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Abstract Typical content-based image retrieval solutions

usually cannot achieve satisfactory performance due to the

semantic gap challenge. With the popularity of social

media applications, large amounts of social images asso-

ciated with user tagging information are available, which

can be leveraged to boost image retrieval. In this paper, we

propose a sparse semantic metric learning (SSML) algo-

rithm by discovering knowledge from these social media

resources, and apply the learned metric to search relevant

images for users. Different from the traditional metric

learning approaches that use similar or dissimilar con-

straints over a homogeneous visual space, the proposed

method exploits heterogeneous information from two

views of images and formulates the learning problem with

the following principles. The semantic structure in the text

space is expected to be preserved for the transformed

space. To prevent overfitting the noisy, incomplete, or

subjective tagging information of images, we expect that

the mapping space by the learned metric does not deviate

from the original visual space. In addition, the metric is

straightforward constrained to be row-wise sparse with the

‘2,1-norm to suppress certain noisy or redundant visual

feature dimensions. We present an iterative algorithm with

proved convergence to solve the optimization problem.

With the learned metric for image retrieval, we conduct

extensive experiments on a real-world dataset and validate

the effectiveness of our approach compared with other

related work.

Keywords Sparse metric � Semantic distance metric �
Social image � Image retrieval

1 Introduction

With the advance of digital cameras and high quality

mobile devices as well as the internet technologies, there

are increasingly large amounts of images available on the

web, which necessitates effective and efficient image

retrieval techniques. Among them, content-based image

retrieval (CBIR) has been extensively studied over past

decades.

In CBIR, images are usually represented with low-level

features (e.g., color, texture, and shape) and Euclidean

metric is typically adopted to compute similarities between

images. However, the retrieval performance of most CBIR

systems do not currently meet user expectations. The major

reason is that the only exploration of the visual features

cannot capture the perceived image similarity observed by

humans, that is, the so-called semantic gap between visual

features and semantic meanings [19]. Fortunately, lots of

image sharing websites, such as Flickr1, Picasa2, and

Zooomr3, have emerged and provide us with plentiful

community contributed resources, in particular, images and

associated user tags. Since these tags usually contain user

intentions and their fashion tastes in time, we believe that

the user tags can be leveraged for learning an appropriate

distance metric to compensate for the semantic gap in

CBIR. This is also our focus in this paper.
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Many algorithms of distance metric learning have been

proposed to reveal the intrinsic data structure by exploiting

various information contained in the training set. For

example, the annotated similar or dissimilar sample pairs in

the training set can be used as side-information to learn the

distance metric [26, 32, 34]. In the other formulation, the

distance can otherwise be learned from chunklets of similar

samples instead of the similar pairs, which is the main idea

of relevance component analysis (RCA) algorithm [1].

Furthermore, Schultz et al. [18] proposed to learn the dis-

tance function from the relative comparisons, which are

believed to be more easily obtained in many real-world

settings. The above mentioned methods have gained sig-

nificant success in many image retrieval applications.

However, most of them are aiming at learning the distance

functions defined in a homogeneous data space, i.e., the

visual feature space in CBIR. This makes it difficult to be

directly adopted in the scenario of our work, which

attempts to learn a distance metric by jointly exploring

visual features and user tags, actually over a heterogeneous

data structure. Recently, there are some work proposed to

address the heterogeneous data learning problem, such as

transfer learning [13, 15, 28] and multi-domain adaptation

[8, 21]. However, how to learn an appropriate metric given

such a heterogenous data set is rarely referred to. Specially,

the noisy, missing, and personalized tags for web images

should be taken our attention.

Based on the above considerations, we propose a novel

sparse semantic metric learning (SSML) algorithm by

exploring the heterogeneous data structure about visual

features and user tagging information of images, and apply it

for image retrieval. As shown in Fig. 1, the work flow

includes two parts: the offline process and the online precess.

The former is to learn the distance metric by exploring social

tagging images (this is also our focus in this paper), while the

later is to search relevant images to the given query with the

learned metric. To obtain a robust distance metric, a well-

defined optimization problem is formulated according to the

following principles. To reduce the semantic gap, the learned

metric is expected to preserve the semantic structure in the

textual space. In particular, the consistence between the

transformed visual space and the textual space is required in

our formulation. Considering that the community-contrib-

uted tagging data are often incomplete or irrelevant to ima-

ges, we also require the structure in the original visual space

to be preserved, which is guaranteed by a regularizer only

based on the visual information. On the other hand, a mixed

(2,1)-norm as a sparse constraint of the learned metric is

attached to suppress redundant feature dimensions in the

original input space. By combining the above three princi-

ples, a robust distance metric can be learned. Furthermore,

we propose a iterative algorithm to solve the optimization

problem effectively and efficiently. By applying the learned

metric to the CBIR task, we perform extensive experiments

on a real-world dataset (i.e., the NUS-WIDE-Lite data set

[2]) and verify the superior performance of our proposed

approach over other related work.

The main contributions of this paper are summarized as

follows:

• We propose to learn a robust sparse distance metric by

jointly exploring visual features and the user tags of

images, and the learned metric can preserve the semantic

structure and the visual structure simultaneously.

• The sparse constraint on the distance metric is helpful

to learn a low-dimension representation of sample by
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eliminating those redundant or noisy feature

dimensions.

• An iterative algorithm with proved convergence is

provided to solve the optimization formulation effec-

tively and efficiently.

• Extensive experiments are conducted on the real-world

data and the comparisons with other related work

demonstrate the effectiveness of the learned metric for

CBIR.

The rest of this paper is organized as follows. Section 2

includes the review of related work. Section 3 formulates

the SSML problem for image retrieval, and presents the

optimizing algorithm following the convergence proof and

the computational complexity analysis for the problem.

Experimental evaluations on a well-know benchmark are

given in Sect. 4. Section 5 concludes this paper.

2 Related work

Distance metric learning algorithms have attracted much

research interest in the recent studies, and are extensively

adopted to solve various practical problems, such as data

clustering [26, 28], data classification [7, 32, 33], cartoon

synthesis [30, 31, 34], and image retrieval [1, 16, 24]. From

the perspective of specific learning paradigms, we can

classify the existing work into three categories: unsuper-

vised metric learning, supervised metric learning and semi-

supervised metric learning. We will briefly review some

representative work in the three categories.

Unsupervised metric learning methods in general are

developed to find the intrinsic data structure with a lower-

dimensional embedding. The well-known linear-based

methods include classical principal component analysis

(PCA) [6] and multidimensional scaling (MDS) [3]. Some

manifold based approaches adopt non-linear techniques,

such as locally linear embedding (LLE) [17] and Isomap

[20].

Another category is supervised metric learning tech-

niques for classification. These methods usually learn

metrics from training data associated with explicit class

labels. The representative techniques include: neighbor-

hood component analysis (NCA) [7], metric learning for

large margin nearest neighbor classification (LMNN) [23],

and local distance metric learning [27].

Semi-supervised learning approaches attempt to learn

distance metrics by exploring available contextual resource

as side information. A pioneer work was proposed by Xing

et al. [26], to learn the metric by leveraging the similar or

dissimilar pairwise constraints. Following their work, there

are a group of emerging methods in this direction, such as

relevance component analysis (RCA) [1] and discriminant

component analysis (DCA) [11]. These methods attempt to

find an optimal metric defined in the visual space, and only

visual features are explored in the learning process. This

makes the above methods cannot be directly applied to the

task of image retrieval due to the heterogeneous data

structure of images and the semantic gap challenges. To

address these issues, some efforts turn to design algorithms

to learn a semantic distance metric by exploring user

contributed resource for effective image retrieval [16, 24],

which have similar motivation to our work. Wu et al. [24]

proposed a probabilistic RCA (pRCA) algorithm to find an

optimal metric from uncertain side information. The pRCA

employed the latent chunklets instead of chunklets in typ-

ical RCA [1] to attack the noisy problem of user tags. The

images in the same latent chunklet should share a common

semantic topic, which is estimated by a probabilistic gen-

erative model. Multi-label distance metric learning [16] is

proposed to learn a metric from social media data. It

transforms two types of samples (user tags and visual

features) by two linear transformation matrices into two

latent spaces, which are assumed to have some common

semantic structures. Yu et al. [34] proposed a semi-super-

vised multiview distance learning approach to discover

complementary characteristics of different feature sets.

Different from the above methods, we learn a sparse

constrained semantic distance metric by a unified formu-

lation to resist the adverse impact from the uncertainty of

user tags, and suppress some noisy or redundant feature

dimensions for image representation, as well as abridge the

semantic gap to some extent. To our knowledge, this is the

first attempt to jointly formulate the above principles to

learn a robust distance metric for image retrieval.

3 Sparse semantic metric learning

3.1 Problem definition

Throughout this paper, we use bold uppercase characters to

denote matrices, bold lowercase characters to denote vec-

tors. For clarity, we list the notations and explanations in

Table 1.

Assume that we are given a set of n data points X ¼
½x1; x2; . . .; xn�: For any two data points xi and xj, let

dM(xi, xj) denotes the distance between them w.r.t the

distance metric M 2 Rd�d; and the distance is defined as:

dMðxi; xjÞ ¼ kxi � xjk2
M ¼ ðxi � xjÞTMðxi � xjÞ ð1Þ

Here M (called as Mahalabobis metric) is a symmetric

matrix. To satisfy the properties of metric, i.e., non-

negativity and triangle inequality, M must be positive

semi-definite, that is M � 0: Note that when M is equal to
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the identity matrix I, the distance in Eq. 1 reduces to the

Euclidean distance. In practice, each valid metric M can be

decomposed as M = UUT, where U ¼ ½u1; u2; . . .; ur� 2
Rd�r and r B d. Hence, the pairwise distance can also be

expressed as:

dUðxi; xjÞ ¼ kUTðxi � xjÞk2 ð2Þ

In our task, we attempt to search relevant images to a given

query image by the learned distance metric. For the query

image, only visual feature is known, while our indexed

images collected from the web have user tagging

information as well as their visual features. Our goal is

to learn an optimal distance metric by jointly exploring the

visual features (as the collection X) and the tagging

information (as the collection Y ¼ ½y1; y2; . . .; yn�) of

images. Here yi 2 Rk is the tag vector for the i-th image,

which is binary or calculated by TF-IDF model. Then the

learning problem can be formulated into the following

optimization framework:

M ¼ arg min
M

FðM;X;YÞ þ RðMÞ s.t. M � 0 ð3Þ

where Fð�Þ is the objective function about the distance

metric M defined over the given data collection X and

Y, and Rð�Þ is the regularization term for M. The key to the

distance learning problem is to formulate the two functions.

In the following subsections, we will discuss some prin-

ciples to define the optimization framework, and then

provide an efficient algorithm to solve the optimization

problem.

3.2 Problem formulation

We now elaborate the formulation of the proposed metric

learning method. The main idea is that the visual similarity

computed by the learned metric is expected to be consistent

with the semantic similarity in the textual domain, and

should not deviate from the original similarity in the

Euclidean space to prevent from overfitting the noisy tag-

ging information in the real-world data. We import this

idea to define the objective function of F(M,X,Y). For

R(M), our formulation is motivated to obtain a compact

feature representation by a sparse constraint on M. The

detailed explanation is given as follows.

First, to eliminate the semantic gap, we encourage the

consistency preservation of the pairwise similarity in the

mapping space and the textual space. For this, we propose

the following cost function as a measure of disagreement

between the heterogeneous spaces.

f ðMÞ ¼ 1

2

Xn

i;j¼1

kUTxi � UTxjk2
2Wij

¼
Xr

k¼1

uT
k XðD�WÞXTuk ¼

Xr

k¼1

uT
k XLXTuk

¼ TrðUTXLXTUÞ ¼ TrðXLXTUUTÞ ¼ TrðXLXTMÞ
ð4Þ

Here W is the tagging similarity matrix, whose element is

defined as Wij ¼
yT

i yj

kyik2kyjk2
: D is a diagonal matrix whose

diagonal elements are calculated by Dii =
P

jWij. And

L = D - W is known as the Laplacian matrix. By mini-

mizing the above function, we can get a semantically

consistent distance metric.

In practice, tags of social images are incomplete, noisy,

and subjective, because they are created by users anywhere

and anytime. The minimum solution of the learned metric

M with the objective function in Eq. 4, possibly causes the

overfitting of the noisy semantic similarities. To avoid the

overfitting, we expect that the learned metric enables to

preserve the original visual similarity. Specifically, we aim

to regularize M as close as possible to the identity matrix I,

and the Bregman divergence [4] is adopted to measure the

closeness between M and I as

DðMjjIÞ ¼ gðMÞ � gðIÞ � hrgðIÞ;M� Ii; ð5Þ

where gð�Þ is a strict convex and continuously

differentiable function. In this work, we use the log det

function to define gð�Þ; i.e., g(M) = -log det(M).

Consequently, we have

DðMjjIÞ ¼ TrðMÞ � log detðMÞ � n: ð6Þ

Combining Eqs. 4 and 6, we obtain:

FðMÞ ¼ f ðMÞ þ aDðMjjIÞ
¼ TrðXLXTMÞ þ a½TrðMÞ � log detðMÞ�: ð7Þ

where a is a trade-off positive parameter and n as a con-

stant is neglected. Obviously, the above function is convex,

Table 1 Main notations used in this paper

Notation Explanation

d The dimension of visual feature

n The number of data points

k The size of tagging vocabulary

xi The visual feature vector of the i-th image and xi 2 Rd

X The visual feature matrix of a dataset and

X ¼ ½x1; x2; . . .; xn�
yi The tagging vector for the i-th image and yi 2 Rk

Y The tagging matrix and Y ¼ ½y1; y2; . . .; yn�
M The distance metric to be learned and M 2 Rd�d

ml The l-th row vector of M

W The tagging similarity matrix W 2 Rk�k

k � kF The Frobenius norm of a matrix

Trð�Þ The trace of a square matrix
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since the first term and the Bregman divergence is convex,

respectively.

For the regularization term R(M), we constrain it to be

row-wise sparse and formulate the sparsity with the mixed

‘2,1-norm of M as:

RðMÞ ¼ kMk2;1 ¼
Xd

l¼1

kmlk2 ð8Þ

where ml is the row vector of M. The mixed norm is

obtained by first computing the 2-norm across the rows

of M and then the 1-norm of the vector of

vðMÞ ¼ ðkm1k2; km2k2; . . .; kmdk2Þ. We can easily

observe that the sparsity imposed by 1-norm require some

elements of v(M) to be zero, i.e., ml = 0, equivalent to l-th

column vector of UT to be zero, i.e., (UT)l = 0. Hence, the

row-wise sparsity by the mixed (2,1)-norm can remove

some noisy or redundant feature dimensions of the original

space, which is also demonstrated in [12].

Substituting F(M) and R(M) in Eq. 3 by the above

definitions, the optimizing problem is given as:

min
M�0

Tr½XLXTM� þ aðTr½M� � log detðMÞÞ þ b
2
kMk2;1

ð9Þ

where a[ 0 and b[ 0 are two trade-off parameters.

3.3 Optimization

We can see that our problem formulation in Eq. 9 involves

the ‘2,1-norm which is non-smooth and cannot be solved in

a closed form. Inspired by the work [9, 14], we develop an

iterative algorithm to solve it. By denoting D is a diagonal

matrix with the diagonal element Dll ¼ 1
2kmlk2

4, the above

formulation is equivalent to

min
M�0
LðMÞ ¼ min

M�0
Tr½XLXTM� þ aðTr½M� � log detðMÞÞ

þ b
2

Tr½MTDM�

ð10Þ

Using the following two formulae

o log detðMÞ
oM

¼M�1 ð11Þ

oTr½M�
oM

¼ I; ð12Þ

we obtain the derivative of LðMÞ to M as follows.

oLðMÞ
oM

¼ XLXT þ aðI�M�1Þ þ bDM ð13Þ

By setting the above derivative to zero, we have

XLXT þ aðI�M�1Þ þ bDM ¼ 0

, aM�1 ¼ XLXT þ aIþ bDM

,M ¼ aðXLXT þ aIþ bDMÞ�1 ð14Þ

To compute the matrix inverse, we utilize the Taylor

approximation for the matrix inverse problem (I ? A)-1:

ðIþ AÞ�1 ¼ Iþ
Xþ1

i¼1

ð�1ÞiAi: ð15Þ

For simplicity, we adopt the first-order Taylor expansion

and, thus, we have

M ¼ I� 1

a
XLXT � b

a
DM

,M ¼ ðaIþ bDÞ�1ðaI� XLXTÞ ð16Þ

We can see that the solution of M requires the input of

D which is related to M. Therefore, it is not straightforward

to obtain M. To handle this problem, we propose an iter-

ative approach summarized in Algorithm 1. For efficiency,

we do not force the positive semi-definite (PSD) constraint

at each iterative step, and instead we perform a PSD pro-

jection [10] for the final matrix M at the end of the entire

algorithm.

The proposed iterative procedure in Algorithm 1 can be

verified to converge to the optimal M by the following

Theorem 1.

Theorem 1 The alternative updating rules in Algorithm 1

monotonically decrease the objective function value of (10)

in each iteration.

4 In practice, kmlk2 could be close to zero but not zero. Theoret-

ically, it could be zeros. For this case, we can regularize Dll ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kmlk2

2þ�
p ; where � is very small constant. When �! 0; we can see

that 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kmlk2

2þ�
p approximates 1

2kmlk2
:
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As the above analysis, we can see that

Msþ1 ¼ arg min
M

Tr½XLXTM� þ aðM� log detðMÞÞ

þ b
2

Tr½MTDsM�: ð17Þ

That is to say, for matrixes Ms?1 and Ms,

Tr½XLXTMsþ1� þ aðMsþ1 � log detðMsþ1ÞÞ

þ b
2

Tr½MT
sþ1DsMsþ1� �Tr½XLXTMs�

þ aðMs � log detðMsÞÞ þ
b
2

Tr½MT
s DsMs�

ð18Þ

For ease of representation, let us define

hðMÞ ¼ Tr½XLXTM� þ aðM� log detðMÞÞ. Therefore,

we have

hðMsþ1Þ þ
b
2

Tr½MT
sþ1DsMsþ1� � hðMsÞ þ

b
2

Tr½MT
s DsMs�:

ð19Þ

According to the definition of D, the above equation is

equivalent to

hðMsþ1Þþ
b
2

Xd

l¼1

kml
sþ1k

2
2

2kml
sk2

�hðMsÞþ
b
2

Xd

l¼1

kml
sk

2
2

2kmi
sk2

,hðMsþ1Þþ
b
2
kMsþ1k2;1�

b
2
kMsþ1k2;1�

Xd

l¼1

kml
sþ1k

2
2

2kml
sk2

 !

�hðMsÞþ
b
2
kMsk2;1�

b
2
kMsk2;1�

Xd

l¼1

kml
sk

2
2

2kml
sk2

 !

ð20Þ

According to the Lemma in [14, 29], we have
ffiffiffi
a
p
�

a

2
ffiffi
b
p �

ffiffiffi
b
p
� b

2
ffiffi
b
p for any two non-zero constants a and

b. Thus,

Xd

l¼1

kml
sþ1k2 �

kml
sþ1k

2
2

2kml
sk2

�
Xd

l¼1

kml
sk2 �

kml
sk

2
2

2kml
sk2

: ð21Þ

Furthermore, we have

hðMsþ1Þ þ
b
2
kMsþ1k2;1� f ðMsÞ þ

b
2
kMsk2;1 ð22Þ

which indicates that the objective function monotonically

decreases using the updating rules in Algorithm 1, and

Theorem 1 is proved.

3.4 Computational complexity analysis

Now, we briefly analyze the computational complexity. For

efficiency, we compute L and aI - XLXT before the

iterative procedure. To construct the graph, it needs O(dn2).

The cost to calculate aI - XLXT is O(dn2 ? nd2).

The updating rule in Algorithm 1 involves inverting a matrix.

In our problem, aI ? bD is a diagonal matrix. We can

compute the inverse efficiently. To save the computational

cost, we combine the procedure of the update of D and the

matrix inverse, which needs O(d2) in complexity. Given

(aI ? bD) and aI - XLXT, it also costs O(d2) to obtain

M. Therefore, for each iterative step, the time cost is O(d2).

Suppose the update stops after T iterations, the overall cost for

our optimization algorithm is O(dn2 ? nd2 ? Td2).

4 Experiments

4.1 Data set

We conduct experiments on the NUS-WIDE-Lite data set

[2], which is a challenging collection of real-word web

images from Flickr. These social images contain rich

information, including user tags and other metadata. This

data set contains 55,615 images with 5,018 unique tags.

The ground-truth annotations over 81 concepts have been

provided. For visual feature representation, we extract four

types of global features: 64-D color histogram (LAB),

144-D color auto-correlation (HSV), 73-D edge direction

histogram and 128-D wavelet texture. For local feature, we

use grid-based features: 225-D block-wise color moments

(LAB). We sequentially combine these five groups into

634-D features. For the text domain, the textual feature

vectors are represented with binary vectors.

For performance evaluation, we split the set into two parts:

• The training set is used to learn the distance metric. We

randomly sample 5,000 images with their associated

user tags from the whole dataset.

• The testing set including 50,615 images is adopted to

test the image retrieval performance with different

distance metrics. In particular, we randomly select 1,000

images as query images and use their associated user

tags to evaluate the relevance to the returned images.

4.2 Compared algorithms

We compare our method with one baseline and some

metric learning algorithms to demonstrate the superior

performance of the proposed method. The selected meth-

ods in comparison are from different categories in terms of

the label information availability, i.e., unsupervised learn-

ing, supervised learning and semi-supervised learning.

They are listed as follows.

• Baseline: It directly uses the Euclidean distance

between the visual features of the images. No tagging

information or other supervision is used.
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• NCA (neighborhood components analysis) [7]: It learns

a Mahalanobis distance metric by maximizing a

stochastic variant of the leave-one-out KNN score on

the training data.

• RCA (relevant component analysis) [1]: It learns a

distance metric from chunklets each of which clusters

a set of similar images together. As in [16], we adopt a

co-clustering algorithm [5] to provide the chunklets.

• MLML (multi-label metric learning) [16]: It learns a

distance metric by leverage multi-label information of

each image and assumes that the visual similar images

ought to have a smaller semantic distance.

• SSML: Our proposed sparse semantic metric learning

algorithm.

The two parameters a and b are important, which trade

off the importance of visual information and tag informa-

tion. We tune them as a geometric sequence from 10-6 to

106 with common ratio 102 by cross-validation. For

MLML, we also tune its trade-off parameters in the same

ranges as ours by cross-validation. The parameter sensi-

tivity study and convergence study for SSML will be

presented in the following subsections.

4.3 Evaluation measures

We apply the learned metric to image retrieval and adopt

a normalized discounted cumulative gain at top

k (NDCG@k) [22] to evaluate the retrieval performance. It

measures the different levels of relevance and prefers the

retrieved ranking results that follow the actual relevance

order. Consequently, this evaluation criterion can better

reflect the user requirement of ranking the most relevant

images at top in practice. The definition of NDCG@k is

described as

NDCG@k ¼ DCG@k

IDCG@k
; ð23Þ

DCG@k ¼
Xk

i¼1

2rðiÞ � 1

logð1þ iÞ ; ð24Þ

where DCG is to measure the cumulative gain of the

returned images and IDCG@k is the ideal discounted

cumulative gain which can normalize NDCG@k to be

[0,1]. For each query image, we calculate its NDCG@k and

then average all the NDCG@k over the whole testing set as

the performance measure of the learned distance metrics.

The relevance score r(i) is to measure the relevance

between the returned image at position i and the query, and

it is calculated with the cosine similarity:

rðiÞ ¼ vT
i vq

kvik2kvqk2

ð25Þ

Here, vi and vq are the tag vectors of the i-th image in the

returned list and the query image, respectively.

To evaluate the entire ranking list, we also use average

precision (AP), a combination of precision and recall,

based on the groundtruths over 81 concepts. If the returned

image has a common concept with the query image, we

treat it relevant. Mean average precision (MAP) is reported

by averaging the APs on all testing images.

4.4 Performance comparison

Next, we compare the performance among different

methods. The compared experimental results are shown in

Tables 2 and 3 in terms of NDCG@k and MAP, respec-

tively. From the results, we can draw the following

observations. First, all the distance metric learning

approaches achieve better results than the baseline, which

does not utilize any supervision information, available

from user tagging information. This demonstrates that the

distance metric learning with certain supervision is bene-

ficial and important for image retrieval. Second, the per-

formance of MLML and SSML is evidently better than the

other three methods. The improvements can be stemmed

from their effective exploration of the heterogeneous data

structure about visual features and user tags. And incor-

poration of user tags is helpful to reduce the semantic gap.

Third, compared with MLML, our method gains better

results. This reveals that the similarity consistency pres-

ervation across domains and the additional ‘2,1-norm reg-

ularization are more suitable to learn a robust distance

metric. Finally, the proposed metric learning algorithm

achieves the best performance among other metric learning

methods. This demonstrates the advantages of our method

to learn a sparse semantic metric by leveraging the visual

and textual information. With the proposed formulation,

Table 2 Performance comparison on NDCG@k

NDCG@k Baseline RCA NCA MLML SSML

5 0.4307 0.4310 0.4356 0.4517 0.4555

10 0.4467 0.4472 0.4512 0.4669 0.4901

50 0.4691 0.4703 0.4755 0.4819 0.4993

100 0.4826 0.4829 0.4863 0.5211 0.5500

500 0.5352 0.5412 0.5354 0.5468 0.5788

1000 0.5633 0.5641 0.5711 0.5885 0.6072

Table 3 Performance comparison on MAP

Baseline RCA NCA MLML SSML

MAP 0.6758 0.6760 0.6788 0.7079 0.7254
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our approach can resist the negative effects from the

uncertainty of user tags, and suppress some noisy or

redundant feature dimensions for image representation, as

well as abridge the semantic gap to some extent.

4.5 Parameter sensitiveness

The proposed metric learning method requires two

parameters a and b to be set in advance. In this section, we

focus on discussing the sensitiveness of these parameters a
and b in terms of MAP. The results are presented in Fig. 2.

From this figure, we can see that the values of a and b
affect the retrieval performance. In particular, the proposed

method achieves the best result when a = 1 and b = 104.

With b fixed, MAP first increases and then decreases when

a changes from 10-6 to 106. This is reasonable because if a
is too small, the learned metric overfits the noisy tags,

while the learned metric is close to the identify matrix I if a
is too large. These demonstrate that the introduced term to

prevent overfitting the noisy tags is useful. Similar phe-

nomena are observed when we tune the parameter b with a
fixed. Small b and large b both degrade the retrieval per-

formance. They show that the learned metric with row-wise

sparsity can reduce the noisy visual features and the

informative features can be removed when b is large

enough. The above observations indicate that it is neces-

sary to tune these two parameters to find suitable values.

4.6 Convergence study

To solve the proposed formulation, we develop an iterative

update algorithm. In the previous section, we have proven

the convergence of our update rules and analyzed the

computational complexity. Now we experimentally study

the speed of convergence of the developed optimization

algorithm. The convergence rate is shown in Fig. 3. From

the figure, we can see that our algorithm converges within

10 iterations, demonstrating that the proposed optimization

algorithm is efficient and converges quickly.

5 Conclusions

In this work, we study the metric learning problem to boost

the performance of CBIR, and propose to learn a sparse

constrained semantic distance metric by exploiting

knowledge from community contributed images associated

with tags. For the problem formulation, three principles are

jointly employed, which are to preserve the similarity

consistency between the visual space and the textual space,

to prevent the overfitting of those noisy, incomplete, or

personalized user tags, and to suppress certain noisy or
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redundancy feature dimensions in the original space. The

optimization problem is solved by an iterative algorithm

with proved convergence. Finally, extensive experiments

on a well-known benchmark demonstrate the promising

performance of our work. Our method can also be extended

to the framework of search-based image annotation or tag

refinement as [25], which will be discussed in our future

work.
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