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a b s t r a c t

The bag of visual words model (BoW) and its variants have demonstrated their effectiveness for visual
applications. The BoW model first extracts local features and generates the corresponding codebook
where the elements of a codebook are viewed as visual words. However, the codebook is dataset depen-
dent and has to be generated for each image dataset. Besides, when we only have a limited number of
training images, the codebook generated correspondingly may not be able to encode images well. This
requires a lot of computational time and weakens the generalization power of the BoW model. To solve
these problems, in this paper, we propose to undo the dataset bias by linear codebook transformation in
an unsupervised manner. To represent each point in the local feature space, we need a number of linearly
independent basis vectors. We view the codebook as a linear transformation of these basis vectors. In this
way, we can transform the pre-learned codebooks for a new dataset using the pseudo-inverse of the
transformation matrix. However, this is an under-determined problem which may lead to many solu-
tions. Besides, not all of the visual words are equally important for the new dataset. It would be more
effective if we can make some selection and choose the discriminative visual words for transformation.
Specifically, the sparsity constraints and the F-norm of the transformation matrix are used in this paper.
We propose an alternative optimization algorithm to jointly search for the optimal linear transformation
matrixes and the encoding parameters. The proposed method needs no labeled images from either the
source dataset or the target dataset. Image classification experimental results on several image datasets
show the effectiveness of the proposed method.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The bag of visual words model (BoW) [1,2] plays a very impor-
tant role for visual applications (e.g., image classification, retrieval
and segmentation). Basically, the BoW model can be divided into
four components: local feature extraction, codebook generation,
local feature encoding and histogram based image representation.
It has been widely used on various datasets [3–9]. To consider the
spatial information, spatial pyramid matching (SPM) [5] and its
variants [10–15] are also widely used.

Although proven effective, there is one problem with the BoW
model and its variants. The codebook has to be learned for each
image dataset separately and the performances of directly using
codebooks generated by other datasets are less competitive than
using the codebook generated with the corresponding dataset. This
is because the state-of-the-art image datasets are collected for par-
ticular purposes [16]. To overcome this problem, a lot of works
[17–24] have been done and the usefulness of considering the
dataset bias is widely proved. However, most of these methods
ignore the codebook bias problem with different datasets and only
try to adapt the pre-learned classifiers instead. In fact, if we take a
close look at the four components of the BoW model, we can find
that the codebook is the only component which varies from data-
sets. The other three components of the BoW model have no such
dataset dependence. For example, dense SIFT feature is used for
local feature extraction, sparse coding or nearest neighbor assign-
ment is used for local feature encoding and images are represented
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by visual word histogram. Finally, SVM classifiers are trained for
classification. Hence, if we can generate the codebook which per-
forms consistently on different datasets, we will be able to make
the BoW model less dataset dependent and improve the perfor-
mance of visual applications using the BoW representation.

Researchers have also explored the generation of universal
codebooks and then adapted it for specific visual applications
[25–29]. However, there is one problem with this strategy. To learn
a universal codebook, you should collect a universal image dataset.
This costs a lot of labor and is also time consuming. The universal
codebook is actually also dataset dependent as long as the univer-
sal image dataset is collected. Transfer learning [30–32] and semi-
supervised learning [33–36] techniques are also used to alleviate
this problem, however, most of them does not consider the code-
book bias which makes the proposed algorithms less dataset
independent.

To solve the codebook bias problem mentioned above, in this
paper, we propose a novel linear transformation based unsuper-
vised codebook adaption method. In linear algebra, to represent
each point in a space, the number of basis vectors needed should
be no less than the dimension of this space, depending on the lin-
ear independence of the basis vectors. Similarly, to represent one
point in the local feature space, the number of basis vectors should
be no less than the local feature space dimension. Hence, we follow
the work of [37] and view each codebook as a linear transforma-
tion of these basis vectors. In this way, we can linearly transform
the pre-learned codebooks for a new dataset using the pseudo-
inverse of the corresponding transformation matrix. However,
the transformation matrix often has thousands of values. This
means searching for the optimal transformation matrix is a
under-determined problem which may leads to many solutions.
Besides, not all of the visual words are equally important, it is more
effective if we can choose the most discriminative visual words
from pre-learned codebooks for transformation. We use the spar-
sity constraints [10,12] and F-norm over the transformation
matrixes in this paper for visual word selection. We use the F-norm
constraints for two reasons. First, the optimization over the trans-
formation matrixes is under-determined, adding some constraints
can help solve the problem. Second, the F-norm is differentiable

which means the optimization problem can be solved much easier
than non-differentiable constraints. We propose an alternative
optimization algorithm to jointly search for the optimal linear
transformation matrixes and the encoding parameters. Note that
the proposed method for undoing the codebook bias requires no
training images from either the source dataset or the target data-
set. To test the effectiveness of the proposed method, we conduct
image classification experiments on several image datasets. The
results show the effectiveness of codebook transformation for
undoing the dataset bias. Fig. 1 gives the flowchart of the proposed
method.

Compared with [37], the contributions of this paper lie in three
aspects. First, we add F-norm to solve the under-determined prob-
lem of finding the optimal transformation matrix. Second, by
jointly using sparsity constraints and F-norm regularization, we
can transform the pre-learned codebooks more effectively than
using sparsity constraints alone [37], especially when we have a
limited number of images with the target dataset. Third, we are
able to achieve better classification performance than [37] did.

The rest of this paper is organized as follows: in Section 2 we
give the related work. The details of the proposed linear codebook
transform method for undoing the codebook bias is given in Sec-
tion 3. The experimental results are given in Section 4. Finally,
we conclude in Section 5.

2. Related work

Recently, many image datasets have been introduced for vari-
ous visual applications, such as the Bird dataset [3], the Butterfly
dataset [4], the Scene-15 dataset [5], the Event dataset [6], the
Indoor dataset [7], the Corel-5K dataset [8] and the Caltech-256
dataset [9]. A lot of works have been done to improve the image
classification performances on these datasets. However, datasets
were also blamed for hindering the improvement of classification
performance [16]. To overcome this problem, a lot of works
[17–24] have been done. Khosla et al. [17] proposed to undo the
dataset bias by jointly learning the bias vectors and visual words’
weights in a discriminative manner. An online domain adaption

Fig. 1. Flowchart of the proposed linear codebook transformation for image classification method.
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of cascade classifiers was proposed by Jain and Miller [18]. Kulis
et al. [19] proposed an asymmetric kernel transformation based
object categorization method. The dataset shift problem was sys-
tematically analyzed by Candela et al. [20]. Gopalan et al. [21] took
an unsupervised approach to adapt the object categorization prob-
lem. Saenko et al. [22] tried to adapt object model of a particular
visual domain to new domain by minimizing the effect of feature
distribution discrepancy. A heterogeneous transfer learning algo-
rithm was proposed by Zhu et al. [23] for image classification with
good performance. To cope with the lack of training images, Wang
et al. [24] proposed a dyadic knowledge transfer approach for
cross-domain classifications. Although proven effective, all of the
above mentioned methods made use of the training images from
either the source dataset or the target dataset.

Researchers also explored the generation of universal codebook
and then adapted it for specific visual applications [25–29]. Zhang
et al. [25] tried to learn a general codebook and used the descrip-
tive visual words and visual phases for visual applications. Spatial
pyramid codebook was used by Zhang et al. [26] to combine the
spatial information of local features. Perronnin et al. [27] first gen-
erated a universal codebook using the gaussian mixture model
(GMM) and then adapted it for specific applications. Winn et al.
[28] used the information bottleneck principle to obtain a more
discriminative codebook. Chatfield et al. [29] systematically com-
pared several the state-of-the-art codebook construction methods.
However, the dataset bias problem is still unsolved after the
imageset is collected.

Transfer learning [30–32] and semi-supervised learning
[33–36] techniques were also used to alleviate the dataset bias
problem. Yang et al. [30] tried to transfer the structured knowledge
and achieved good performance. Pan and Yang [31] studied several
transfer learning methods for undoing the dataset bias. A topo-
graphic subspace model with transfer learning was proposed by
Liu et al. [32] for sparse representation. Chova et al. [33] proposed
a semi-supervised one class SVM classifier to predict the categories
of images. Guillaumin al. [34] used a multimodal semi-supervised
strategy for classifying images by considering the discriminative
information of different modalities. A sclable semi-supervised mul-
tiple kernel learning algorithm was proposed by Wang et al. [35]
for mining the useful information while Sang et al. [36] used ter-
nary semantic analysis strategy for image tag refinement. How-
ever, the labeled images are still needed. Besides, most of these
methods does not explicitly consider the codebook bias problem
for different datasets.

3. Linear codebook transformation for visual applications

In this section, we give the details of the proposed linear code-
book transformation method to undo the codebook bias and apply
it for image classification problems. The proposed method requires
no training images from the source dataset or the target dataset.

3.1. Linear codebook transformation

In linear algebra, to represent each point in a space, the number
of basis vectors needed should be no less than the dimension of
this space, depending on the linear independence of the basis vec-
tors. Similarly, to represent one point in the local feature space, the
number of basis vectors should be no less than the local feature
space dimensions. Suppose we have a set of basis vectors
B ¼ ½b1; b2; . . . ; bQ � 2 RP�Q which can completely represent each
local feature in this space. P is the dimension of local feature space
and Q is the number of basis vectors with Q > P. Let
D1 ¼ ½d1

1; d
2
1; . . . ; dM

1 � 2 RP�M be a codebook generated using a partic-
ular dataset where M is the number of visual words. Since each

visual word in codebook D1 can be viewed as a point in the local
feature space, each element of D1 can be linearly represented by
the basis vectors B as:

di
1 ¼ ai;1

1 b1 þ ai;2
1 b2 þ � � � þ ai;Q

1 bQ ; 8i ¼ 1; . . . ;M ð1Þ

where ai;1 is the linear combination parameters. This can be rewrit-
ten in a matrix form as:

D1 ¼ BAT
1 ð2Þ

where A1 ¼ ½ai;1
j �i¼1;...M;j¼1;...;Q

is the corresponding linear transforma-
tion matrix. In this way, we can generate a codebook D1 by linearly
combining the basis vectors of local feature space. This can also be
written as:

B ¼ D1ðAT
1Þ
þ

ð3Þ

where ðAT
1Þ
þ

is the psedoinverse of matrix AT
1. Similarly, we can gen-

erate a codebook D2 as:

D2 ¼ BAT
2 ¼ D1ðAT

1Þ
þ

AT
2 ð4Þ

Let A ¼ A2Aþ1 , Eq. (4) can be rewritten as:

D2 ¼ D1AT ð5Þ

Suppose we have learnt the codebook D1 for dataset 1, to gen-
erate the codebook D2 for dataset 2, all we need to do is to find
the corresponding transformation matrix A. If the transformation
matrix A has been learnt, we can use the corresponding codebook
D1 for local feature encoding. We use the sparse coding technique
[38] in this paper as it has been shown to be very effective for
encoding local features. Let x 2 RP�1 be the local feature to be
encoded, a is the corresponding sparse coding parameter with k
being the parameter which controls the sparsity of a as:

mina;D2kx� D2ak2 þ kkak1 ð6Þ

This can be optimized over a and A as:

mina;Akx� D1ATak2 þ kkak1 ð7Þ

This problem can be solved efficiently by alternatively optimizing
over a/A while keeping the other fixed. When a is fixed, Problem
7 equals to solving the following optimization problem as:

minAkx� D1ATak2 ð8Þ

Let A
!T ¼ D1AT , Problem 8 can be rewritten as:

minAkx� A
!

ak2 ð9Þ

When A is fixed, Problem 7 equals to solving the following opti-
mization problem as:

minakx� D1ATak2 þ kkak1 ð10Þ

Since D1 is pre-learned and A is fixed, let D ¼ D1AT , Problem 10 can
be rewritten as:

minakx� Dak2 þ kkak1 ð11Þ

Problems 9 and 11 can be effectively optimized by the feature-sign
search and the Lagrange dual algorithms proposed in [38]. In this
way, we can transform the codebook D1 generated using dataset 1
to dataset 2. However, the transformation of only one codebook is
often too weak, especially when the two image datasets are quite
different. It would be more effective if we can transform a number
of codebooks instead.

C. Zhang et al. / Pattern Recognition Letters 45 (2014) 197–204 199



Author's personal copy

3.2. Multiple codebook transformation for undoing dataset bias

Formally, suppose we have N pre-learned codebooks D1; . . . ;DN

generated using the corresponding image datasets. To encode local
feature x, the optimization problem can be written similarly as:

minan ;An ;n¼1;2;...;N x�
XN

n¼1

DnAT
nan

�����
�����

2

þ kn

XN

n¼1

kank1 ð12Þ

where kn is the sparsity constraint parameter for the nth dataset, an

is the corresponding encoding parameter. However, the transforma-
tion matrixes also have influences for the performances. Hence, it
would be more effective if we can impose some constraints on
the transformation matrices. We use the popular F-norm in this
paper because it is derivable and try to solve the following problem
as:

minan ;An ;n¼1;2;...;N x�
XN

n¼1

DnAT
nan

�����
�����

2

þ
XN

n¼1

knkank1 þ
XN

n¼1

cnkAnk2
F ð13Þ

Let b ¼ ½a1;a2; . . . ;aN�, k ¼ ½k1; . . . ; kN�, c ¼ ½c1; c2; . . . ; cN�; E ¼ ½D1;

D2; . . . ; DN� and C ¼ diagfA1;A2; . . . ;ANg, Problem 13 can be rewrit-
ten as:

minb;Ckx� ECTbk2 þ kkbk1 þ ckCk2
F ð14Þ

Since E is pre-learned and fixed, this problem can be solved simi-
larly as Problem 7 by alternatively optimizing over b and C. When
b is fixed, Problem 14 equals to solving the following optimization
problem as:

minCkx� ECTbk2 þ ckCk2
F ð15Þ

with

@kx� ECTbk2 þ ckCk2
F

@C
¼ 2bbT CET E� 2bxT Eþ cTrðCCHÞ ð16Þ

When C is fixed, the optimization of Problem 14 over b equals:

minbkx� ECTbk2 þ kkbk1 ð17Þ

This problem can be solved in a similar way as the feature-
sign-search algorithm [38]. Algorithm 1 gives the proposed lin-
ear codebook transformation method for undoing the dataset
bias.

Algorithm 1. The proposed linear codebook transformation
algorithm for undoing the dataset bias

Input:
The local features X; k1; . . . ; kN; c1; c2; . . . ; cN;D1; D2; . . . ;DN ,
the threshold parameter h and max iteration number
maxiter;

Output:
The learned C and encoding parameters b;

1: for iter ¼ 1;2; . . . ;maxiter
2: Find the optimal C with encoding parameters b fixed by

solving Problem 15 with Eq. (16);
3: Find the optimal encoding parameters b with codebook C

fixed by solving Problem 17;
4: Check whether the decrease of objective function of

Problem 14 falls below the threshold h.
If unsatisfied

go to step 1
Else

stop;
5: return b;C;

3.3. Max pooling based image representation for image classification

After learning the corresponding linear transformation matrix C,
we can use it to encode local features by solving Problem 17 with C
fixed. To represent images using these encoded parameters, we fol-
low the popular max pooling scheme [39,40] to extract informa-
tion from local features. The max pooling has been proven
effective when combined with sparse coding for image representa-
tion. It chooses the max value of each dimension of the encoded
sparse parameters within a particular image region. Besides, to
combine the spatial information of local features, we use the spa-
tial pyramid matching (SPM) technique [5]. The first three pyra-
mids with 2L � 2L; L ¼ 0;1;2 are used in this paper.

To test the effectiveness of the proposed linear codebook trans-
formation method for undoing the dataset bias, we evaluate image
classification performances on several public image datasets. This
is achieved by training a set of classifiers. We follow Yang et al.
[39] and use the one-vs-all linear SVM classifier as it has been
shown to be effective with sparse coding techniques [12,39,40].

4. Experiments

4.1. Experimental setup

To evaluate the effectiveness of the proposed linear codebook
transformation method, we conduct image classification perfor-
mances on several public image datasets: the Bird dataset [3],
the Butterfly dataset [4], the Scene-15 dataset[5], the Event dataset
[6], the Indoor dataset [7], the Corel-5K dataset [8], the Caltech-
256 dataset [9], Lazebnik’s texture dataset [41] and the PASCAL
VOC 2007 dataset [42]. The Bird dataset has 100 images each of
six different classes (egrets, mandarin ducks, snowy owls, puffins,
toucans, and wood ducks). The Butterfly dataset consists of 619
images of seven classes. The Scene-15 dataset has fifteen classes
ranging from 200 to 400 images per class. The Event dataset has
eight sports event categories with the number of images in each
category varying from 137 to 250. The indoor dataset has 15,620
images of 67 classes. The Corel-5K dataset consists of 50 categories
of images while the Caltech-256 dataset has 30,607 images of 256
classes. The Lazebnik’s texture dataset [41] has 1000 images of 25
different textures. The PASCAL VOC 2007 dataset has around
10,000 images of twenty classes which are more difficult to classify
than the above datasets. Fig. 2 shows some example images of
these image datasets.

We densely extract SIFT features [43] of size 16 � 16 pixels with
an overlap of 6 pixels for all the datasets except the PASCAL VOC
2007 dataset. For the PASCAL VOC 2007 dataset, we densely extract
SIFT features with an overlap of 4 pixels on various patch sizes. The
patch size varies from 16 to 64 pixels with a step of 4 pixels. For
the nine datasets, we randomly choose 50, 16, 100, 70, 80, 50,
30, 10 and 50 images per class from the corresponding image data-
set as the training set and use the rest of images as the testing set.
These training numbers are chosen as the same as [3–9,41]. This
process is repeated for five times to get reliable results. The code-
book size for each dataset is set to 1024. The k and c are two impor-
tant parameters which control the transformation of codebooks.
Larger k and c increase the sparsity of the transformation process
than smaller k and c. Since we use nine datasets for evaluation,
we have eight ki and ci; i ¼ 1; . . . ;8 to set. We set ki; i ¼ 1; . . . ;8 to
the same value and ci; i ¼ 1; . . . ;8 to the same value, respectively.
We try to find the optimal parameters by grid search. ki ranges
from 0.1 to 1.5 with a step of 0.1 while ci ranges from 0.1 to 1 with
a step of 0.1. We use the classification rate for performance evalu-
ation. Instead of re-implementing the algorithms, we directly use
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the performances reported in [3–9] for fair comparison. We use CT-
SFC as the abbreviation of the proposed linear codebook transfer
with sparsity and F-norm constraints for undoing the dataset bias
algorithm.

4.2. Image classification performance

We give the performance comparison of the proposed CT-SFC
with the method [37] in Table 1. When generating the codebook
for one particular dataset with the proposed CT-SFC method, we
use all the other codebooks generated from the corresponding
image datasets. We also give the performances of combining the
visual words (Combined-VW) and SIFT features (Combined-SIFT)
on these datasets. The Combined-VW is generated by first clustering
the visual words of these image datasets and then using the cluster
centers as the new codebook. The Combined-SIFT is generated by
clustering the SIFT features extracted from these image datasets
directly. The codebook sizes are also set to 1024 for consistency.
To demonstrate the effectiveness of the proposed method over
[37], we also give the performances with and without F-norm con-
straints over the transformation matrix. The horizontal row indi-
cates the dataset that the codebook is generated while the vertical
column indicates the dataset that the classification is performed.
We also give the performance of the proposed linear codebook
transferring algorithm on the corresponding vertical column by
transferring the codebook generated by the other image datasets.

We can see from Table 1 that the codebook generated by one
particular image dataset achieves the best classification perfor-
mance on the corresponding dataset. However, we can achieve bet-
ter results by transferring the codebooks instead of directly using
the codebooks generated by other datasets. In fact, the codebook
generated by the corresponding image dataset is the upper perfor-
mance bound of the proposed codebook transfer algorithm. Besides,
the proposed CT-SFC is able to outperform Combined-VW and

Combined-SIFT. We believe this is because the combined methods
used all the information from various datasets without selection.
The noisy information is also used by the combination methods
for classification which hinders the final performances.

Besides, the relative improvement of the proposed codebook
transfer algorithm varies depending on the image datasets. For
example, the proposed method achieves equal performances on
the Butterfly Scene-15, Event and Corel-5K datasets while per-
forms one percent less on the Bird, Caltech-256 and Indoor dataset
compared with the codebook generated by the corresponding
datasets. We believe this is because the difficulties of these data-
sets are different. The Caltech-256 dataset, the Indoor dataset
and the PASCAL VOC 2007 dataset are more difficult to classify that
the Corel-5K dataset and the Butterfly dataset. This is not only
because of the increased number of image classes but also because
of the large intra and inter class variations. Moreover, the Com-
bined-VM method performs not as well as Combined-SIFT method.
This is because k-means clustering prefers large clusters. Since
visual words are generated by k-means clustering, the re-cluster-
ing of visual words will result in large clusters that encode most
of the local features. The Combined-SIFT method makes clustering
on the SIFT features directly which helps to alleviate this problem.
However, using all the SIFT features from various datasets for one
particular dataset classification may introduce noise and decrease
the classification performance. The proposed CT-SFC method can
also cope with codebooks of different size. Of course, the codebook
size also has influence on the codebook transfer performance. Basi-
cally, a larger codebook can help to classify images than a relatively
small codebook. However, the computational cost also increases
when a larger codebook is used.

On analyzing the details of the classification performance, we
can have three conclusions. First, compared with the codebook
generated by the corresponding dataset, the use of other datasets
generated codebooks perform better on similar image classes than

Fig. 2. Example images for the Bird, Butterfly, Scene-15, Event, Indoor, Corel-5K and Caltech-256 datasets.
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Author's personal copy

on dissimilar image classes. For example, the Scene-15 dataset can
be roughly divided into the indoor class and the outdoor class.
When using the Indoor dataset generated codebook for classifica-
tion, the performances are comparable or a little less that the
Scene-15 generated codebook on the indoor class (e.g., kitchen, liv-
ingroom, store). However, for the outdoor class (e.g., highway/
mountain), the performance is less competitive than on the indoor
dataset. Second, the proposed codebook transferring method can
alleviate this problem by transferring the elements of datasets with
similar image classes for better image representation. We can
achieve comparable classification rates by codebook transforma-
tion (e.g., the Scene-15 dataset and the Corel-5K dataset). These
results prove the effectiveness of transferring codebook for undo-
ing the dataset bias and improving the classification performance.
Third, the addition of F-norm constraints on the linear transforma-
tion matrix improves the codebook transformation performance.
The training sample numbers are relatively small compared with
the transformation matrix parameters while the F-norm con-
straints help to alleviate this problem and improve the classifica-
tion rates.

Compared with CT-SC [37], we add F-norm regularization over
the transformation matrix. This strategy helps to transform the
useful information more efficiently, especially when we have
limited number of training images. This also means the proposed
CT-SFC method can also be used in an incremental way. We can
gradually adapt the pre-learned codebooks to new image datasets
with the addition of training images. To show the effectiveness of
this property, we also give the classification performance with
the number of training images on these image datasets in Fig. 3.
The solid/dotted line represents the performance of CT-SFC/CT-SC

over these image datasets, respectively. This is achieved by ran-
domly choosing the training images per class for five times and
uses the mean of the classification rates for evaluation. We can
have three conclusions from Fig. 3. First, the proposed method
can gradually improve the classification performance with the
increase of training images. Second, the use of F-norm helps to
improve the performance over CT-SC [37], especially when we only
have a limited number of training images. Third, the relative
improvements over these datasets are varied. We believe this is
because of the relative difficulties of different image datasets.
The Caltech-256, Indoor and PASCAL VOC 207 datasets are more
difficult to classify, hence needs more training images to get reli-
able performance. Besides, the reconstruction error for local fea-
tures is reduced to about 20% to 40% on average compared with
directly using the source dataset’s codebook. This means we can
encode local features more efficiently.

To intuitively show the influences of different image datasets,
we sum the absolute value of ai corresponding to each dataset
and plot it in Fig. 4. The horizontal rows represent the image data-
sets to be transferred while the vertical columns represent the
influences of the other eight datasets. The diagonal values are zero.
We can have three conclusions from Fig. 4. First, image datasets
with similar objects have relatively larger influences. For example,
Butterfly and Bird are more correlated than other datasets, the
Indoor dataset has relatively larger influence for the Scene15’s
codebook. Second, the influence of Texture dataset is relatively
low. This is because the other datasets do not have so much texture
related features. To alleviate the codebook bias, we should choose
similar or related datasets to transfer. Third, when learning the
PASCAL07’s codebook, the influences of different datasets are more

Table 1
Mean classification rates on the image datasets: Bird, Butterfly, Scene-15, Event, Indoor, Corel-5 K, Caltech-256, Lazebnik’s texture dataset and PASCAL VOC 2007 dataset. The
horizontal row indicates the dataset that the codebook is generated while the vertical column indicates the dataset that the classification is performed. The Combined-VW is
generated by first clustering the visual words of these image datasets and then use the cluster centers as the new codebook. The Combined-SIFT is generated by clustering the SIFT
features extracted from these image datasets directly. We also give the performance of the proposed linear codebook transfer algorithm by transfering the codebook generated by
the other image datasets on the corresponding vertical column. CT-SC: codebook transfer with sparse constraints [35], CT-SFC: codebook transfer with sparse and F-norm
constraints (Problem 14). We split the table into two sub-tables for space reasons. The bold values are used to indicate the best classification performances.

datasets Bird Butterfly Scene-15 Event Indoor

Bird 0.83 ± 0.07 0:72� 0:09 0:78� 0:06 0:79� 0:07 0:39� 0:08
Butterfly 0:75� 0:08 0.72 ± 0.08 0:77� 0:06 0:78� 0:07 0:38� 0:06
Scene-15 0:72� 0:06 0:69� 0:08 0.79 ± 0.05 0:78� 0:08 0:40� 0:07
Event 0:73� 0:06 0:73� 0:07 0:74� 0:07 0.81 ± 0.07 0:41� 0:07
Indoor 0:70� 0:08 0:72� 1:01 0:77� 0:05 0:79� 0:08 0.43 ± 0.06
Corel-5K 0:72� 0:09 0:70� 0:09 0:76� 0:06 0:78� 0:08 0:39� 0:08
Caltech-256 0:71� 0:08 0:72� 0:07 0:75� 0:05 0:79� 0:09 0:40� 0:05
Texture 0:63� 0:12 0:61� 0:10 0:65� 0:08 0:70� 0:12 0:32� 0:09
PASCAL07 0:71� 0:08 0:71� 0:08 0:75� 0:05 0:79� 0:09 0:35� 0:07

Combined-VW 0:65� 0:09 0:67� 0:08 0:71� 0:04 0:72� 0:08 0:33� 0:09
Combined-SIFT 0:77� 0:08 0:69� 0:09 0:75� 0:06 0:78� 0:07 0:38� 0:08
CT-SC [37] 0:81� 0:07 0:71� 0:08 0:78� 0:05 0:80� 0:06 0:41� 0:07
CT-SFC 0.82 ± 0.05 0.72 ± 0.09 0.79 ± 0.07 0.81 ± 0.08 0.42 ± 0.05

datasets Corel-5K Caltech-256 Texture PASCAL07

Bird 0:61� 0:04 0:29� 0:06 0:48� 0:12 0:28� 0:07
Butterfly 0:60� 0:04 0:29� 0:05 0:49� 0:14 0:27� 0:06
Scene-15 0:62� 0:05 0:28� 0:06 0:53� 0:12 0:29� 0:06
Event 0:61� 0:03 0:31� 0:06 0:50� 0:13 0:30� 0:05
Indoor 0:62� 0:04 0:32� 0:07 0:55� 0:12 0:32� 0:06
Corel-5K 0.67 ± 0.05 0:31� 0:05 0:48� 0:14 0:31� 0:06
Caltech-256 0:64� 0:04 0.38 ± 0.06 0:56� 0:11 0:32� 0:07
Texture 0:54� 0:08 0:20� 0:11 0.77 ± 0.09 0:25� 0:05
PASCAL07 0:63� 0:06 0:28� 0:07 0:57� 0:13 0.40 ± 0.04

Combined-VW 0:58� 0:06 0:26� 0:07 0:56� 0:09 0:30� 0:05
Combined-SIFT 0:64� 0:05 0:33� 0:06 0:68� 0:11 0:35� 0:06
CT-SC [37] 0:66� 0:04 0:35� 0:06 0:74� 0:11 0:38� 0:05
CT-SFC 0.67 ± 0.06 0.37 ± 0.06 0.76 ± 0.10 0.39 ± 0.05
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evenly distributed. This is because the PASCAL07 dataset has vari-
ous images and harder to represent well compared with other
datasets.

4.3. Computational complexity analysis

The computational complexity of k-means clustering is
OðJ � k � tÞ, where J is the number of local features, k is the num-
ber of cluster centers and t is the number of iterations. To generate
a codebook, hundreds of thousands of local features (J) are needed.

The computational cost of the proposed CT-SFC is low compared
with k-means clustering. This is because the optimization of Eq.
(13) over each local feature x can be jointly considered as:

minan;j ;An ;n¼1;2;...;N

XJ

j¼1

xj�
XN

n¼1

DnAT
nan;j

�����
�����

2

þ
XN

n¼1

knkan;jk1þ
XN

n¼1

cnkAnk2
F

8<
:

9=
; ð18Þ

Without causing confusion, let c ¼ ½b1; . . . ;bJ� with
bj ¼ ½a1;j;a2;j; . . . ;aN;j�; j ¼ 1; . . . ; J, Problem 18 can also be optimized
alternatively over b and C. When c is fixed, Problem 18 can be opti-
mized as:

minC

XJ

j¼1

fkxj � ECTbjk
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Fg ð19Þ
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When C is fixed, Problem 18 can be solved as:

minc

XJ

j¼1

xj � bT
j ECT

��� ���2
þ kkbjk1

� �
ð21Þ

This can be solved in a similar way as Problem 17. Generally, the
proposed method takes about 1/10 v 1/5 time of k-means cluster-
ing when 100,000 local features are used. This means we can save
the time for codebook generation and concentrate on the design
of classification models in order to improve the performance.

5. Conclusion

In this paper, we propose a novel linear codebook transforma-
tion method to undo the codebook bias. This is achieved by linearly
transforming the pre-learned codebooks for new visual applica-
tions. We also impose sparsity and F-norm constraints for discrim-
inative visual words transformation. An alternative optimization
algorithm is proposed to jointly learn the optimal transformation

0 20 40 60 80 100

0.3

0.4

0.5

0.6

0.7

0.8

Number of training samples per class

Pe
rfo

rm
an

ce

Bird(CT−SFC)
Bird(CT−SC)
Butterfly(CT−SFC)
Butterfly(CT−SC)
Scene−15(CT−SFC)
Scene−15(CT−SC)
Event(CT−SFC)
Event(CT−SC)
Indoor(CT−SFC)
Indoor(CT−SC)
Corel−5K(CT−SFC)
Corel−5K(CT−SC)
Caltech−256(CT−SFC)
Caltech−256(CT−SC)
Texture(CT−SFC)
Texture(CT−SC)
PASCAL07(CT−SFC)
PASCAL07(CT−SC)

Fig. 3. The performance changes with the number of training images per class for the Bird, Butterfly, Scene-15, Event, Indoor, Corel-5K, Caltech-256, Texture and PASCAL VOC
2007 datasets. The solid/dotted line represents the performance of CT-SFC/CT-SC, respectively. It is best viewed in color. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 4. The influences of different datasets for codebook transfer. The horizontal
rows represent the image datasets to be transferred while the vertical columns
represent the influences of the other eight datasets. Codebooks with larger
influences are brighter than those with smaller influences.
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matrixes and encoding parameters. Experimental results on sev-
eral public datasets demonstrate the effectiveness of the proposed
method.
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