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a b s t r a c t

With the explosive growth of surveillance video data, video synopsis technology is presented for fast
browsing a day0s worth of video in several minutes. However, for most existing solutions, motion
structure in original videos may be destroyed even considering the temporal consistency of related
objects. To maintain the important context cues, in this paper, we propose an online motion structure
preserved synopsis approach, which can preserve behavior interactions between different objects in the
original video while condensing as much content as possible. By measuring sociological proximity of
moving objects, we introduce motion structure as a refined term directly added to the problem of energy
minimization. A hierarchical fashion is employed to efficiently search an optimal solution for the problem
of video synopsis, in which both the spatial collision and the temporal consistency are considered.
Experimental results on extensive videos demonstrate the promise of the proposed approach.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The world witnesses a large amount of video data recorded for
security purposes every day, but only a very small percent of them
is truly investigated carefully. Browsing and indexing activities
in these abundant videos are a time consuming and boring task
for viewers. Most methods developed in the literature broadly
fall into two categories: activity recognition [1] for specific events
of interest predefined by users and video summarization [2] for a
sketch of all activities in original videos.

As a prosperous area in video summarization, video synopsis [3]
was presented, aiming at condensing content in both the spatial and
the temporal dimensions, which allows the viewers to fast browse a
day0s worth of content in several minutes. Afterwards, various
attempts have been made to generate visual pleasing synopsis
videos in recent years. However, there still exist some limitations
in current research, precluding the effectiveness and practicability of
this technology.

Firstly, in the traditional offline synopsis process, all the moving
object foregrounds and instantaneous backgrounds must be com-
puted and stored in a large memory before optimization, which is a
severe demand for the hardware. Meanwhile, since video synopsis is
formulated as a problem of energy minimization, the large solution
space often leads to a long time for optimization to search a good
solution. Besides, the length of final synopsis video usually needs to
be manually set by users as a matter of experience [4]. To address
this problem, Feng et al. [5] proposed an online synopsis, in which
object foreground sequences were filled into a spatio-temporal
video volume one by one like playing a Tetris game. However, for

the sake of a high condensation rate, the time consistency between
different objects was not taken into account in this method.

The last but not the least, even though the temporal consistency is
considered, moving objects in original sequences could be shifted to
inappropriate locations where the behavioral interaction information
may be sacrificed for the sake of avoiding severe spatial collisions. So
it is difficult to explore important context cues directly from the
synopsis video. To explain this point, we give a simple toy illustration
in Fig. 1. Regarding all the moving objects existing in the original
video, we divide the whole video into some segments according to
their occupied periods, as shown in the top row of Fig. 1. In the spatio-
temporal volume A, objects 2 and 3 cross each other in their moving
process, indicating that a behavior interaction may happen between
them. The same situation also exists in volume D for objects 8 and 9.
In volume B, objects 4 and 5 stand for two persons walking together.
To maintain original behavior interactions, objects occluded with each
other or sharing a proximity motion structure are preferred to be
shifted together in the synopsis video.

To this end, we propose an online motion structure preserved
synopsis approach, which can maintain original behavior interac-
tions while condensing as much content as possible. Inspired by
the study of sociology, we measure motion structure between
different moving objects with their motion proximity and inter-
section. Embedding this structure information in the final energy
minimization problem, a hierarchical optimization method is
utilized to efficiently search the optimal shift times for objects
one by one in an online fashion.

2. Related work

There has been an increasing interest in video presentation and
summarization for a long time, which is critical for video storage,
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browsing and indexing. In this section, we will give a brief review
of state-of-the-art techniques from two aspects: static image
based summarization and dynamic content based video abstract.

For the first type of video summarization, key frames are usually
selected to form a new representative image. In these methods, key
frames are usually selected based on maximum frame discrepancy
strategies. Visual features are extracted as the principle to compare
the relational degree between frames [6–8]. Beyond a whole frame,
some researchers generate new images using regions of interest
(ROI). For example, video mosaic [9] is a synthetic representation by
stitching successive video frames, covering more comprehensive
information than a single key-frame. Another typical work is video
collage [10] in which a video sequence was compacted to get a single
image by seamlessly arranging ROIs on a given canvas. Storyboards
[11] and narratives [12] represent the course of events by a static
image with an explicit temporal cue.

The earlier work about dynamic video based summarization can
be traced to video fast-forward [13] and video skimming [14], where
significant content was extracted to generate a compacted video
segment. Following along this route, various attempts have been
made in the past few years. For example, in the space–time video
montage method [15], spatio-temporal informative portions were
extracted from a long video sequence and fused into a new short
video volume. In dynamic video narrative [16], all duplications of a
specific object are seamlessly stitched into the background video
according to its time axis. In terms of a high condense rate, video
synopsis [4,3] has made a big success and attracted the attention of
many researchers. Feng et al. [5] proposed an online method, in
which tubes were filled in a spatio-temporal volume one by one like
playing a Tetris game. However, in their method motion structure
was not considered, as well as the time consistency of tubes.

With the development of multimedia techniques, information
from different media was employed to enhance video summariza-
tion in recent researches, both based on static image and dynamic
video [17,18]. For example, Huang et al. [19] generated semanti-
cally meaningful montage by integrating text information from
different media. Li et al. [20] utilized textual information from
websites to enhance video summarization under a transferable
structured learning framework.

In this paper, we focus on surveillance videos, in the context of
which behavior interactions are important cues for effective content
understanding. Therefore, we propose a novel motion structure
preserved synopsis approach, where behavior interactions in the

original video are treated as a refined factor for energy cost, and both
the spatial collision and the temporal concordance are considered.

3. Motion structure

As the basic processing unit in video synopsis, a tube is defined
as the spatio-temporal sequence of a moving object. For a tube Ti,
we use a set of tuples fsi; vi; tig to parameterize the trajectory,
where sti denotes the spatial position vector of Ti, and vti is the
velocity vector at frame t. While representing as much content as
possible within a minimal length, an ideal synopsis video should
reflect behavior interactions between different tubes in the origi-
nal video as well. We measure motion structure from two aspects:
motion proximity and intersection.

Proximity measurement: In our method, tubes with proximity
movement are preferred to be shifted together to a common
segment video. We assume that Γ is the temporal overlap of
two tubes Ti and Tj. Informed by sociological models of collective
behavior [21], an aggregated pairwise distance combining spatial
proximity and velocity cues over time is defined to measure the
motion proximity between two tubes

ωij ¼
∑tωt

ij

ρijjΓj
; tAΓ

ωt
ij ¼ αJsti �stj Jþð1�αÞJvti �vtj J

ρij ¼∑
t
δtði; jÞ ð1Þ

where δtði; jÞ is set to 1 if Jsti �stj Joτ and Jvti �vtj Joτ and
0 otherwise, α is a weighting parameter. If there is no temporal
overlap between Ti and Tj, we simply set ωij ¼ þ1.

Intersection measurement: As another aspect manifestation of
motion structure, spatial overlap between tubes also indicates the
interaction of objects in original videos. Inspired by but different
from the sticky tracking method described in [5], we measure the
intersection of tubes using an accumulative Euler distance as
follows:

Iði; jÞ ¼
1; ∑

t
Itði; jÞ4k2; tAΓ

0 otherwise

(

Itði; jÞ ¼
0; dtði; jÞ4k1
k1�dtði; jÞ otherwise

(
ð2Þ
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Fig. 1. A schematic illustration for structure preserved synopsis. The top row represents some segments from the original video. The bottom row shows the results by the
traditional synopsis and structure preserved approach. In the spatio-temporal volume A, objects 2 and 3 cross each other in their moving process, indicating that a behavior
interaction may happen between them. The same situation also exists in volume D for objects 8 and 9. In volume B, objects 4 and 5 stand for two persons walking together.
By considering this motion structure information, our approach can maintain these behavior interactions in the synopsis video.
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where dtði; jÞ ¼ Jsti �stj J measures the distance of tubes Ti and Tj at
time t, and the parameters k1 and k2 are two thresholds set by
users (10 and 100 in our experiments). Intuitively, tubes with
serious occlusions in a long enough time tend to be with a high
Itði; jÞ, indicating that interaction may exist in the original video.

Motion structure measurement: Now, given two tubes Ti and Tj, we
can measure their motion structure by integrating motion proximity
and motion intersection. A sigmoid function is employed to depict
the intensity of belonging to a group (later we call it a tubelet),
where a and b are two parameters controlling its shape and central
location, respectively (1 and 0 in our experiments):

Sði; jÞ ¼ 1
1þe�aðωij �bÞ � ð1� Iði; jÞÞ ð3Þ

Obviously, two tubes with a high interaction tend to bring a low S
(even 0), which will guarantee these tubes maintaining their relative
interactions in the new synopsis video.

4. Online energy minimization

As a universal strategy of synopsis, in order to achieve a visual
pleasing synopsis video, criteria are proposed and formulated as a
series of energies. After that, the task becomes solving a problem
of energy minimization. Therefore, the definition of energy is
critical for the final performance of results.

Let Q denote the set of tubes that need to be processed in the
original video. The essence of the synopsis process is to optimally
rearrange tubes in Q to fill a new compact and short video. For this
purpose, as a general strategy, criteria are proposed and formu-
lated as a series of energy terms. Then the task of video synopsis
becomes a problem of energy minimization as below:

EðℓÞ ¼ ∑
iAQ

EðℓiÞ

EðℓiÞ ¼ EaðℓiÞþ ∑
ja i;jAQ

Epðℓi;ℓjÞ ð4Þ

where ℓ¼ fℓigjQ j
i ¼ 1 denotes the set of play start times in the final

synopsis video for Q. The first term measures the cost of adding tube
Ti into a synopsis video at time ℓi while the pairwise term penalizes
the spatio-temporal collision between each of the two tubes.

Traditional offline strategy minimizes Eq. (4) once at a time
after obtaining all tubes in the original video, but often leads to
two problems. Firstly, all foregrounds of moving objects and
backgrounds must be stored in a huge memory before optimiza-
tion. Besides, searching in a large solution space takes a long time
for optimization.

To bypass these problems, we follow an online stepwise tactic
similar to [5], in which tubes are filled in a spatio-temporal volume
one by one. Especially, for a new incoming tube Ti its optimal label
time can be solved with a greedy algorithm

ℓn

i ¼ argmin
ℓi

EðℓiÞ

s:t: EðℓiÞ ¼ EaðℓiÞþ ∑
jAQ 0

EpðℓijℓjÞ ð5Þ

where Q 0 denotes the set of tubes already processed, a subset of
the whole tube set Q. In our approach, we simply regard EpðℓijℓjÞ
¼ Epðℓi;ℓjÞ. In the following, we will present the definition for
each term in Eq. (5).

Activity cost: Video synopsis favors a maximum activity pre-
sentation for the original video. Therefore, all moving objects in
the original video should be shifted to the final synopsis video. In
other words, we should avoid the leave out case for any tube.
According to this criterion, we define an activity cost for each tube

as follows:

EaðℓiÞ ¼ ∑
t =2τp

AreatðiÞn ∑
ts A τs

Areats ðiÞ ð6Þ

where Areat(i) stands for the object area of tube Ti at time t,
τp denotes the duration the result synopsis video lasts for, and τs is
the tube life in the original video.

Spatial collision cost: This term is utilized to measure the degree
of spatial overlapping between two tubes. A visual pleasing synopsis
video should avoid serious occlusions, which is contradictory to the
requirement of high condense rate. Assuming two tubes Ti and Tj
with temporal locations ℓi and ℓj, respectively, a spatial collision cost
is defined to penalize the possible of spatial occlusions:

Esðℓi;ℓjÞ ¼ ∑
tAΓ

Ot
ij

minfAreatðiÞ;AreatðjÞg
ð7Þ

where Γ denotes the common period of Ti and Tj, and Ot
ij stands for

the spatial occlusion area at time t. Different from [3], spatial
collision cost here is defined in the form of occlusion rate, instead
of the absolute object size. It is helpful to guarantee the fair presence
right for tubes with small sizes.

Temporal consistency cost: This term reflects the temporal
relations between tubes in the original video. It is important for
the cases with causality intersection. The temporal consistency
cost creates a preference for maintaining the temporal relations
between objects. Let tis and tj

s denote the play start times of tubes
Ti and Tj in the original video. The temporal consistency cost
penalizes cases where original relations are violated:

Etðℓi;ℓjÞ ¼
0; ðℓi�ℓjÞ � ðtsi �tsj Þ40

e�dði;jÞ otherwise;

(
ð8Þ

where dði; jÞ measures the relative spatio-temporal distance [3]
between Ti and Tj.

Embedding motion structure: The pairwise terms Es and Et
reflect the interactions of tubes to a certain extent. Furthermore,
integrating the motion structure information, the pairwise energy
term is defined as

Epðℓi;ℓjÞ ¼ ðβEsðℓi;ℓjÞþð1�βÞEtðℓi;ℓjÞÞ � Sði; jÞ ð9Þ
where β is a weighting parameter balancing the effects of two terms.
We can see that Sði; jÞ plays a role of an attenuation factor, by which
tubes with a similar motion structure are preferred to share a less cost.

5. Synopsis procedure

5.1. Hierarchical optimization

Without loss of generality, we assume that all N tubes are
processed at one time. Given an incoming tube set Q ¼ fTigNi ¼ 1, we
would like to generate a synopsis video that displays all these
tubes within a minimal length and at a least cost while preserving
original motion structure by optimizing Eq. (5).

To optimize Eq. (5) with our structure preserved energy terms,
various existing methods can be employed such as simulated
annealing [22], graph cuts [23] and roulette wheel selection [5].
Following the route of stepwise optimization, we present a
hierarchical optimization to accelerate this procedure by introdu-
cing the concept of tubelet. In our method a tubelet stands for a
small group of tubes. And the hierarchical optimization for Eq. (5)
includes the following three steps:

1. The tube set Q is roughly clustered into M different tubelets
according to their motion structure proximity, Q ¼ fGjgMj ¼ 1.

2. Within each tubelet, tubes are rearranged in a spatio-temporal
volume, i.e., each tube is set a relative play start time.

W. Fu et al. / Neurocomputing 135 (2014) 155–162 157



3. In the tubelet level, each tubelet is optimized to set a global
play start time, which will be added to its members as a
delay time.

For the first step, many techniques such as graph cut and
spectral clustering can be employed to cluster tubes with a similar
motion structure. However, note that the term Sði; jÞ takes effect
only when tubes occupy a common temporal overlap. Based on
this observation, we can simply divide Q into M parts fGjgMj ¼ 1
according to their original play times for the sake of efficiency in
practice, and we call each part a tubelet.

In the second step, for each tube within a tubelet Gi ¼ fTikgKk ¼ 1
(K is the size of Gi), an optimal time location is determined by
solving Eq. (5) using a simplified competitive algorithm [24].
Firstly, the tube with a maximal length is firstly selected as the
reference tube (marked as Ri) and filled into an empty spatio-
temporal volume Vi. Then other tubes are selected out one by
one and filled into the current spatio-temporal volume Vi. To be
specific, for a new incoming tube Tik, the competitive force
function is defined as CFðTikÞ ¼ e�EpðV ;ℓn

ikÞ. After that, Tik is placed
at its optimal time ℓn

ik with the probability pðTikÞ ¼ CFðTikÞ=∑ijAGi\V

CFðTijÞ, where the optimal location ℓn

ik is determined by solving the
following problem:

ℓn

ik ¼ argmin
ℓik

∑
j
EPðℓik;ℓjÞ;

s:t:TjAV ; 8 j ð10Þ

For clarify, we summarize the procedure of rearrangement within
each tubelet in Algorithm 1.

Algorithm 1. Tube rearrangement within each tubelet.

Input: A tubelet with K tubes Gi ¼ fTikgKk ¼ 1

Output: fℓikgKk ¼ 1, Vi

Initialization:
ℓik ¼ 0; 8kAf1;…;Kg;
Vi’|;

1. Select the reference tube Ri and update the tubelet:
Gi’Gi\Ri;
Vi’fRi;0g;

2. While Gia| do
Select a tube Tik in Gi using the competitive algorithm;
Determine the located time ℓik by Eq. (10);
Gi’Gi\Tik;
Vi’Vi [ fTik;ℓikg;

End while

In the third step, the roulette wheel selection algorithm similar
to that in [5] is carried to determine the global play start time for

each tubelet. Tubelets are filled into the final synopsis volume S
one by one. Note that a tubelet instead of a tube becomes the
process unit in this step, energy terms should be changed
correspondingly. Especially, let D¼ fdigMi ¼ 1 be the global play start

times for fGigMi ¼ 1. Then the pairwise energy term can be defined as

Epðdi; djÞ ¼ ∑
ik;jm

Epðℓik;ℓjmÞ;

s:t: TikAGi; TjmAGj ð11Þ

And we define the fitness of a new incoming tubelet Gi arranged at
time di as

fitðdiÞ ¼ exp � ∑
j;Gj A S

Epðdi; djÞ
( )

ð12Þ

Based on this, Gi is placed at di with the probability pðdiÞ ¼ fitðdiÞ=
∑dj A ½0;lenðSÞ�fitðdjÞ, where lenð�Þ is a function computing the tem-
poral length of a spatio-temporal volume. A roulette wheel is spun
to determine the delay times of tubelets one by one.

5.2. Dynamic increment

In all the stepwise approaches, a matter worthy to be con-
sidered is the discontinuity of motion flow. At the high-layer in the
hierarchical optimization, imagine that another new tubeset con-
taining N tubes comes after the preceding one just being filled into
a new volume. Note that tubes spatio-temporally extend in the
final volume, separately optimizing this incoming tubeset without
considering the current volume state will leave a cutoff between
two consecutive tubesets, called a discontinuity of motion flow. We
give a toy illustration in Fig. 2. More proof can be found from the
comparison video in our supplementation.

Supplementary material related to this article can be found
online at http://dx.doi.org.10.1016/j.neucom.2013.12.041.

In order to address this problem, we employ a dynamic increment
method which is simple yet efficient. To be specific, tubes already
filled in the final volume are truncated into two parts, i.e., the body
parts and tails. When another tubeset comes, the former tails with
fixed time stamps are first added to constitute a new tubeset. And
then they will be optimized together with new incoming tubes.
In this dynamic increment way, the discontinuity could be avoided.
In addition, the length of final synopsis video can be determined
automatically as well.

6. Experimental evaluation

To evaluate the performance of the proposed approach, we
carried experiments on diversified types of videos including both
public datasets and videos recorded by ourselves. All these videos

BATubeset

Flow discontinuity 

Tubeset

Fig. 2. A toy illustration for flow discontinuity. Separately optimizing tubeset B without considering the current state of the ST volume (filled with A) will lead to a cutoff
between the two tubesets.
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were captured by surveillance cameras. In order to obtain smooth
and accurate foreground segmentations, a method combined the
Gaussian mixture model and min-cut [23] is utilized for background
modeling. Table 1 presents a summary description of these videos,
as well as the condensation rate (CR) by our approach. The
condensation rate denotes the frame number ratio between synopsis
and original videos, which is related to the original activity density
or user settings. Fig. 3 presents an intuitive impression result where
a single frame from each synopsis video is selected to exhibit for
intuitive impressions.

Table 1
A summary of video description.

Video description # Frame # Tube CR (%)

Square, 320�240, 25 fps 4924 40 7.62
Park, 320�240, 25 fps 4435 81 18.4
Road1, 320�240, 25 fps 2891 18 3.46
Road2, 320�240, 25 fps 12 577 289 14.11
IndoorGTTest1 [25], 320�240, 14 fps 2659 9 12.64
Institute, 320�240, 25 fps 12 328 137 17.85

Park IndoorGTTest1Road2Square

Fig. 3. Four synopsis frames for Square, Park, Road2, and IndoorGTTest1, respectively.

Fig. 4. User study for different synopsis methods.
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Fig. 6. The energy cost for Institute sequence with different selection strategies.
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Fig. 5. The comparison result for Road1 with different selection strategies. SA_1000 stands for offline simulated annealing [22] through 1000 iterations.
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User study: We reproduced two methods described in [3]
(Method 1) and [5] (Method 2) as baselines. Four evaluation
criteria are proposed for rating, i.e., visual pleasing, compactness,
comprehensibility, and overall satisfied, as follows:

1. Visual pleasing: Do you think this synopsis is comfortable
for view?

2. Compactness: Is this synopsis compact enough?
3. Comprehensibility: Can you infer the original behavior interac-

tions from this synopsis?
4. Overall satisfied: Which is your most satisfied synopsis overall?

The first criterion reflects the vision comfortable degree, the
compactness criterion reflects the object density of the synopsis,
and the comprehensibility criterion reflects whether the original
movement information can be inferred from the synopsis results.
For the first three survey items, the score scale is 1–5, where 1 is
the lowest and 5 is the highest. For the last one, evaluators are
requested to point out the most satisfied synopsis (give 1 for the
corresponding synopsis) or give 0 score if they are unsatisfied with
any synopsis videos.

Given the evaluation criteria, we invited 37 participants to score
the synopsis results. All the participants have strong background

knowledge in video surveillance, aged from 25 to 43. They were
requested to watch the original videos first, then watch the
synopsis, and give their ratings at the end from 4 aspects: visual
pleasing, compactness, comprehensibility and overall satisfied.
Finally, classified according to the methods, statistics results of
subjective feedbacks are illustrated in Fig. 4.

We can see that, on the premise of guarantee for visual pleasing
and compactness, our approach achieves a better performance in
comprehensibility by maintaining the original motion structure
information.

Different selection strategies: In the process of online synopsis,
a key point is how to select a tube or tubelet to fill a spatio-
temporal volume. A simple strategy is to keep selecting the
current best tube at every turn. As opposed to this deterministic
strategy, in our approach, we introduce randomness in our
selection process through a competitive or roulette wheel algo-
rithm. This randomized strategy could bring a better solution by
considering the future or unknown tubes when making a
decision. To give a quantitative evaluation, we examine the
tendency of energy cost in the tube filling process, which could
reflect the performance of final results in a way. Fig. 5 shows the
comparison result for Road1 as an example. More details can be
found from videos in the supplementation. Two synopsis frames
are also illustrated. For another Institute sequence containing 137
tubes, 50 tubes are treated at one time and the comparison
results for each tubelet are illustrated in Fig. 6. We can see that
the cumulative energy cost could decrease greatly by introducing
randomness in the selection process, which usually indicates
improvement of performance.

Evaluation for motion structure: Quantitative evaluation and
comparison for the capability of motion structure preservation is
difficult by the lack of benchmark datasets with known ground-
truth. In order to give a quantitative result, we invited 3 human coders
to label the Institute sequence and its corresponding synopsis video, in
which collective behaviors of pedestrians appear widely. Human
coders were instructed to examine carefully whether structure infor-
mation of these groups are preserved. Individuals with interactions in
small groups are annotated. The final labels determined by coders are
translated into a numeric score for each pedestrian according to the
group size they belong to: 1 for single pedestrians, 2 for pedestrians in
pairs and 3 for triplets or more complex groups with a 87.07% match
rate as shown in Fig. 7.

Fig. 8. Top: five typical frames from the Institute video. Bottom: three frames selected from the synopsis video.
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Fig. 7. Label scores from coders for pedestrians in the Institute sequence and its
corresponding synopsis video.
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We would like to present some more intuitive results. In Fig. 8,
the top row shows five typical frames from Institute video, and
three synopsis frames in the bottom row. In this video, motion
structure between pedestrians reflects in terms of their collective
behavior. We can see that this group information is preserved in
the final synopsis video. More proof can be found from the video
in our supplementation.

7. Discussion and future Work

The problem of preserving the motion structure of moving
objects which either follow each other or cross each other, while
disrupting their chronological order to save time, is worth consider-
ing especially in surveillance settings. In this paper, we propose an
online motion structure preserved video synopsis method. Mea-
sured by motion proximity and intersection, the motion structure
is formulated as a refined term to take effect on the final energy
minimization. Embedding this information, the final synopsis video
could condense as much activities as possible while maintaining
their behavior interactions. Experiments on various videos have
demonstrated the effectiveness and good potential applications of
our approach.

However, due to the introduction of behavior interaction, the
optimization problem appears to take more computational time
than the previous work. Currently in our approach, a hierarchical
fashion optimization is utilized to accelerate the process, which
leads to local optimization results. A more suitable optimization
method to an approximate minimizer will be studied in our future
work. In addition, the synopsis technology still has some limita-
tions within the scope of application by itself. Imagine a video
already full of moving objects. It becomes less meaningful to
summarize the activity in a significantly short synopsis video. A
new automatic synopsis framework, independent of the original
activity density, is another future direction.
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