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Abstract Load frequency control (LFC) is one of the

most profitable ancillary services of power systems. Gov-

ernor dead band (GDB) nonlinearity is able to deteriorate

the LFC performance. In this paper, controller design via a

neural sliding-mode method is investigated for the LFC

problem of power systems with GDB. Power systems are

made up of areas. In each area, a sliding-mode LFC con-

troller is designed by introducing an additional sate, and a

RBF neural network is utilized to compensate the GDB

nonlinearity of the area. Weight update formula of the RBF

network is derived from Lyapunov direct method. By this

scheme, not only the update formula is obtained, but also

the control system possesses the asymptotic stability.

Simulation results illustrate the feasibility and robustness

of the presented approach for the LFC problems of single-

area and multi-area power systems.

Keywords Load frequency control �
Sliding-mode control � Governor dead band (GDB) �
Compensator design � Neural networks

1 Introduction

Operation of power systems requires matching the total

generation with the total load demand and with the asso-

ciated system losses [1]. To achieve this goal, load fre-

quency control (LFC) is introduced. In practice, LFC is one

of the most important issues in power system design and

operation for supplying sufficient and reliable electric

power with good quality. The main objective of LFC is to

control the real power output of generating units in

response to changes in system frequency and tie-line power

interchange within specified limits [2].

With the increasing of complexity of modern power

systems, applications of advanced control methods on the

LFC problem have been reported in the last decade, e.g.,

optimal control [3], adaptive control [4], robust control

[5, 6], intelligent control [7], internal model control [8, 9],

predictive control [10], etc. See [11] for a complete review

of recent philosophies in LFC control strategies. Sliding-

mode control (SMC) is a form of variable structure control

[12]. Due to its robust behavior in controlling systems with

external disturbances and parameter variations, SMC

imposes as a possible choice to solve the LFC problem. In

[13, 14], two variable structure control methods are

investigated for the LFC problems of multi-area and single-

area power systems, respectively. Recently, SMC has been

paid more and more attentions to deal with the LFC

problem of power systems [15, 16].

As far as power system models are concerned, a linear

model around a nominal operating point is usually used in
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the LFC controller design. However, power system com-

ponents are inherently nonlinear, so the implementation of

LFC strategies based on a linearized model on an essen-

tially nonlinear system does not necessarily ensure the

stability of the system [11]. As Tripathy [17] pointed out,

the effects of these nonlinearities tend to produce contin-

uous oscillations in the area frequency and tie-line power

transient response. For the LFC problem, the nonlinearities

of governor dead band (GDB) and generation rate con-

straint (GRC) are usually involved. A common technology

to handle the nonlinearities is to design a controller for the

linear nominal system; then, the linear model-based con-

troller is directly imposed on the nonlinear system [16–20].

Although this methodology may work, the system stability

cannot be theoretically ensured, the system robustness will

be definitely decreased, and the system performance may

be badly deteriorated. To overcome GRC, Tan in [6] pre-

sented a kind of anti-GRC structure. But so far, there has

been no literature about how to overcome the GDB prob-

lem. Especially, concerning the applications of SMC on

LFC [13–16], only Vrdoljak et al. [16] considered the

effect of the GDB nonlinearity, where their linear model-

based controller was directly applied to the nonlinear sys-

tem. Although their simulation results displayed the con-

troller’s feasibility, a series of drawbacks may be induced

because the linear model-based controller has no ability to

deal with GDB in reality. To turn SMC into practical

accounts on LFC, it is necessary to approximate and

compensate the GDB nonlinearity of LFC.

It is proven that the methodology of radial basis function

(RBF) neural networks (NNs) is a universal approximator

[21]. In [22], a gradient-type method on basis of RBF NNs

is proposed to deal with the dead band nonlinearity. So far,

there has been rare literature about employing sliding-

mode-based RBF NNs to compensate the GDB problem of

LFC. In this paper, a sliding-mode controller is developed

for the LFC problem of a linear power system at first. Then,

a sliding-mode-based RBF NN compensator is designed to

compensate the nonlinearity of GDB. Weight update for-

mula of the network is deduced from Lyapunov direct

method, so the weight convergence and system stability are

simultaneously guaranteed in the sense of Lyapunov

scheme. Finally, simulation results show the feasibility and

robustness of the presented method for the LFC problems

of nonlinear single-area and multi-area power systems.

2 System model

The power system for the LFC problem under consider-

ation is expressed only to relatively small changes, so it can

be adequately represented by the linear models of gover-

nor, turbine, and power system in Fig. 1. Figure 1 repre-

sents the block diagram of a single-area power system with

the GDB nonlinearity. Note that the generating unit in

Fig. 1 means all units in the prescribed area are lumped

together. The symbols in Fig. 1 are explained as Laplace

operator s, speed regulation due to governor action R (Hz/

p.u.MW), governor time constant Tg (s), turbine time

constant Tt (s), electric system time constant Tp (s), electric

system gain Kp, incremental frequency deviation Df ðtÞ
(Hz), incremental change in generator output DPgððtÞ
(p.u.MW), load disturbance DPdðtÞ (p.u.MW), incremental

change in governor valve position DXgðtÞ; control input

produced by the designed LFC controller u(t). In state

space, to force the steady state of Df ðtÞ to tend to zero, the

integral of Df ðtÞ is introduced as an additional state [5],

defined as

L½DEðtÞ� ¼ Ke

s
L½Df ðtÞ� ð1Þ

where Ke is gain of the additional state, L½�� means

Laplace transform. It is obvious that the system consists of

three parts:

– Turbine with dynamics GtðsÞ ¼ 1
Ttsþ1

– Generator with dynamics GgðsÞ ¼ 1
Tgsþ1

– Electric power system with dynamics GpðsÞ ¼ Kp

Tpsþ1

3 Control design

Due to the difficulties of designing a controller for the

theoretically stable system with GDB in Fig. 1, the fol-

lowing technical route is going to be adopted. We will

Fig. 1 Diagram of a single-area

power system with the GDB

nonlinearity
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develop a SMC controller for the linear system with no

GDB at first. But the linear model-based controller may

deteriorate the performance of the real nonlinear system

shown in Fig. 1. To achieve the LFC objective, it is desired

to solve the issue. Then, a sliding-mode-based neural

compensator is proposed to compensate the GDB nonlin-

earity of the real nonlinear system. At last, the controller

designed for the linear power system and the compensator

for GDB will work together to realize the LFC objective of

the nonlinear power system.

3.1 Design of sliding-mode controller

The linear system with no GDB shown in Fig. 1 involves

four state variables, i.e., DPg;DXg;Df and DE: The state

equation of the linear system is depicted as

_xðtÞ ¼ AxðtÞ þ BuðtÞ þ FdðtÞ ð2Þ

where x ¼ ½Df DPg DXg DE�T is state vector, u is LFC

control input, d is load disturbance, A is a 4 9 4 system

matrix, B is a 4 9 1 input matrix, and F is a 4 9 1

disturbance matrix.

A ¼

� 1
Tp

Kp

Tp
0 0

0 � 1
Tt

1
Tt

0

� 1
RTg

0 � 1
Tg
� 1

Tg

Ke 0 0 0

2
6664

3
7775 B ¼

0

0
1
Tg

0

2
664

3
775

F ¼

Kp

Tp

0

0

0

2
664

3
775

The control objective of LFC is to keep the change in

frequency Df as close to 0 as possible when the system is

subjected to a load disturbance d by manipulating the input

u. Here, we employ the SMC technology to achieve this

goal. At first, a sliding surface is defined as

S ¼ cTx ð3Þ

here c is a 4 9 1 constant matrix. Usually, the SMC law is

made up of two parts, equivalent control and switching

control [12]. We differentiate S with respect to time t

and let _S ¼ 0: The equivalent control law ueq can be gotten

as

ueq ¼ �ðcTBÞ�1cTAx ð4Þ

Then, substituting (4) into (2), we can have c by

Ackermann’s formula [12]. Define a Lyapunov function

V ¼ S2

2
; define the total SMC law u as ueq ? usw (here usw

is the switching control law), differentiate V with respect to

time t, substitute (2), (3), (4) into _V; then, we are able to

obtain usw from _V\0 as

usw ¼ �ðcT BÞ�1½KSþ gsgnðSÞ� ð5Þ

where K and g are positive constants, sgnð�Þ means sign

function. On the aspect of system stability, we choose

g[ cTF �d; here �d ¼ sup dðtÞ: Finally, the total SMC law u

for the linear model can be obtained by ueq plus usw.

3.2 Design of neural compensator

Due to RBF NNs owning the ability to approximate com-

plex nonlinear mapping directly from input–output data

with a simple topological structure [21], we will adopt such

the kind of NNs to realize the compensator design. In Fig. 2,

a RBF NN with the input u� and the output Du� is utilized to

compensate the dead band of the system, where u� and Ds�

are defined as u� DE � Df
R and u� þ Dû�; respectively.

Define a nonlinear function Dð�Þ as Ds ¼ DðDs�Þ to

depict the dead band nonlinearity in Fig. 2; then, the

inverse of the dead band nonlinearity D-1 is able to be

obtained as

D�1ðu�Þ ¼ u� þ Du� ð6Þ

here Du� is the desired output of the neural network. From

(6), Du� can be obtained as Du� ¼ D�1ðu�Þ � u�: This case

inspires us to approximate D by utilizing the properties of

NNs. In Fig. 2, it is obvious that Dû� is the estimated value

of D. Thus, the network output is determined as

Dû� ¼ wc
TUcðu�Þ ð7Þ

here wc � Rnc�1 is the weight vector of the RBF network,

where nc is the number of the hidden neurons, Ucðu�Þ ¼
½/c1ðu�Þ; /c2ðu�Þ; . . .;/cnc

ðu�Þ�T is a radial basis function

vector where the kth RBF function of the network is

determined as

/ckðu�Þ ¼ exp � jju
� � cckjj2

d2
ck

 !
ð8Þ

here cck and dck depict the center and width of the kth

hidden neuron of the network, respectively. For the further

analysis, we have the following assumption.

Assumption 1 There exists an optimal weight vector wco,

so the network output satisfies jwco
TUðu�Þ � wc

TUðu�Þj
\�c; where �c is a positive constant.

Fig. 2 Diagram of RBF NNs to compensate the GDB nonlinearity
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Theorem 1 Consider the nonlinear system as Fig. 1,

design the SMC controller as (4) and (5), compensate the

GDB as Fig. 2. If the update formula of the network weight

wc in Fig. 2 is adopted as

_wc ¼ a � S2 � Ucðu�Þ ð9Þ

here a is a positive constant, then, the control system is of

asymptotic stability.

Proof Define ~wc ¼ wco � wc as the weight error of the

network, so we have _~wc ¼ � _wc: Then, we define another

Lyapunov function (10) to deduce the update formula of

the network.

Vn ¼
S2

2
þ a�1 ~wT

c ~wc

2
ð10Þ

Differentiating Vn with respect to time t yields

_Vn ¼ S _Sþ a�1 _~wT
c

_~wc ¼ S _S� a�1 ~wT
c _wc ð11Þ

Substituting (2), (3), (4) and (5) into (11), we have

_Vn ¼ S �KS� gsgnðSÞ þ cT FdðtÞ
� �

� a�1 wT
co � wT

c

� �
_wc

¼ �KS2 � gjSj þ cT FdðtÞS� a�1 wT
co � wT

c

� �
_wc

ð12Þ

Substituting (9) into (12), we can obtain

_Vn ¼ �KS2 � gjSj þ cT FdðtÞS� S2 wT
co � wT

c

� �
Ucðu�Þ

ð13Þ

Further, there exists the following inequation in light of

Assumption 1.

_Vn\� KS2 � gjSj � �cS2 þ cT FdðtÞjSj
\� KS2 � �cS2 � ðg� cT F �dÞjSj ð14Þ

In the sense of Lyapunov stability scheme, (14) indicates
_Vn\0, so the update formula in (9) is able to ensure the

asymptotic stability of the control system with the GDB

nonlinearity by employing the SMC law (4) and (5) and the

sliding-mode-based neural compensation law (7). h

4 Simulation results

In this section, the presented method will be applied to

LFC of a single-area power system with GDB. Typical

values of the system parameters of the single-area power

system [8] are determined as Kp = 120, Tp = 20, Tt =

0.3, Tg = 0.08, R = 2.4 and Ke = 0.1. Typical dead band

constraint [17] is 0.06%. The parameters of the sliding

surface S are gotten as c = [0.16 0.30 0.08 3.22]T from

Acker command of MATLAB by placing the pole of Ac-

kermann’s formula in the specified vector [- 1 - 1.3

? 2.5i - 1.3 - 2.5i - 13.3]T. The switching control

parameters are picked up as K = 6 and g = 0.01 after trial

and error. cck, the center of the k-th hidden neuron of the

RBF network, is set as random number in the interval

[0, 1]. The center cck is able to be gotten by the orthogonal

least square algorithm [23] as well. dck, the width of the

k-th hidden neuron of the RBF network, is set as 0.2. Other

parameters a and nc are set as 10-10 and 12, respectively.

The initial weights of the network are set as random

number in the interval [0 10-4]. Load disturbance

d(t) = 1% is applied to the system at t = 0.

Simulation results in Fig. 3 illustrate the feasibility of

the presented control method, where the blue solid depicts

the results with RBF NN compensating the dead band

constraint and the black dash plots the results with no RBF

NN compensator. Both the simulation results are executed

by the same SMCler and load disturbance. The solitary

difference between the two simulations is that one is con-

ducted with both the compensator and the controller, and

that the other is conducted by the sole controller without

any compensator.

As displayed in Fig. 3, the presented approach, with the

RBF NN compensator updating the network weights as (9),

is able to ensure the asymptotic stability of the control

system in the sense of Lyapunov. Although the curves of

change of governor output DP and change of governor

valve position DX almost make no difference in Fig. 3b, c,

the curve of frequency deviation Df in Fig. 3a demon-

strates the superiority of the presented method on the

aspect of decreasing overshoot. In Fig. 3e, the blue solid

indicates the network output and the black dash means the

actual value of GDB during the simulations. From Fig. 3,

the designed compensator is able to partly compensate and

approximate the dead band nonlinearity of power systems.

In this sense, it is a sub-optimized method. But such

intelligent method is able to realize robust control of this

nonlinear system, and it is feasible to deal with the GDB

constraint of LFC of power systems.

The simulation results in Fig. 3 are conducted for the

nominal system via the SMC controller and compensator

designed for the nominal system. In practice, the exact

values of the system parameters are known to belong to

a certain interval. To test the robustness of the pre-

sented method, the following parameter variation is taken

into accounts, 1
Tt
2 ½2:564; 4:762�; 1

Tg
2 ½9:615; 17:857�; 1

Tp
2

½0:033; 0:1�; Kp

Tp
2 ½4; 12�; 1

RTg
2 ½3:081; 10:639�: Under the

robustness test, the controller and compensator parameters

remain the same as the ones tuned for the nominal power

system. A step load of magnitude 1% is applied at t = 0 for

the two extreme cases. The responses are shown in Fig. 4.

From Fig. 4, it is clear that the proposed method possesses

good disturbance rejection performance and good robust

stability against parameter variation.
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5 Extensions of two-area interconnected power systems

The presented method can be extended to multi-area power

systems with the GDB problem as well. Control areas

interconnected each other by tie-lines consist of multi-area

power systems. For the multi-area case, not only should the

frequency of each control area return to its nominal value,

but also the net interchange through the tie-line should return

to the scheduled values. To achieve the composite goal, a

new measure, named area control error (ACE), is introduced.

For simplicity, a two-area interconnected power system is

taken into practical accounts for the LFC problem with

GDB. The model of the first control area is shown in Fig. 5.

All symbols are similar with Fig. 1, except that DPtie is

the tie-line active power deviation, T12 (p.u.MW) is the

interconnection gain or synchronizing power coefficient

between the two areas, B1 (p.u.MW/Hz) is the frequency

bias factors of the two areas, Dd1 and Dd2 (rad) are the

rotor angle deviation of the two control areas. The ACE of

the first control area, ACE1, is defined as

ACE1 ¼ DPtie þ B1Df1 ð15Þ

Just as the method adopted for the single-area power

system model, we also introduce an additional state (16) to

force the composite measure to zero.

DAS1 ¼
Z

KACE1 � ACE1dt ð16Þ

here KACE1 is gain of this additional state. As proven in

[15, 16], the state equation of the nominal first control area

with no GDB is able to be depicted as

_x1ðtÞ ¼ Am1x1ðtÞ þ Bm1u1ðtÞ þ Fm1d1ðtÞ ð17Þ

where x1 ¼ ½Df1 DPg1 DXg1 DPtie DAS1�T is state vector, u1

is LFC control input of the first control area, Am1 is a 5 9 5

system matrix, Bm1 is a 5 9 1 input matrix, Fm1 is a 5 9 1
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Fig. 3 Simulation results of

single-area power systems.

a Frequency deviation D f ;
b Change of generator output

D P; c change of governor valve

position D X; d extra state,

e GDB nonlinearity and its

estimated value, f sliding

surface S
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disturbance matrix, d1(t) is load disturbance of the first

control area.

Am1 ¼

� 1
Tp1

Kp1

Tp1
0

Kp1

Tp1
0

0 � 1
Tt1

1
Tt1

0 0

� 1
R1Tg1

0 � 1
Tg1

0 � 1
Tg

T12 0 0 0 0

KACE1B1 0 0 KACE1 0

2
666664

3
777775

B ¼

0

0
1
Tg

0

0

2
66664

3
77775

F ¼

Kp

Tp

0

0

0

0

2
66664

3
77775

Along the technical route designed in Sect. 3, the

controller and compensator of the first control area are

able to be obtained. For this case, the parameters of the

sliding surface are obtained as [117.7 53.0 5.6 - 400.3

1983.6]T from Acker command of MATLAB software by

placing the pole of Ackermann’s formula in the specified

vector [- 26 - 10 - 5 ? i - 5 - i - 40]T. Here, the

switching control parameters are picked up as K1 = 6 and

g1 = 0.01. Other structure parameters in the example

are determined as KACE1 = 1.00, T12 = 0.545 and B1 =

0.425. For the compensator’s part, the related parameters are

the same as the ones in Sect. 3. The second control area in

this example is with the same structure and parameters

shown in Fig. 5. It is interconnected with the first control

area via the tie-line.

To show the performance of the presented method, a

step load DPd1 ¼ 1% is applied to the system at t = 0 and

the response curves are shown in Fig. 6. Also illustrated are

the responses of the decentralized robust PID controller

designed by Tan [6], where the PID controller is with the

form 1:57þ 2:40
s þ 0:53s: It is observed that the proposed

approach achieves the better performance on the aspects of

three key indexes, i.e., frequency deviation, tie-line

scheduled power, area control error of the two control

areas. The reason is due to the fact that the designed SMC
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Fig. 4 Simulation results of

robustness test. a Frequency

deviation D f ; b change of

generator output D P; c Change

of governor valve position D X;
d extra state

Fig. 5 Diagram of the first

control area with GDB
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controller is a state-based method. All the system infor-

mation can be employed to improve the system perfor-

mance. Further, the neural compensator is utilized to

compensate the GDB nonlinearity. Both of the effects

make the presented method possess a better performance.

On the other hand, the robust PID controller [5] only uses

the information of the frequency deviation or area control

error, which makes the system performance inferior.

Figure 7 displays the outputs of the neural compensators of

the two control areas. It is obvious that the compensators of

the two areas are able to partly compensate the system

nonlinearity, just as the similar results shown in Fig. 3.
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e deviation of tie-line active

power DPtie; f sliding surface S
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of the first control area, b output

of the second control area
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6 Conclusions

A neural SMC method for LFC of power systems with the

GDB nonlinearity has been proposed. In this scheme, an

additional state is introduced to the control system. Then, a

sliding-mode controller is designed for the linear nominal

system with no GDB, and a neural compensator is pro-

posed to compensate GDB. The controller and compensa-

tor work together to realize robust control of the nonlinear

system. The weight update formula of the network is

deduced from Lyapunov direct method. It is proven that the

controller and compensator are able to ensure that the

control system is of asymptotic stability. Simulation results

illustrate the validity and robustness of the proposed

method via a single-area power system with GDB. More-

over, this method is extended to a two-area case, which

demonstrates the feasibility of the presented method for

LFC of multi-area interconnected nonlinear power systems.
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