1

π p||Xp − UpV||2F + λ||�||2

+β||WT Vl − Y||2F + γ ||W||2,1 (12)

Then, the joint optimization problem can be iteratively
solved by the following four reduced subproblems: (1) fix V,

123



Semi-supervised Unified Latent Factor learning 1639

Algorithm 1 Algorithm of SULF
Input:

P view data matrices X1,X2, . . . ,XP , label matrix Y,
parameters β, γ, λ, K

Output:
P view basis matrices U = {U1,U2, . . . ,Up},
factor matrices V, linear classifier W,

1: Initialize U1,U2, . . . ,UP ,V;
2: Initialize (π1, π2, . . . , π P ) = (1/P, 1/P, . . . , 1/P);
3: loop
4: Fix V, update W as in(15);
5: for p = 1 to P do
6: Fix V, update Up as in(19);
7: end for
8: Fix U,�, update Vl as in(26);
9: Fix U, update Vul as in(27);
10: for p = 1 to P do
11: Fix U,V, computer cp = ||Xp − UpV||2F ;
12: end for
13: Update � using CVX;
14: end loop until convergence

minimize O(W); (2) fix V, minimize O(U); (3) fix U and �,
minimize O(V); and (4) fix U and V, minimize O(�). We
summarize the updating algorithm in Algorithm 1.

5.1 The updating rule for W

There is no nonnegative constraint for W. Requiring the
derivative of O(W) w.r.t. W , we have

∂O
∂W
= 2

(

βVl

(

WT Vl − Y
)T + γEW

)

(13)

Here, E is a diagonal matrix with ekk = 1
2||wk ||2 . 1 Let ∂O

∂W =
0, we get the following updating rule for W:

W =
(

βVlVT
l + γE

)−1
βVlYT (14)

Let A = (

βVlVT
l + γE

)

, then

W = βA−1VlYT (15)

5.2 The updating rule for U

Since each basis matrix in U is completely symmetrical, we
give a detailed analysis of the pth view, and other views can
be derived analogously. Letψ p

ik is the Lagrange multiplier for
constraint u p

ik ≥ 0, and � p = [ψ p
mk], the Lagrange function

L(Up) is defined as

L(Up) = O(Up)+ T r((� p)T Up) (16)

1 wk is the kth row of W. In practice, ||wk ||2 could be close to zero but
not zero. Theoretically, it could be zeros. For this case, we can let ε is
very small constant, and regularize ekk = 1

2
√

wT
k wk+ε

.

The partial derivatives of L(Up) with respect to Up is

∂L(Up)

∂Up
= −2XpVT + 2UpVVT +� p (17)

Using the Karush–Kuhn–Tucker condition ψ p
mku p

mk = 0, we
get the following equations for Up:

− (XpVT )mku p
mk + (UpVVT )mku p

mk = 0 (18)

This equation leads to the following updating rule for Up:

u p
mk ← u p

mk
(XpVT )mk

(UpVVT )mk
(19)

5.3 The updating rule for V

V includes two parts Vl and Vul as already stated. For the ease
of representation, we also divide each data matrix Xp into
two parts Xp

l and Xp
ul accordingly. Let φkn be the Lagrange

multiplier for constraint vkn ≥ 0, and � = [�l ,�ul ] =
[φkn], the Lagrange function L(V) be defined as

L(V) = O(V)+ T r(�T V) (20)

Substituting W by Eq. (15) in to (20) and noticing A is a
symmetric matrix, we have

L(V) =
P

∑

p=1

π p||Xp − UpV||2F

−β2T r
(

YVT
l A−1VlYT

)

+ T r(�V)+ F, (21)

where F is a constant. The partial derivatives of L(V) with
respect to Vl and Vul are 2

∂L
∂Vl
= 2

P
∑

p=1

π p(−(Up)T Xp
l + (Up)T UpVl)

−2β2A−1VlYT Y+�l (22)

∂L
∂Vul

= 2
P

∑

p=1

π p(−(Up)T Xp
ul+(Up)T UpVul)+�ul (23)

Using the Karush–Kuhn–Tucker condition φknvkn = 0, we
get the following equations for Vl and Vul :

P
∑

p=1

π p((Up)T (UpVl − Xp
l )kn(vl)kn

−β2(A−1VlYT Y)kn(vl)kn = 0 (24)
P

∑

p=1

π p((Up)T (UpVul − Xp
ul)kn(vul)kn = 0 (25)

2 For convenience, A is approximately as constant matrix when requir-
ing the derivatives of ∂L

∂Vl
.
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Table 1 Statistics of three
datesets dataset # of size (N ) # of class (C) # of dimensionality

for each view
(M1 / M2 / M3)

NUS-WIDE-Object 3100 31 1000 / 1000 / 1000

Corel5K 5000 50 1000 / 1000 / 1000

Reuters multilingual 1876 6 21531 / 11547/ 24893

Leting B = A−1VlYT Y, these equations lead to the follow-
ing updating rules for Vl and Vul :

(vl)kn ← (vl)kn

√
√
√
√
√
√

(
∑P

p=1 π
p(Up)T Xp

l + β2B+
)

kn
(
∑P

p=1 π
p(Up)T UpVl + β2B−

)

kn

(26)

(vul)kn ← (vul)kn

√
√
√
√
√
√

(
∑P

p=1 π
p(Up)T Xp

ul

)

kn
(
∑P

p=1 π
p(Up)T UpVul

)

kn

(27)

The convergence of updating rules for Vl ,Vul can be theo-
retically proved by a similar strategy to [10].

5.4 The updating rule for �

When U,V are fixed, minimization of O(�) is reduced to a
simple convex optimization problem as follows:

min
P

∑

p=1

cpπ p + λ||�||2

s.t. � ≥ 0,
P

∑

p=1

π p = 1, (28)

where cp = ||Xp−UpV||2F is the reconstruction error of the
pth view. We solve this convex optimization problem with
CVX,3 a Matlab-based modeling system for convex opti-
mization.

The computational complexity of our proposed method
is O(

∑P
p=1 Mp N K ), where P is the number of view, Mp

is the dimension of the p-view feature, N is the number of
instances and K is the dimension of latent space. It is also
worth mentioning that the computational complexity for per-
forming NMF with P view feature is also O(

∑P
p=1 Mp N K ).

Thus, the computational cost of our approach is comparable
with that of NMF.

6 Experiments

In this section, we evaluate the effectiveness of our proposed
SULF algorithm on both classification and clustering tasks.

3 http://cvxr.com/cvx/.

6.1 Date sets

Three real-world datesets are used in our experiments, includ-
ing two image datasets and one document corpus. The impor-
tant statistics of these datesets are summarized in Table 1. A
brief description of each dataset is presented as follows:

NUS-WIDE-Object [9]: It consists of 31 object cate-
gories and 30,000 images in total. Images which belong to
more than one category are eliminated. From the remaining
23,953 images, we randomly sample 100 images per cat-
egory for model learning and evaluation. 1,000-dimension
OpponentSIFT, C-SIFT and rgSIFT [24] are extracted by
ColorDescriptor Software4 as three views.

Corel5K [12]: It contains 5,000 images in 50 groups, such
as fox, flower and bridge. Each group is composed of 100
images. Corel5K is represented by the same features as NUS-
WIDE-Object dataset.

Reuters [1]: This collection contains documents origi-
nally written in five different languages (English, French,
German, Spanish and Italian), and their translations, over a
common set of 6 categories. The documents are represented
as a bag of words using a TFIDF-based weighting scheme.
We randomly sample 10 % documents from 18,758 docu-
ments originally in English. We use their original represen-
tation as the first view, their Spanish translation as the sec-
ond view and their French translation as the third view. The
vocabulary size of English is 21,531, while that of Spanish
and French are 11,547 and 24,893, respectively.

6.2 Experimental setup

In order to validate the performance of learned latent factor,
we compare the proposed SULF with several algorithms. The
compared schemes are listed as follows:

NMF [18]: Nonnegative Matrix Factorization.
SGNMF [4]: Semi-supervised Graph Regularized Non-

negative Matrix Factorization. In SGNMF, an affinity graph
is constructed to encode the geometrical information, and
the label information is integrated into the graph structure as
described in [22].

CNMF [22]: Constrained Nonnegative Matrix Factoriza-
tion. CNMF incorporates the label information as additional
constraints.

4 http://koen.me/research/colordescriptors/.
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Table 2 Characteristics of
different algorithms NMF SGNMF CNMF CCA PCSC CoTra SULF1 SULF2 SULF3 SULF

Unsupervised � � � �
Semi-supervised � � � � � �
Single-view � � � �
Two-view �
Multi-view � � � � �

CCA [5]: Canonical Correlation Analysis. PCA is adopted
as the pretreatment to denoising and reducing dimensions.

PCSC [16]: Pairwise Co-regularized Spectral Clustering.
A spectral clustering algorithm encourages the pairwise simi-
larities of examples under the new representation to be similar
across all the views. It is considered as a clustering baseline.

CoTra [3]: Co-training scheme with regularized least
square regression as the basis classification. PCA is adopted
as the pretreatment to denoising and reducing dimensions. It
is used as a classification baseline.

SULF1: Our proposed method without labeled data uti-
lized. That is, β is set to 0, and SULF degenerates into a
unsupervised algorithm.

SULF2: Our proposed method with single-view data
available. That is, there is only one coefficient in � is set
to 1, others are set to 0, and SULF degenerates into a single-
view algorithm.

SULF3: Our proposed method without view weight learn-
ing mechanism. The weights is setup averagely, i.e., π p =
1/P .

SULF: Our proposed method.
Table 2 summarizes the characteristics of all these algo-

rithms. Except for CoTra and PCSC, all the other approaches
are latent factor learning algorithms and aim to learn the
compact latent representations. These latent representations
are evaluated by both classification and clustering tasks.
The dimensionality of the latent space for NUS-WIDE and
Corel5K is set to 200 and that for Reuters is set to 50. CoTra
is a multi-view classification method, and PCSC is a multi-
view clustering one. The former is utilized as a classification
baseline, while the latter is a clustering baseline.

For single-view algorithms, experiments are performed
with both each single-view feature and concatenation fea-
tures of three views. We report the best single-view result
with the subscript “a”, and the result of concatenation fea-
tures with subscript “b”. For example NMFa indicates the
best result of single-view feature achieved by NMF, while
NMFb indicates the result gotten from concatenation fea-
tures. As for CCA, a two-view algorithm, we perform the
algorithm with each pair of two-view data. And the result of
best pair is reported.

In the classification task, for NMF, SGNMF, CNMF,
CCA and SULF1, we train a regularized least square regres-

sion model as the classifier with the latent representation of
labeled samples. For SULF2,SULF3 and SULF, we perform
classification through inputting the obtained latent represen-
tation of unlabeled data Vul to the learned linear classifier
W directly. As for the clustering task, the effectiveness of
these latent representations is evaluated by K-means. And
the clustering algorithm is only performed on the unlabeled
data. That is to say, we discard the labeled samples after
getting the latent representation.

For both classification and clustering task, 5 random train-
test splits are applied, and 10 test runs are conducted for each
split. The mean of the performance is reported. For each
algorithm, we carry out threefold cross-validation to select
the appropriate parameters.

6.3 Classification results

Table 3 shows the classification accuracy on the NUS-
WIDE, Corel5K and Reuters datasets with different portion
of labeled data. These experiments reveal a number of inter-
esting points:

– SULF achieves good performance on all these datasets.
Especially, when small portion (10, 20 %) labeled data
are available, SULF outperforms all the other baselines.
In addition, SULF2 and SULF3 also achieve good per-
formance, which suggests the validity of our algorithm.

– Multi-view algorithms are superior to the single-view
algorithms on three datesets in general. All the best
performance is obtained by multi-view algorithms on
three datasets with different label ratio. And SULF also
achieves different degrees of improvement comparing
with SULF2. That illustrates there is indeed comple-
mentary information (or relations) embodied in multiple
views.

– On the Reuters dataset, SULF as a semi-supervised algo-
rithm is superior to all the unsupervised algorithms. And
on other two image datasets, SULF also achieves the best
performance when there is a small proportion of labeled
data, while the performance of SULF is a little lower
than that of CCA when there are abundant labeled data.
This may be because in the complex feature space, it is
more challenging to incorporate the label information.
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Table 3 Classification performance on NUS-WIDE, Corel5K and Reuters datasets

Unsupervised Semi-supervised

τ NMFa NMFb CCA SULF1 CoTra CNMFa CNMFb SGNMFa SGNMFb SULF2 SULF3 SULF

NUS-WIDE-Object

0.1 11.54 13.59 12.22 12.83 10.25 12.88 14.22 14.09 15.15 15.90 17.11 18.17

0.2 13.96 16.30 17.78 16.51 15.32 14.39 15.96 14.95 16.47 17.04 18.89 19.60

0.3 15.58 17.75 19.96 18.52 18.63 17.93 18.70 16.46 17.47 17.82 19.41 20.10

0.4 17.36 19.65 22.31 20.45 21.18 18.89 20.13 16.56 17.58 18.95 20.16 21.29

0.5 18.59 20.69 23.68 21.21 21.55 19.10 21.18 18.84 18.90 18.55 21.71 22.13

Corel5K

0.1 18.82 21.57 26.58 24.02 24.38 22.00 22.70 23.62 25.24 28.86 30.26 31.18

0.2 27.69 30.28 33.70 31.60 33.68 26.62 27.19 30.46 31.11 32.08 34.23 34.58

0.3 30.14 31.44 35.95 34.28 36.07 27.13 28.91 32.98 32.58 32.57 35.45 35.61

0.4 32.28 32.21 36.67 36.22 36.17 28.22 32.87 32.98 35.67 33.80 35.38 35.90

0.5 32.92 33.33 38.72 36.34 37.04 30.69 33.33 33.47 36.31 33.76 36.30 36.52

Reuters

0.1 70.25 71.78 73.29 74.61 74.05 73.90 71.00 72.18 72.50 74.08 75.27 76.36

0.2 72.00 72.93 75.37 76.33 76.07 74.50 74.20 73.05 73.83 77.30 76.57 78.67

0.3 72.44 73.88 76.77 76.82 77.91 76.39 72.85 74.22 73.84 79.78 77.49 80.05

0.4 73.16 74.33 77.14 77.51 78.40 76.22 73.47 74.26 74.02 80.36 78.27 80.80

0.5 73.12 74.78 78.34 77.93 77.40 76.17 75.91 74.21 74.11 80.17 78.73 80.70

τ is the proportion of labeled data
Bold values indicate the best performance in the comparison

Besides, classification actually is a supervised task. For
the unsupervised algorithm, though the labeled data do
not participate into latent factor learning directly, a dis-
criminating classifier is learned from abundant labeled
data.

– On the Reuters dataset, CNMFa overmatches CNMFb,
and SGNMFa overmatches SGNMFb when label ratio is
more than 20 %. SULF2 also obtains better performance
than SULF3. All of the above phenomena attest that it is
very critical to leverage information from different views
properly.

– The performance comparison of SULF and SULF3 shows
the effectiveness of the mechanism to estimate the
weights of different view.

6.4 Clustering results

Two metrics, the accuracy and the normalized mutual infor-
mation are used to measure the clustering performance [22].

Accuracy (ACC): Given a document di , let li and ri be the
cluster label and the label provided by the document corpus,
respectively. The ACC is defined as follows:

ACC =
∑n

i=1 δ(ri ,map(li ))

n
, (29)

where n denotes the total number of documents in the test,
δ(x, y) is the delta function that equals one if x = y and

equals zero otherwise, and map(li ) is the mapping function
that maps each cluster label li to the equivalent label from
the document corpus. The best mapping can be found using
the Kuhn–Munkres algorithm.

Normalized Mutual Information (NMI): Let C denote
the set of clusters obtained from the ground truth and Ĉ
obtained from our algorithm. Their mutual information met-
ric MI(C, Ĉ) is defined as follows:

MI(C, Ĉ) =
∑

ci∈C,ĉ j∈Ĉ

p(ci , ĉ j ) log2
p(ci , ĉ j )

p(ci )p(ĉ j )
, (30)

where p(ci ) and p(ĉ j ) are the probabilities that a document
arbitrarily selected from the corpus belongs to the clusters
ci and ĉ j , respectively, and p(ci , ĉ j ) is the joint probability
that the arbitrarily selected document belongs to the clusters
ci as well as ĉ j at the same time. In our experiments, we use
the normalized mutual information NMI as follows:

NMI(C, Ĉ) = MI(C, Ĉ)

max(H(C), H(Ĉ))
, (31)

where H(C) and H(Ĉ) are the entropies of C and Ĉ , respec-
tively. It is easy to check that NMI(C, Ĉ) ranges from 0 to
1. NMI = 1 if the two sets of clusters are identical, and
NMI = 0 if the two sets are independent.

Table 4 reveals the clustering results on these two met-
rics with 20 % labeled data given for the semi-supervised
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Table 4 Clustering performance with 20 % labeled data available

Unsupervised Semi-supervised

NMFa NMFb PCSC CCA SULF1 CNMFa CNMFb SGNMFa SGNMFb SULF2 SULF3 SULF

ACC

NUS-WIDE 13.48 13.17 14.21 11.19 15.45 13.18 13.26 14.59 14.62 14.69 15.54 16.60

Corel5K 16.21 18.85 18.58 15.11 19.74 17.20 19.11 17.29 19.58 22.41 25.23 25.48

Retuers 39.73 42.80 44.76 37.05 44.08 38.75 40.70 44.96 43.87 55.87 56.44 56.25

NMI

NUS-WIDE 13.70 14.32 16.00 10.51 17.53 14.89 15.01 14.96 16.33 17.32 18.27 19.22

Corel5K 25.00 27.67 26.84 20.95 28.42 26.24 28.34 27.04 29.59 30.69 34.02 34.56

Retuers 21.06 22.88 32.12 16.28 21.90 19.17 19.24 26.95 24.50 37.64 37.07 39.17

Bold values indicate the best performance in the comparison

Fig. 2 Clustering performance of semi-supervised algorithms with different label proportion

algorithms. And Fig. 2 illustrates the performance of semi-
supervised algorithms with different label proportion. Some
interesting points can be observed:

– In the clustering task, SULF displays a greater advantage.
On Retuers dataset with 20 % labeled data available, SULF
even improves more than 10 % than other methods on both
ACC and NMI.

– The performance of SULF is better than that of SULF1.
And with the increase of label ratio, the performance of all
these semi-supervised methods is improved universally.
Both of these points demonstrate the value of partially
label information.

– Compared with SULF2,SULF3 and SULF improve the
performance obviously, which illustrates complementary
information across multiple views is helpful to boost the
performance.

– Similar to the performance of classification, the result
comparison between SULF and SULF3 again confirms the
effectiveness of the mechanism to estimate the weights of
different view.

– To those single-view methods, in most conditions, com-
bining features together is an effective way to improve the
result.

– The performance of CNMF degenerates too much on
Retuers dataset. It may be that the hard constraint of
CNMF is too strong for text data.

6.5 Parameter selection

SULF has three essential parameters: λ controls the smooth-
ness of �, β balances the multi-view objective and semi-
supervised objective and the γ controls the l2,1-norm regu-
larization term.
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Fig. 3 The performance of SULF versus the parameters β and γ

For convenience, we set λ to 1,000 empirically during
our experiments. Figure 3 illustrates how the performance of
SULF varies with the parameters β and γ , respectively. The
performance of SULF is very stable with respect to β when
the value ofβ is larger than 10,000. In our experiments, we set
it to 108. The parameter γ has greater influence in the classi-
fication task than clustering task, since it affects the learning
of linear classification W directly. In our experiments, we set
γ to 102.

7 Conclusion

In this paper, we propose a novel algorithm for unified factor
learning with partially labeled data, called Semi-supervised
Unified Latent Factor learning approach (SULF). SULF
assumes that multi-view data matrices share a common uni-
fied latent space. In the unified latent space, the predic-
tion loss on the partially labeled data is minimized. What
is more, to accommodate noisy or unreliable views, SULF
learns the weight of different views automatically. Thus,
the obtained parts-based representation can have more dis-
criminating power. An effective multiplicative-based itera-
tive algorithm is developed to solve the proposed optimiza-
tion problem. The experimental results on three real-world
datasets for both classification and clustering tasks have
demonstrated the effectiveness of our approach.
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