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ABSTRACT. This paper tries to study how to design interval type-2 fuzzy logic systems
(IT2FLSs) using both sampled data and prior knowledge. Sufficient conditions on the
parameters of IT2FLSs are given to ensure that the prior knowledge of symmetry or odd
symmetry, bounded range and monotonicity can be incorporated into IT2FLSs. And, the
constrained least squares algorithm is adopted for the design of prior-knowledge-based
IT2FLSs (PK-IT2FLSs). Simulation results demonstrate that, if uncertainties exist in
the sampled data, then the PK-IT2FLS performs better than the other fuzzy logic systems
designed without prior knowledge.
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1. Introduction. In recent years, a number of extensions to traditional fuzzy logic sys-
tem (type-1 fuzzy logic system: T1FLS) are attracting interest. One of the most widely
used extensions is interval type-2 fuzzy logic system (IT2FLS) [1-5]. IT2FLSs not only
have the merits of T1FLSs, but also can provide the capability to model high levels
of uncertainties [1-3]. Generally speaking, compared with T1FLSs, their corresponding
IT2FLSs can produce more complex input-output maps and give better performance, as
IT2FLSs utilize interval type-2 fuzzy sets (IT2FSs) which can provide additional degrees
of freedom [1-3].

Until now, IT2FLSs are always designed only using the information from sampled
data. Sometimes, this data-driven design method for IT2FLSs can achieve satisfactory
performance, but, when the information contained in the sampled data is insufficient
to reflect system characteristics (this may be caused by small number of sampled data,
high levels of uncertainties, etc), the precision and generalization ability of the designed
IT2FLSs will be limited. In practical applications, wrong data and noisy data can not
be avoided and it is quite difficult to obtain enough sampled data for some plants, hence,
the information from sampled data is always insufficient.

On the other hand, although, in most cases, it is hard to obtain exact physical structure
knowledge of some complex plants or systems, part of their physical knowledge can be
observed easily, such as monotonicity, bounded range, symmetry or odd symmetry, etc.
These prior knowledge can partly reflect the characteristics of the unknown plants or
systems and offset the insufficiency of the information from sampled data. Recently, the
topic on how to utilize prior knowledge has gained considerable concern from different
research areas. Impressive results have been accomplished on how to incorporate prior
knowledge into support vector machines [6], neural networks [7], T1FLSs [8, 9], etc.

However, to the authors’ knowledge, there is no work concerning how to encode the prior
knowledge into IT2FLSs. In this paper, we will study this issue and the prior knowledge
of symmetry or odd symmetry, bounded range and monotonicity will be considered. First,
we will present sufficient conditions on the antecedent I'T2FSs and the consequent interval
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weights of IT2FLSs to ensure that the prior knowledge can be incorporated. Then, we will
show how to design prior-knowledge-based I'T2FLSs using the constrained least squares
algorithm. At last, we will give a simulation to show the usefulness of the prior knowledge
and the advantages of the prior-knowledge-based IT2FLSs under noisy circumstances.

2. Interval Type-2 Fuzzy Logic system. In this section, we will introduce the infer-
ence process of IT2FLS [1-5] briefly.

Suppose that the rule base of an IT2FLS has M fuzzy rules, each of which has the
following form

Ri:ay=Ab zy=Ak . 2, = ﬁl; —y = [w". T (1)
where k = 1,2,..., M, p is the number of the input variables in the antecedent part,
A¥(i=1,2,...,p,k =1,2,..., M) are IT2FSs of the IF-part, and [w*, w*]s are consequent
interval weights of the THEN-part.

Once a crisp input £ = (1, 9, ..., )" is applied to the IT2FLS, through the singleton
fuzzifier, the interval firing strength of the kth rule can be obtained as

F*z) = [f*(2), T ()] (2)

where
FH@) = g (20) 5 gy (02) % ook g () (3)
T (@) = Tige (w0) # Tigy (2) % o % Figg (1) (4)

in which p(),7() denote the grades of the lower and upper membership functions of
IT2FSs, and * denotes minimum or product ¢-norm.

Then, using the center-of-sets (COS) type-reducer [1-3] and the center average defuzzi-
fier, the crisp output of the IT2FLS can be computed as

(@) = 5 (@) + 1, (z) 0

where y;(z) and y,.(z) are the left and right end points of the type-reduced interval set
and can be expressed as

yi(x) = min {%‘f’“ c Fk(x),wk c [wk’mk]} (6)
LT @)+ (1 8 @)t
SMLET (@) + (1 - 6%) f* ()]

y-(z) = max {%‘ﬁ c Fk(z),wk c [wk,@k]} (8)
L@ -] @l )
S @) + (1 -8 ()]

in which §* and 5" can be determined in {0,1} by Karnik-Mendel algorithms [1-3].

3. Parameter Conditions of Prior-Knowledge-Based IT2FLS. In this section, we
will present sufficient conditions on the parameters of I'T2FLSs to ensure that the prior
knowledge can be incorporated. The prior knowledge of odd symmetry or symmetry,
bounded range, and monotonicity (increasing or decreasing) will be considered. First, let
us consider the prior knowledge of odd symmetry and symmetry.
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3.1. Prior knowledge of odd symmetry and symmetry. For many applications,
especially control problems, the fuzzy systems designed for them should be odd symmetric
or symmetric. The following two theorems will show how to constrain the parameters of
IT2FLSs to incorporate the prior knowledge of odd symmetry and symmetry.

Theorem 3.1. An IT2FLS is odd symmetric, i.e. y(x) = —y(—z) , if the fuzzy rules in
its rule base satisfy the following conditions:

1) the same number of fuzzy rules (denoted as RF', R*2 .. R* and REl,REQ, ...,RE%
respectively) can be fired when £ and —z are input to the I T2FL§';

2) the firing intervals satisfy that [fﬁ(m),?kl (z)] = [ia(—x),fkl(—x)], i=1,2,...,1;

3) the consequent interval weights satisfy that [wki w*] = [—w™, —QEZ'], 1=1,2,...,t.

Proof: If the above conditions 1) 2) and 3) are satisfied, then, from (6) and (8), we
have

yi () = min Zs:tlﬂ fre [fks(x),?ks(:c)],wks € [wh, @]
2521 fks -

= —max { Dot fPe ()

t
Zs:l fks

L o= -

= — max { Do frow

1 e [f*@). 7" @), ~u € [, —wks]}

fks € [igs(_x)a7zs(—l‘)],w%5 c [MES,EES]}

Zzzl fEs

_yr<_x>‘ (10)
%hthefsame way, y.(z) = —y(—x).
y(.’l?) _ yl<x>_'2_y7"<m> _ _yr(_x)z_ yl<_x> _ —y(—.’l’). ]

Theorem 3.2. An IT2FLS is symmetric, i.e. y(x) = y(—x) , if the fuzzy rules in its rule
base satisfy the following conditions: o ~

1) the same number of fuzzy rules (denoted as R* R* .. R¥ and R* R* .. Rk
respectively) can be fired when x and —x are input to the IT2FLS;

2) the firing intervals satisfy that [f‘“(z),?k (z)] = [f]g(—xﬁfk(—x)], i=1,2,...,1;

3) the consequent interval weights satisfy that [wki w*] = [Q’gﬁwki], i=1,2.....t.

Proof: This theorem can be proved in the similar way as the previous theorem. But,
note that, in the proof process of this theorem, y,(x) = y;(—z) and y,.(z) = y,.(—z). O

From Theorem 3.1, it is easy to show that, if the input of the odd symmetric IT2FLS
is 0, then the output of the odd symmetric I'T2FLS is also 0. This property always needs
to be satisfied when IT2FLSs are used as fuzzy controllers for control problems.

3.2. Prior knowledge of bounded range. Notice that the bounded range of an IT2FLS
automatically implies the bounded-input-bounded-output (BIBO) stability of the IT2FLS,
which is usually required in many real-world applications. For the prior knowledge of
bounded range, we have the following results for [T2FLSs:

Theorem 3.3. The output y(x) of an IT2FLS falls in the bounded range B = |b, b], if its
consequent interval weights satisfy that mm {wj }>b and _Imax {w] } <b.

..........

Proof: Note that

IV VLT v S
. Wy > M = = = .
J=te M >oper JF Zk | fF Zk L fF J=len M
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where f* € Fk(x), Fe [wh ")
From (5) (6) and (8), it is obvious that

i< < < w’}.
min {w'} <y(@) < g(w) < max {w'} (12)
If the conditions in this theorem hold, then
< mi < < W) <b
b< min {w'} <y(z) < max {w}<b. (13)

Hence, this theorem holds. []

3.3. Prior knowledge of monotonicity. The monotonicity between the input and
output is one particular, but common, type prior knowledge. In [10], we have addressed
how to incorporate the monotonicity property into IT2FLSs. And, we have also presented
sufficient monotonicity conditions on the parameters of IT2FLSs. For simplicity, here, we
only give useful results about the single-input monotonically increasing I'T2FLS.

Theorem 3.4. [10] Assume that the input domain U is partitioned by M pseudotrapezoid
IT2FSs for a single-input IT2FLS, then, the IT2FLS is monotonically increasing, if the
pseudotrapezoid IT2FSs A', A%, ..., AM form fuzzy partition as shown in Figure 1, and
its consequent interval weights satisfy that w' < w? < ... < w™ and W' <w? < ... <wM

Al Az A3 A4 AM—Z AM—I A'M

1 1
X
|I<—S1 —Nd—sz—»k—U _’"_SM'I—";C

FIGURE 1. Fuzzy partition with M pseudotrapezoid IT2FSs

In this section, parameter constraints of IT2FLSs have been studied to ensure that the
aforementioned prior knowledge can be incorporated. In the following section, we will
show how to design prior-knowledge-based IT2FLSs using these results.

4. Design of Prior-Knowledge-Based IT2FLS. For simplicity, in this work, we only
consider the design of prior-knowledge-based single-input IT2FLSs using both sampled
data and the aforementioned prior knowledge.

To obtain a satisfactory prior-knowledge-based I'T2FLS, two steps are needed. The first
step is to set up the IT2FSs in the antecedent part of the IT2FLS, and the second step is
to optimize the consequent interval weights under the constraints in Theorem 3.1-3.4. The
first step can be accomplished by partitioning the input domains intuitively or through
clustering algorithms. In the following, we mainly focus on the second step.

From (5) (7) and (9),

y(z) = ¢ (2)w (14)

where w = [w!, ..., wM wM]T, and @(z) = [¢1(2), ...¢20s (2)]T in which
a7 (2)+(0- M) f* (@)
k=1,..,M,
2221 (057" ()10 f ‘“( )] (15)
A M (@) +(1- M @) b M4l . oM
SVl M(x)+(1 3 M)fk Tay T A
From ( we can see that the output of the IT2FLS is linear with its consequent

parameters
Suppose that there are N input-output sampled data (z', y'), (z%,9%), ..., (zV,y").
And, the training criteria is chosen to minimize the following square error function:
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E=> |y() -y =) 8" @ )w -y = (ow —y)" (dw — y) (16)
where - -
y=1" vy (17)
¢$($;) ¢1<37;) ¢2<$;) ¢2M(J3;>
®— é (CU ) _ ¢1<:17 ) ¢2<:CU ) ¢2M:(33 ) c peM (18)
7 (V) Si(zY) do(a) - Gon(a)

Thus, if the prior knowledge are used, designing an IT2FLS by minimizing the square
error function can be seen as solving the least squares (LS) optimization problem with
constraints.

The constraints on the consequent parameters in Theorem 3.1 - 3.4 all can be expressed
as linear-inequality constraints with the form Cw < b and/or Ce,w = b.,. The detailed
expressions of C, b, C.,, b, for the aforementioned prior knowledge can be obtained, but,
here, we omit these expressions due to page limitation.

All in all, designing a prior-knowledge-based I'T2FLS by minimizing the square error
function can be transformed to solve the following optimization problem:

min (dw —y)* (dw — y) (19)
) Cw <b,
subject to { Cos = bey, (20)

This least squares (LS) optimization problem with linear-inequality constraints can be
solved using the MATLAB function Isqlin.

5. Simulations. In this section, we will give a simulation to show the usefulness of the
prior knowledge and the advantages of the prior-knowledge-based I'T2FLS under noisy
circumstances.

Consider the following function:

el.2x _ e—l.?x
g(x) =2 ol2e 4 o 12z (21)
where x € U = [—3,3]. It is obvious that this function is monotonically increasing, odd

symmetric and bounded in [-2, 2].
We use 31 input-output data pairs to identify this function. The ith data pair is (z°, y*),
where y' = g(z') +n', in which n’ is the random noise uniformly distributed in [—0.4,0.4].
For comparison, we design 4 FLSs to identify the function: 1) prior-knowledge-based
IT2FLS (PK-IT2FLS), 2) non-prior-knowledge-based IT2FLS (NPK-IT2FLS), 3) prior-
knowledge-based T1FLS (PK-T1FLS), 4) non-prior-knowledge-based T1FLS (NPK-T1FLS).
And, we use the following error index to evaluate the performances of the four FLSs:

= D lole') ~ o(a) (22)

This index can reflect the generalization characteristics and robustness to noise of different
FLSs. For this index, the less the value is, the better the result is.

For each FLS, we use 7 fuzzy rules, whose antecedent membership functions are shown in
Figure 2. Considering the noisy disturbance, four simulations are run. In each simulation,
after the consequent weights of the four FLSs being tuned by the MATLAB function Isqlin,
the error indexes of the four FLSs are computed. The final results are shown in Table 1.
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FIGURE 2. Type-1 and Type-2 fuzzy partitions of the input space [—3, 3]

TABLE 1. Performance of the four FLSs in different cases

Case | PK-IT2FLS | NPK-IT2FLS | PK-T1FLS | NPK-T1FLS
1 0.0598 0.1066 0.0873 0.1288
2 0.0614 0.1476 0.0906 0.1660
3 0.0792 0.1382 0.1012 0.1482
4 0.0769 0.1637 0.1201 0.1691
Average 0.0693 0.1390 0.0998 0.1530

From Table 1, we can observe that the PK-IT2FLS can realize the actual function best
compared with the other three FLSs under noisy circumstances. This implies that prior
knowledge and I'T2FSs can help to improve the generalization ability of FLSs and make
the FLSs more robust to noisy sampled data. Overall, if uncertainties (noise) exist in
the sampled data, there is a need to incorporate prior knowledge into IT2FLSs to achieve
better generalization performance.

6. Conclusions. This study has presented how to design IT2FLSs using both sam-
pled data and prior knowledge. Simulation results and comparisons have shown us that
the prior knowledge can help to improve the performance and generalization ability of
IT2FLSs. Here, we have just explored the prior knowledge of symmetry or odd symme-
try, bounded range and monotonicity. How to utilize the other prior knowledge, such as
fixed points, stability, etc, will be one of our future research directions.
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