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A Complementary Modularized Ramp Metering
Approach Based on Iterative Learning Control

and ALINEA
Zhongsheng Hou, Xin Xu, Jingwen Yan, Jian-Xin Xu, Senior Member, IEEE, and Gang Xiong

Abstract—Ramp metering is an effective tool for traffic man-
agement on freeway networks. In this paper, we apply iterative
learning control (ILC) to address ramp metering in a macroscopic-
level freeway environment. By formulating the original ramp me-
tering problem as an output regulating and disturbance rejection
problem, ILC has been applied to control the traffic response.
The learning mechanism is further combined with Asservissement
Linéaire d’Entrée Autoroutière (ALINEA) in a complementary
manner to achieve the desired control performance. The ILC-
based ramp metering strategy and the modified modularized ramp
metering approach based on ILC and ALINEA in the presence of
input constraints are also analyzed to highlight the advantages and
the robustness of the proposed methods. Extensive simulations are
given to verify the effectiveness of the proposed approaches.

Index Terms—ALINEA, iterative learning control (ILC), ramp
metering, traffic control.

I. INTRODUCTION

AN INCREASINGLY important area in the field of intel-
ligent transportation systems is freeway traffic control,

which has become feasible owing to the freeway infrastructure
development in metropolitan areas in both developed and de-
veloping countries. Ramp metering, when properly applied, is
an effective tool for efficient traffic management on freeways
and freeway networks [1]. The purpose of ramp metering is
to regulate the amount of traffic entering a given freeway at
its entry ramps so that the freeway can operate at a desired
level of service. Ramp metering is useful when traffic is not
in an extreme situation. Ramp metering will not be needed if
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the traffic is too light and be ineffective if the traffic is too
dense because breakdown will happen anyway. Ramp metering
is implemented by placing a traffic light at the on-ramp that
allows the vehicles to enter the freeway in a controlled way
and thus reduces the disturbance of the traffic on the mainline.
From the viewpoint of the administrative agent of a freeway,
an appropriate control mechanism is needed so that incoming
traffic does not lead to overflow or underflow on the freeway.
By overflow, the freeway is overly utilized and accidents or
congestion may easily occur. By underflow, a low utilization
rate of the freeway incurs, and it is not cost effective. Thus,
the objective of ramp metering is to maintain a desired level of
service for the freeway system such that the freeway system can
efficiently be utilized.

Ramp metering strategies can be classified into two cate-
gories [1]. One category is the reactive strategy aiming at main-
taining the freeway traffic conditions close to the desired values
by means of real-time measurements. The other is the proac-
tive strategy aiming at specifying optimal traffic conditions
for a whole freeway or freeway network based on demands
and model predictions over a sufficiently long time horizon.
Reactive ramp metering may be local or coordinated. Local
strategies make use of traffic measurements in the vicinity
of each ramp, calculating the corresponding individual ramp
metering values, whereas coordinate strategies use available
traffic measurements from a larger portion of a freeway. Local
strategies are far easier to design and implement. Nevertheless,
they have been proven to be noninferior to more sophisticated
coordinated approaches under recurrent traffic congestion con-
ditions [2].

The most well-known local ramp metering strategies are
the demand–capacity (DC) strategy [3], the occupancy (OCC)
strategy [3], and ALINEA [4]. The DC and OCC strategies
are feedforward schemes because they use upstream measure-
ments. However, the upstream states could be affected by
on-ramps during congestion. ALINEA is a feedback regula-
tor that is based on mainstream measurements of occupancy
downstream of the ramp. ALINEA has been found to lead
to significantly better performance as compared with DC and
OCC strategies in several comparative field evaluations [2].
According to a recent report, ALINEA has been implemented
in various sites in five European countries [5]. Some advanced
control methods, such as fuzzy logic control [6] and neural
networks (NNs) [7], which have good learning mechanisms to
fit particular traffic patterns, are also proposed for local ramp
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metering. However, these methods are not so easy to implement
in practice due to their rather complicated controller structures.

Traffic flow patterns are in general repeated every day. For
instance, the traffic flow will start from a very low level at
midnight and gradually increase up to the first peak of morning
rush hour, which is often from 7 to 9 A.M., and the second peak
from 5 to 7 P.M. Congestion typically starts at the same location
every day. Based on this observation, the iterative learning
control (ILC)-based ramp metering strategy has been proposed
for freeway density control [8], [9] in a daily or weekly basis. In
[8], the basic ILC-based ramp metering and speed control are
discussed. In [9], the learning mechanism combined with a pure
error feedback in a complementary manner is studied, and the
simulation results have shown its superiority to pure ILC-based
or pure-feedback controllers.

ILC was first proposed in [10] for the control of a system that
repeats the same task in a finite interval. Since then, ILC has
extensively been studied and achieved significant progresses in
both theory and applications [8], [9], [11]–[13]. ILC has a very
simple structure, i.e., an integrator along the iteration axis. It
requires very little system knowledge; only the bound of the
direct transmission term (in general the Jacobian) of the system
input/output is needed to guarantee the learning convergence
iteratively. Thus, it is almost a model-free method. This is a
very desirable feature in traffic control as the traffic model and
the environmental factors may not be well known in practice.

The goal of this paper is to design and analyze the ILC-based
control laws for the freeway traffic system with day-to-day strict
repeatability, which can either work independently or cowork
with the existing ALINEA controller, generating a sequence of
control input profiles that drive the traffic flow density to the de-
sired level in the presence of modeling uncertainties, unknown
disturbances (exogenous quantities that are not measurable),
and input constraint.

The main contributions of this paper include the following
three points. First, the well-known ALINEA strategy is used
instead of the pure error feedback. Second, a new complemen-
tary configuration for the feedforward ILC controller and the
feedback ALINEA is proposed. Third, the input saturation is
studied for the ILC controller alone and for the complementary
configuration, respectively.

The main advantages of ILC-based ramp metering strategies
over other intelligent control methods, such as fuzzy logic
control and NN control, can be summarized here. First, the
learning mechanism of ILC is much simpler than other learning
mechanisms, hence easy to implement. Second, although sim-
ple in structure, the effectiveness of the ILC-based approach,
such as learning convergence, is analyzed and guaranteed with
mathematical rigor for nonlinear traffic dynamics, whereas the
efficacy of other intelligent control methods, such as the fuzzy-
or NN-based ramp metering strategies, is only justified through
a simulation study or by experimental results on a particular
freeway. In the freeway traffic control field, the design of a
theory-supported macroscopic controller is an issue that has yet
to be addressed. Third, owing to the simplicity, ILC can easily
be added to existing feedback controllers, such as ALINEA,
with rigorous analysis. Fourth, in ILC design, the prior knowl-
edge or historical information/data required is very minor.

Fig. 1. Segments on a freeway with on/off ramp.

Fuzzy logic control and NN control, on the other hand, would
not be easy to implement due to the high complexity and nonlin-
ear structure and the unavailability on the dynamic knowledge
or the impractical real-time training data of the freeway traffic.
Finally, the convergences for the ILC-based and the modified
ILC-based freeway control approaches do not depend on the
model parameters and traffic flow model, whereas the time-
varying parameters and the uncertainties in the macroscopic
model, which are common in a traffic system, will deteriorate
the rules and NN-based controller’s performance.

This paper is organized as follows: In Section II, the discrete
traffic flow model is introduced. In Section III, the convergence
analysis of the ILC-based ramp metering and the complemen-
tary modularized ramp metering approach based on ILC and
ALINEA are presented. The input saturation is studied for the
ILC controller alone and for the complementary configuration
in Section IV. Case studies with simulations are provided in
Section V. Section VI concludes this paper.

II. TRAFFIC FLOW MODEL AND PROBLEM FORMULATION

A. Traffic Flow Model

The analogy between traffic flow and fluid flow forms the
basis for the first traffic flow model [14], which is further
modified in [15] and [16]. A more sophisticated model, which
is proposed in [17]–[19], is tested and validated using real-time
traffic data from the Boulevard Peripherique in Paris. In this
paper, we will use the model from [17]–[19].

The space and time discretized traffic flow model for a single
freeway lane with one on-ramp and one off-ramp is shown in
Fig. 1, and its formulation is given as follows:

ρi(k+1) = ρi(k)+
T

Li
[qi−1(k)−qi(k)+ri(k)−si(k)] (1)

qi(k) =ωρi(k)vi(k)+(1−ω)ρi+1(k)vi+1(k) (2)

vi(k+1) = vi(k)+
T

τ
[V (ρi(k))−vi(k)]

+
T

Li
vi(k) [vi−1(k)−vi(k)]

− νT

τLi

[ρi+1(k)−ρi(k)]
[ρi(k)+κ]

(3)

V (ρi(k)) = vfree

(
1−
[
ρi(k)
ρjam

]l
)m

(4)

where T is the sample time interval in hours, k = {0, 1, . . . ,K}
is the kth time interval, i = {1, 2, . . . , N} is the ith section of
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a freeway, and N is the total number of sections. The model
variables are listed as follows:

ρi(k) density in section i at time kT (in vehicles
per lane per kilometer);

vi(k) space mean speed in section i at time kT (in
kilometers per hour);

qi(k) traffic flow leaving section i and entering
section i + 1 at time kT (in vehicles per
hour);

ri(k) on-ramp traffic volume for section i at time
kT (in vehicles per hour);

si(k) off-ramp traffic volume for section i at time
kT (in vehicles per hour), which is regarded
as an unknown disturbance;

Li length of freeway in section i (in kilometers);
vfree and ρjam free speed and maximum possible density

per lane, respectively.
κ, τ , and ν are constant parameters characterizing a given

traffic system in terms of the vehicle characteristics, drivers’
behaviors, freeway geometry, etc., in units of vehicles per
kilometer, hours, and square kilometers per hour, respectively. l,
m, and ω are coefficients of the model. For a real-life network,
those parameters are determined by a validation procedure. A
validated model, however, that is accurate for one place may
not hold in another place. The macroscopic model is shown to
work fairly accurately with Li in the order of 500 m or less.
For numerical conservation reasons, T and Li should be chosen
such that T < Li/vfree.

Equation (1) is the conservation equation, (2) is the flow
equation, (3) is the empirical dynamic speed equation, and (4)
represents the density-dependent equilibrium speed.

B. Boundary Conditions

We assume that the traffic flow rate entering section 1 during
the time periods kT and (k + 1)T is q0(k), and the mean
speed of the traffic entering section 1 is equal to the mean
speed of section 1, i.e., v0(k) = v1(k). We also assume that
the mean speed and the traffic density of the traffic exiting
section N + 1 are equal to those of section N , i.e., vN+1(k) =
vN (k), ρN+1(k) = ρN (k). The boundary conditions can be
summarized as follows:

ρ0(k) = q0(k)/v1(k) (5)

v0(k) = v1(k) (6)

ρN+1(k) = ρN (k) (7)

vN+1(k) = vN (k) ∀k. (8)

C. Control Objective

Let Ip denote the set of sections that have on-ramps, i.e., Ip =
[i1, i2, . . . , ip], where ij (j = 1, 2, . . . , p) is the number of the
section with an on-ramp, and p is the total number of sections
with on-ramps.
� is a linear transformation mapping in a normed

space XN , i.e., � : XN → Xp, and �(X) = QX, where

Q = [εi1 , εi2 , . . . , εip
]T is a p × N matrix, and εij

=
[0, . . . 0, 1, 0, . . . , 0]T represents the unit vector with only the
ij th component to be 1. Further define P = QT .

The control objective is to seek an appropriate control profile
that specifies the on-ramp traffic flow rIp

(k) that drives the
traffic density of sections Ip at time k to converge to the desired
traffic density ρIp,desired(k) for k ∈ {0, 1, . . . ,K}, despite the
modeling uncertainties and disturbances occurring at some off-
ramps.

III. ITERATIVE LEARNING CONTROL-BASED RAMP

METERING AND COMPLEMENTARY MODULARIZED

DESIGNING BASED ON ITERATIVE LEARNING

CONTROL AND ALINEA

A. State Space Representation and Assumptions

The macroscopic traffic flow model described by (1) and (2)
can be written in the following form:

ρi(k + 1) = ρi(k) +
T

Li
(vi−1(k)ρi−1(k)

−ρi(k)vi(k) + ri(k) − si(k))

=
(

1 − T

Li
vi(k)

)
ρi(k) +

T

Li
vi−1(k)ρi−1(k)

+
T

Li
ri(k) − T

Li
si(k)

= ai(k)ρi(k) + bi(k)ρi−1(k)
+ ci(k)ri(k) − ci(k)si(k) (9)

where ai(k) = 1 − (T/Li)vi(k), bi(k) = (T/Li)vi−1(k), and
ci(k) = (T/Li).

Denoting

x(k) = [v1(k), v2(k), . . . , vN (k)]T

y(k) = [ρ1(k), ρ2(k), . . . , ρN (k)]T

u(k) =
[
ri1(k), ri2(k), . . . , rip

(k)
]T

s(k) = [s1(k), s2(k), . . . sN (k)]T

A (x(k)) =

⎡
⎢⎢⎢⎢⎣

a1(k) 0 · · · 0
b2(k) a2(k) · · · 0

0 b3(k) a2(k)
...

bN (k) aN (k)

⎤
⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎣

c1(k)
c2(k)

. . .
cN (k)

⎤
⎥⎥⎦

η (x(k)) =

⎡
⎢⎢⎣

b1(k)ρ0(k)
0
...
0

⎤
⎥⎥⎦

then the model (1)–(4) can be rewritten in state space form as

x(k + 1) = f (x(k),y(k)) (10)

y(k + 1) =A (x(k))y(k) + BPu(k) + η (x(k)) − Bs(k)

(11)
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where f(·, ·) is a corresponding vector-valued function, and
B = diag(T/L1, T/L2, . . . , T/LN ). s(k) is the unknown
leaving traffic flow on off-ramp at time k, which will be
considered as the repetitive disturbance.

Throughout this paper, ‖ · ‖ denotes the infinite norm, i.e.,
for an s × t matrix M, in which mi.j symbolizes its entries

‖ · ‖ = max
1≤i≤s

t∑
j=1

|mi,j |.

Before showing the main results of the proposed discrete ILC
system, we define the λ norm of a vector u(k) as

‖u(k)‖λ = supk∈[0,K] a
−λk ‖u(k)‖

where λ > 0, and a > 1.
Assumption 1: The functions f(·, ·), A(x(k)), and η(x(k))

are uniformly globally Lipschitz on a bounded compact set
Ω = X × Y with respect to their arguments for k ∈ [0,K], i.e.,

‖�f (x1(k),y1(k))−�f (x2(k),y2(k))‖
≤ kx ‖� (x1(k)−x2(k))‖+ky ‖� (y1(k)−y2(k))‖

‖�A (x1(k))−�A (x2(k))‖≤kA ‖� (x1(k)−x2(k))‖
‖�η (x1(k))−�η (x2(k))‖≤kη ‖� (x1(k)−x2(k))‖

(12)

where kx, ky , kA, and kη are Lipschitz constants. X and Y
are the ranges of speed and density of the traffic flow on the
freeway, respectively.

Assumption 2: The reinitialization condition is satisfied
throughout the repeated iterations, i.e.,

xn(0) = xd(0), yd(0) = yn(0) ∀n

where xd(0) is the initial value of the desired state, and n is the
iteration number for ILC.

Assumption 3: There exists a control profile ud(k) that can
exactly drive the system output to track the desired trajectory
�yd(k) for systems (10) and (11) over the finite time interval
[0,K].

Assumption 1 requires the traffic model be globally Lipschitz
continuous, which is satisfied in our case because the traffic
flow model (1)–(4) is continuously differentiable in all argu-
ments on any bounded compact set Ω. Moreover, the system
states (density and mean speed) cannot be infinite in practice.
In addition, the time interval is also finite. This leads to the
bounded compact set Ω. Assumption 2 demands the initial
state values to be consistent with the desired value. In practice,
if this condition is not met, then we can always align the
target trajectory with the actual trajectory at the initial stage
of tracking [20]. Assumption 3 is a reasonable assumption that
the task should be solvable.

B. Pure ILC Strategy

The pure ILC law for the freeway traffic local ramp is
constructed as follows:

un+1(k) = un(k) + β�en(k + 1) (13)

where n indicates the iteration number, and β is an itera-
tive learning gain matrix. en(k + 1) = yd(k + 1) − yn(k +
1), and yd(k) is the desired output signal (density) at time k.

Theorem 1: Under Assumptions 1–3, choosing the learning
gain matrix β such that ‖Ip×p − βQBP‖ < 1 in the ILC law
(13), the mapped output of the traffic system (10) and (11) will
converge to the desired output along the iteration axis, i.e.,

�yn(k) → �yd(k) as n → ∞ for all k = 1, 2, . . . ,K.

Proof: The proof is similar to that of Theorem 2 and,
hence, is omitted. �

Remark 1: According to the traffic model, the scope of β can
easily be determined. Note that the B matrix is diagonal, and
all the parameters Lij

and T are known a priori. The learning
gain matrix becomes β = diag(βi1 , βi2 , . . . , βip

), where βij
is

a scalar satisfying the following relation:

0 < βij
<

2Lij

T
.

Remark 2: It is interesting to note that the learning con-
vergence is solely depending on the known parameters Lij

and T . The other system parameters, such as τ , ν, κ, l, m,
and ω, whose exact values may not be available, will not
affect the learning convergence. Therefore, ILC is suitable for
traffic control when model mismatching exists. Moreover, the
exogenous disturbances s(k) will be eliminated entirely by
the learning control and will therefore not affect the learning
convergence.

C. ILC Add-On to ALINEA

In ramp metering control, feedback-based methods, such as
ALINEA [3], have been developed and implemented over a
long period. It would be inappropriate to completely replace
the existing feedback control algorithms with ILC. Instead, we
seek the combination of feedback and ILC, in which ILC is an
add-on component to the existing control system. Thus, we can
retain the functionality of the existing feedback loop and mean-
while enjoy the extra performance improvement from ILC. The
block diagram of such a combined controller is demonstrated
in Fig. 2. Note that, in addition to the inner feedback loop,
ILC constitutes an outer loop along the iteration axis, as the
learning correction term is generated in the nth iteration and fed
to the next iteration. Mathematically, such a control strategy is
expressed as follows:

un(k) = ub
n(k) + uf

n(k) (14){
ub

n(0) = ϕ�en(0), if k = 0
ub

n(k) = ub
n(k − 1) + ϕ�en(k), if k > 0

(ALINEA)

(15)

uf
n(k) = un−1(k) + β�en−1(k + 1) (16)

where uf
n(k) denotes the ILC part, and ub

n(k) is the ALINEA,
and ϕ is the feedback gain of ALINEA.

The convergence property of the preceding control mecha-
nism is subsequently summarized.
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Fig. 2. Block diagram of the learning control strategy with a feedback
ALINEA controller.

Theorem 2: Under Assumptions 1–3, choosing the learning
gain matrix β such that ‖Ip×p − βQBP‖ < 1 in the learning
law (16), the mapped output of the traffic system (10) and
(11), which is controlled by ILC (16) together with ALINEA
(15), will converge to the desired output along the iteration
axis, i.e.,

�yn(k) → �yd(k) as n → ∞ for all k = 1, 2, . . . ,K.

Proof: See Appendix A. �
Remark 3: ILC complements ALINEA in two aspects. First,

from (15), we can observe that ALINEA is a discrete-time
integrator, which is effective to eliminate constant offset but less
effective for time-varying disturbances. Since ILC is a point-
wise integral control, it is effective in coping with time-varying
disturbances that repeat daily and weekly. Second, ALINEA is
a current cycle feedback that provides the control system with
the desired robustness property, whereas ILC is a feedforward
compensation that essentially provides a kind of prediction
based on the entire operation period of previous control actions.
Owing to the complementary functions, we can expect a better
performance by the integrated control (14) in comparison with
either ALINEA (15) or pure ILC (16).

Remark 4: Repeating the proof of Theorem 2, we can derive
the proof for Theorem 1 by simply letting the ALINEA feed-
back part be zero.

Remark 5: From (A.21) in Appendix A, we can observe that
‖ub

n(k − 1)‖λ → 0 when the learning converges. This implies
that the control system will be dominated by feedforward, and
the ALINEA feedback is effectively off. This is consistent with
the feature of most intelligent control systems.

Remark 6: Note that the learning controller design and the
convergence condition are independent of the stabilizing con-
troller ALINEA. On the other hand, at any iteration, what the
ILC generates are exogenous signals to the ALINEA; hence,
the closed-loop feedback characteristics retains. In other words,
ALINEA and ILC concurrently work as two independent mod-
ules without interfering with each other. Thus, whenever neces-
sary, we can simply switch off either of the control module and
the remaining module will still perform well.

IV. ITERATIVE LEARNING CONTROL-BASED RAMP

METERING AND MODULARIZED DESIGNING BASED

ON ITERATIVE LEARNING CONTROL AND

ALINEA WITH CONSTRAINTS

In practice, the ramp metering would be constrained by either
the saturation flow of the ramp, which depends on the design
of the ramp infrastructure, or by the actually available traffic
demand of the on-ramp. On the other hand, the ramp flow
should be larger than, at least, nonnegative values. Furthermore,
even if Assumption 3 holds with ud(k) satisfying the two
preceding constraints, there is no guarantee that the actual
control input at the nth iteration, that is, un(k), could satisfy
the two input constraints. Therefore, it is necessary to explore
the ILC-based density control to the scenario where the ramp
flow un(k) is bounded by certain upper and lower limits.

Assumption 4: For the input constraints umin(k) and
umax(k), the following saturator should be considered in the
control law (13):

sat [un(k)]=

⎧⎨
⎩

un(k), 0<umin(k)<un(k)<umax(k)
umax(k), un(k)≥umax(k)
umin(k), un(k)≤umin(k).

�
In practice, the choosing of these two values of umin(k)

and umax(k) depends on practical experience and the on-
ramp infrastructure. Usually, umin(k) is set to be the minimum
entering rate to make drivers know the on-ramp is not closed,
and the umax(k) is set according to the cases how many lanes
does the on-ramp has.

Before investigating learning properties under input con-
straints, let us first derive an important and highly correlated
lemma.

Lemma 1 [9]: Under Assumptions 3 and 4, we have

‖ud(k) − sat [un(k)]‖ ≤ ‖ud(k) − un(k)‖ .

The system output dynamics (11) under saturation is

y(k+1) = A (x(k))y(k)+BPsat [u(k)]+η (x(k))−Bs(k).
(17)

The ILC law (13) under input constraints becomes

un+1(k) = sat [un(k)] + β�en(k + 1). (18)

The traffic control property with the pure ILC law (18) is
summarized in the following theorem.

Theorem 3: Under Assumptions 1–4, choosing the learning
gain matrix β of (18) such that ‖Ip×p − βQBP‖ < 1, the out-
put of the traffic system (10) and (17) will iteratively converge
to the desired output, i.e.,

�yn(k) → �yd(k), n → ∞ for all k = 1, 2, . . . ,K.

Proof: The proof is similar to that of Theorem 4 and hence
omitted.

Now, let us discuss the traffic performance where ILC is
added to ALINEA subject to input constraints. The original
updating law (14)–(16) is modified with the saturator

un(k) = uf
n(k) + ub

n(k) (19)
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Fig. 3. Schematic diagram of the simulated freeway.

{
ub

n(0) = ϕ�en(0), if k = 0
ub

n(k) = ub
n(k − 1) + ϕ�en(k), if k > 0

(20)

uf
n(k) = sat (un−1(k)) + β�en−1(k + 1). (21)

The traffic control property with this modified control law is
summarized in the following theorem. �

Theorem 4: Under Assumptions 1–4, using control laws
(19)–(21) with the learning gain matrix β such that ‖Ip×p −
βQBP‖ < 1, the output of the traffic system (10) and (17) will
iteratively converge to the desired output, i.e.,

�yn(k) → �yd(k) k ∈ [0,K], n → ∞.

Proof: See Appendix B. �
Remark 7: It is interesting to note that, despite the presence

of input constraints, ILC can still warrant an asymptotic conver-
gent tracking performance. For some other detailed discussion,
see [9] and [11]. On the other hand, the input constraints will
inevitably affect the transient behavior of learning control, such
as the learning convergence rate.

V. SIMULATION INVESTIGATIONS

A. Freeway Setup

The simulation settings are as follows. Consider a long seg-
ment of a single lane freeway that is divided into 12 sections, as
shown in Fig. 3. The length of each section is 500 m. The initial
traffic volume entering section 1 is 1500 vehicles/h. There are
two on-ramps and one off-ramp in the segment, and they are
located in sections 2 and 9 and in section 7, respectively.

The desired density was yd = 30 vehicles/lane/km. The free-
way system is in the presence of a large exogenous disturbance
(modeled by an exiting flow in an off-ramp during a period and
other random disturbance). It is worthwhile pointing out that
model-based optimal control or pure error feedback is not able
to completely reject the influence for such an unknown exoge-
nous disturbance. Further, even if the disturbance is known, it
is still difficult to find an appropriate control profile due to the
highly nonlinear and uncertain factors in the traffic model.

The initial density and mean speed of each section are set
as shown in Table I, and the parameters used in the model are
also listed in this table. From the table, we can see that the
initial values of density and speed are not in their equilibrium
position according to the initial flow volume, that is, the initial
ILC convergence condition �δx(0) = 0 is not strictly satisfied.
This setting thus shows the robustness of the proposed control
schemes to the initial set values.

TABLE I
INITIAL VALUES AND PARAMETERS WITH THE TRAFFIC MODEL

Fig. 4. Known traffic demands and unknown exiting flow in off-ramp that
violates Assumption 3.

B. Traffic Demand Patterns

The setting of the traffic demand patterns (on-ramp) and
outflow pattern (off-ramp) should be able to simulate the traffic
practical situation during routine or rush hour. The traffic de-
mand pattern setup in this paper is to show that Assumption 3 is
necessary and sufficient for the perfect tracking of the proposed
ILC-based control strategies.

When Assumption 3 is satisfied, the theoretical analysis
has shown that convergence has been achieved. Due to page
limitations, here, we just simulate the situation that the traffic
demands are inadequate.

Inadequate demand means that Assumption 3 is not satis-
fied. In other words, the on-ramp queuing demands impose
constraints on the control inputs. Due to the constraints from
insufficient traffic demands in on-ramps 2 and 9, the on-
ramp flows resulting from the controller are truncated if the
calculated on-ramp flow exceeds the on-ramp queuing traffic
demand. In such circumstances, ud(k) is not reachable. Since
Assumption 3 is violated, we cannot expect perfect flow track-
ing. The inadequate demands are shown in Fig. 4.
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Fig. 5. Exiting flow and initial inflow with random disturbance.

Note that the queuing demands actually impose constraints
on the control inputs of ramp metering, i.e., the on-ramp
volumes cannot exceed the current demands plus the existing
waiting queues at on-ramps i ∈ Ion at time k; thus

ri(k) ≤ di(k) +
li(k)
T

, i ∈ Ion

where li(k) denotes the length (in vehicles) of a possibly
existing waiting queue at time k at the ith on-ramp, di(k) is
the demand flow at time k at the ith on-ramp (in vehicles per
hour), and Ion = {2, 9} denotes the set of indices of the sections
where an on-ramp exists. On the other hand, the waiting queue
is the accumulation of the difference between the demands and
the actual on-ramp, i.e.,

li(k + 1) = li(k) + T [di(k) − ri(k)] , i ∈ Ion.

C. Scenarios and Cases

Two scenarios are simulated under inadequate traffic de-
mands in the on-ramps.

Scenario A: The traffic system is strict repeatable. Traffic
control with strict day-to-day repeatability is the most ideal sce-
nario. The purpose of this scenario is to show the effectiveness
and correctness for the proposed ILC methods under the ideal
settings.

Scenario B: The traffic system is not strict repeatable, which
is simulated by adding random disturbances in states, initial
mainstream inflows, and exiting flows. The nonrepeatable dis-
turbances are random state disturbances uniformly distributed
on the interval (−0.5, 0.5) and are added to the right side of
the state equations (10), that is, the dynamic speed equations
of the traffic flow. A random disturbance uniformly distributed
on the interval (−50, 50) is added to the unknown exiting
flow in off-ramp 7 from time instants 100–150 and 200–250,
respectively. A random disturbance uniformly distributed on
the interval (−40, 40) is added to the initial traffic inflow on
the mainstream for all the time instants, which are shown in
Fig. 5. This scenario is to show the robustness of the ILC-

Fig. 6. Simulation results of Case A-I. (a) Density profile with no control.
(b) Speed profile with no control.

based control schemes with respect to various nonrepeatable
factors.

D. Investigations

Scenario A—Traffic Control With Strict Day-to-Day Re-
peatability Under Inadequate Demands: In practical traffic
flow, the actual available traffic demand may be lower than
the desired entering flow at a specific on-ramp. That is, there
does not exist a control profile ud(k) = [r2(k), r9(k)]T that
can exactly drive the system output to the desired trajectory
�yd(k) = [30, 30]T for the systems (10) and (11) over the
finite time interval [0, K]. This implies that Assumption 3 is
violated, and we cannot expect perfect flow control. Despite
this limitation, it would be meaningful to investigate whether
the new approach still works. In this scenario, we simulate
the freeway traffic with on-ramp traffic demands and off-ramp
exiting flow, as shown in Fig. 4.

In this scenario, the investigations focus on the following two
issues.

1) The ILC-based schemes are still effective when the traf-
fic system is strict repeatable under inadequate traffic
demands.

2) Performance comparison of ALINEA, pure ILC, and
ILC+ALINEA in this scenario.

Four cases are simulated. Case A-I is the no control case,
Case A-II is the ALINEA alone case, Case A-III is the pure
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Fig. 7. Simulation results of Case A-II. (a) Density tracking performance in
on-ramps 2 and 9. (b) Entering flows in on-ramps 2 and 9.

ILC case, and Case A-IV is the ILC add-on to existing ALINEA
case.

Case A-I—No Control: The traffic flow on the mainstream
evolved by the traffic demands in on-ramps 2 and 9, as well
as the exiting flow in off-ramp 7, is shown in Fig. 6. Without
control, the density reaches the maximum jam density, and
traffic jam occurs, resulting in an almost zero speed.

Case A-II—ALINEA Control: The ALINEA gains for sec-
tions 2 and 9 are chosen to be ϕ = diag(40, 40), as suggested
in [1] and [3], which gives the best performance.

To overcome the integral saturation action of ALINEA, an
antisaturation measurement, as suggested in [1], is incorpo-
rated. As such, the on-ramp flows calculated according to
ALINEA control law will be truncated if they exceed the on-
ramp queuing traffic demands in on-ramps 2 and 9. By trunca-
tion, the on-ramp flow values will be kept the same as that of the
preceding instant, i.e., ub

n(k − 1). Fig. 7 shows the simulation
results. From Fig. 7(a), we can see that the traffic has been
controlled at the desired level by ALINEA control, and a pretty
good tracking performance is obtained. The lower departures
from time instant 0 to about 100 and from 440 to end both for
sections 2 and 9 in Fig. 7(a) are caused by the insufficient traffic
demands, which can be seen in corresponding parts in Fig. 7(b).

However, the lower deviations at about 200 and 250 from the
desired density in sections 2 and 9 are caused by the nature of
the integral action of ALINEA (lack of damping) and the time
delay of the process.

Case A-III—Pure ILC: The ILC gains are set to be β =
diag(30, 30). The theoretically feasible range for ILC gain is (0,
239.808) according to the learning convergence condition. The
learning process is iterated for 20 cycles. The simulation results
are shown in Fig. 8. Due to the constraints of insufficient traffic
demands in on-ramps 2 and 9, the on-ramp flows resulting
from ILC are truncated if the calculated on-ramp flow exceeds
the on-ramp queuing traffic demands. Comparing Fig. 8(a)
with Fig. 7(a), the improved control performance can be seen.
Fig. 8(b) shows both the traffic demands and the actual entering
flows in on-ramps 2 and 9, respectively. Fig. 8(c) shows the
learning errors in sections 2 and 9. The deviations between
the desired density and the actual density at about time instant
50 for section 9 and at the end point for section 2 (500th
time instant) in Fig. 8(a) dominate the learning errors for
both sections 2 and 9. Here, the learning error is defined as
the maximum absolute error between the real density and the
desired density over the whole period of 500 sampling instants
concerned. These maximum deviations are caused by the lack
of traffic demands in on-ramps 2 and 9.

Case A-IV—ILC Add-On to Existing ALINEA: Consider-
ing the insufficient on-ramp traffic demands in on-ramps 2 and
9 and the integral nature of both ALINEA and ILC, the con-
trol saturation problem may be worsened in this case. Taking
the conclusion of Remark 5 into consideration, an immediate
remedy is to shape the ALINEA gain to a lower level as the
iteration increases, and let ILC action gradually take a larger
share. A simple way is to modify the ALINEA gain to be
ϕ = diag(40e−(n−1), 40e−(n−1)), where n is the number of
iterations. The ILC learning gains are β = diag(30, 30) for
sections 2 and 9. The simulation results after 20 iterations are
shown in Fig. 9. We can see a better performance comparing
Fig. 9(c) with Fig. 8(c).

Furthermore, by comparing the learning performance of
sections 2 and 9 [Figs. 8(c) and 9(c)], it is clear that the
combined ALINEA plus ILC gives better results and faster
convergence speeds, since Case A-IV shows much lower
tracking errors in the first iteration by feedback, whereas
Case A-III has larger errors in the first iteration due to the
open-loop.

From the simulations of scenario A, we can conclude that,
if the traffic system is strict repeatable, and Assumption 3 is
violated, that is, ud(k) is unreachable, perfect tracking cannot
be achieved in any case. However, the deviations between the
desired density and the actual density are just caused by the
lack of demands. Traffic jams can still be avoided by these
control methods. The ILC+ALINEA method is the best in this
situation with the best density tracking ability and the least
tracking errors to that of ALINEA alone and the pure ILC
case.

Scenario B—ILC-Based Traffic Control Having Nonrepeat-
able Disturbance and Inadequate Demands: In this scenario,
we simulate the same freeway traffic as scenario A, except for
the nonrepeatable stochastic disturbances.
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Fig. 8. Simulation results of Case A-III. (a) Density tracking performance in
on-ramps 2 and 9 at the 20th iteration. (b) Entering flows in on-ramps 2 and 9
at the 20th iteration. (c) Iterative errors in sections 2 and 9.

This scenario investigation mainly focuses on two issues.
1) The effectiveness of ILC-based schemes when the traffic

system has nonrepeatable stochastic disturbance in state,
initial mainstream inflow and exiting flow under inade-
quate demands.

2) The performance comparison between the pure ILC and
ILC+ALINEA.

Fig. 9. Simulation results of Case A-IV. (a) Density tracking performance in
on-ramps 2 and 9 at the 20th iteration. (b) Entering flows in on-ramps 2 and 9
at the 20th iteration. (c) Iterative errors in sections 2 and 9.

Two cases are simulated in this part. Case B-I is the pure ILC
case, and Case B-II is the ILC add-on to existing ALINEA case.

Case B-I—Pure ILC With Random Disturbances in State,
Initial Mainstream Inflow, and Exiting Flow: The ILC gains
are set to be β = diag(30, 30). The learning process is
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Fig. 10. Simulation results of Case B-I. (a) Density tracking performance in
on-ramps 2 and 9 at the 20th iteration. (b) Entering flows in on-ramps 2 and 9
at the 20th iteration. (c) Iterative errors in sections 2 and 9.

iterated for 20 cycles, and the simulation results are shown in
Fig. 10. The time domain control response can be observed
from Fig. 10(a), and the effective tracking can still be seen
although the traffic is with nonrepeatable factors.

Case B-II—ILC Add-On to Existing ALINEA With Random
Disturbances in State, Initial Mainstream Inflow, and Exiting
Flow: The learning law is integrated with the existing ALINEA
controller, whose gain is ϕ = diag(40e−(n−1), 40e−(n−1)),
where n is the number of iterations. The ILC learning gains
are β = diag(30, 30) for sections 2 and 9. The simulation
results after 20 iterations are shown in Fig. 11. Despite the
large random factors, the tracking error is kept at a low level.
Comparing with Fig. 10(c) of Case B-I, the error is lower in
this case, as shown in Fig. 11(c), which benefits from the help
of feedback ALINEA in the first few iterations.

From the simulation results of Scenario B, we can see that
the ILC-based control strategies have a very strong robust-
ness to the nonrepeatable disturbed traffic patterns. In other
words, they can still work well without the strict repeatability
condition.

VI. CONCLUSION

In this paper, we have applied ILC to address local ramp
metering in a macroscopic-level freeway environment by
formulating the ramp metering problem as output tracking,
disturbance rejection, and input constrained problems. For the
freeway traffic system with a strict repeatable pattern, the ILC-
based approach has been successfully applied to solve the ramp
control problems. The learning mechanism is further combined
with ALINEA in a complementary manner to guarantee the
desired perfect tracking performance. Then, the ILC-based
ramp metering and the complementary modularized designing
method based on ILC and ALINEA under input constraint
are also analyzed. Case studies with intensive simulations
on a macroscopic-level freeway model confirm the validity
of the proposed approaches. For the freeway traffic system
without a repeatable pattern represented by iteration-varying
or time-varying parameters and desired density trajectory, the
corresponding modified ILC-based control schemes will be
published in other work.

APPENDIX A
PROOF OF THEOREM 2

The ILC is

uf
n+1(k) = un(k) + β�en(k + 1) (A.1){
ub

n(0) = ϕ�en(0), if k = 0
ub

n(k) = ub
n(k − 1) + ϕ�en(k), if k > 0

(A.2)

un(k) = ub
n(k) + uf

n(k). (A.3)

Defining

δuf
n(k) =ud(k) − uf

n(k)

δxn(k) =xd(k) − xn(k)

δun(k) =ud(k) − un(k)

δA (xn(k)) =A (xd(k)) − A (xn(k))

δη (xn(k)) = η (xd(k)) − η (xn(k))
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Fig. 11. Simulation results of Case B-II. (a) Density tracking performance in
on-ramp 2 and 9 at the 20th iteration. (b) Entering flow in on-ramp 2 and 9 at
the 20th iteration. (c) Learning errors in section 2 and 9.

then

δuf
n+1(k) =ud(k) − uf

n+1(k)

=ud(k) − un(k) − β�en(k + 1)

= δun(k) − β�en(k + 1). (A.4)

Using (11) and Assumption 3, we have

�en(k + 1) =�{A (xd(k))yd(k) + BPud(k)

+ η (xd(k)) − Bs(k) − A (xn(k))yn(k)

− BPun(k) − η (xn(k)) + Bs(k)}
=�{A (xd(k))yd(k) − A (xn(k))yd(k)

+ A (xn(k))yd(k) − A (xn(k))yn(k)

+ BPud(k) + η (xd(k))

− BPun(k) − η (xn(k))}
=�{δA (xn(k))yd(k) + A (xn(k)) en(k)

+BPδun(k) + δη (xn(k))}
=� [δA (xn(k))yd(k)] + � [A (xn(k)) en(k)]

+ QBPδun(k) + � [δη (xn(k))] . (A.5)

Substituting (A.5) into (A.4) gives

δuf
n+1(k)

= δun(k)−β�en(k+1)

= δun(k)−β{�[δA (xn(k))yd(k)]+�[A (xn(k)) en(k)]

+ QBPδun(k)+�[δη (xn(k))]}
= (I−βQBP)δun(k)−β�[δA (xn(k))yd(k)]

− β�[A (xn(k)) en(k)]−β�[δη (xn(k))] . (A.6)

Since

δun(k) = ud(k) − un(k)

= ud(k) − uf
n(k) − ub

n(k)

= δuf
n(k) − ub

n(k) (A.7)∥∥ub
n(k)

∥∥ ≤ ∥∥ub
n(k − 1)

∥∥+ ‖ϕ‖ ‖�en(k)‖
(A.8)

then using (A.7) and (A.8) and taking the norm operation for
(A.6) yield∥∥∥δuf

n+1(k)
∥∥∥

≤ ‖I−βQBP‖ · ‖δun(k)‖+‖β‖kAbyd
‖� (δxn(k))‖

+ ‖β‖bA ‖�en(k)‖+‖β‖kη ‖� (δxn(k))‖
= ‖I−βQBP‖ · ‖δun(k)‖

+ (‖β‖kAbyd
+‖β‖kη) ‖� (δxn(k))‖+‖β‖bA ‖�en(k)‖

≤ ‖I−βQBP‖ · ∥∥δuf
n(k)

∥∥+‖I−βQBP‖ · ∥∥ub
n(k−1)

∥∥
+ (‖β‖kAbyd

+‖β‖kη) ‖� (δxn(k))‖
+ (‖β‖bA+‖ϕ‖ ‖I−βQBP‖ ·) ‖�en(k)‖

= ‖I−βQBP‖ · ∥∥δuf
n(k)

∥∥
+ ε1

(∥∥ub
n(k−1)

∥∥+‖� (δxn(k))‖+‖�en(k)‖) (A.9)
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where bA and byd
are two bounded constants, and

ε1 = max
k∈[0,K]

{(‖β‖kAbyd
+ ‖β‖kη) , ‖I − βQBP‖

(‖β‖bA + ‖ϕ‖ ‖I − βQBP‖)} .

From (10), we have

‖� (δxn(k))‖ ≤ kx ‖� (δxn(k − 1))‖ + ky ‖�en(k − 1)‖ .
(A.10)

Equation (A.2) gives

∥∥ub
n(k − 1)

∥∥ ≤ ∥∥ub
n(k − 2)

∥∥+ ‖ϕ‖ ‖�en(k − 1)‖ (A.11)

and equations (A.5), (A.7), and (A.11) yield

‖�en(k)‖ ≤ (kAbyd
+kη) ‖� (δxn(k−1))‖

+ bA ‖�en(k−1)‖+‖QBP‖ ‖δun(k−1)‖
≤ (kAbyd

+kη) ‖�(δxn(k−1))‖+bA ‖�en(k−1)‖
+ ‖QBP‖ (∥∥δuf

n(k−1)
∥∥+
∥∥ub

n(k−1)
∥∥)

≤ (kAbyd
+kη) ‖� (δxn(k−1))‖

+ (bA+‖ϕ‖ ‖QBP‖) ‖�en(k−1)‖
+ ‖QBP‖∥∥ub

n(k−2)
∥∥+‖QBP‖∥∥δuf

n(k−1)
∥∥ .

(A.12)

Summing up (A.10), (A.11), and (A.12), we have

(∥∥ub
n(k−1)

∥∥+‖� (δxn(k))‖+‖�en(k)‖)
≤ ε2

(∥∥ub
n(k−2)

∥∥+‖� (δxn(k−1))‖+‖�en(k−1)‖)
+ ‖QBP‖∥∥δuf

n(k−1)
∥∥

...

≤ εk−1
2

(∥∥ub
n(0)

∥∥+‖� (δxn(1))‖+‖�en(1)‖)
+

k−1∑
j=1

εk−j−1
2 ‖QBP‖∥∥δuf

n(j)
∥∥

≤ εk
2 (‖ϕ‖ ‖�en(0)‖+‖� (δxn(0))‖+‖�en(0)‖)

+
k−1∑
j=0

εk−j−1
2 ‖QBP‖∥∥δuf

n(j)
∥∥ (A.13)

where

ε2 = max
k∈[0,K]

{(kx+kAbyd
+kη) ,

(ky+bA+‖ϕ‖+‖ϕ‖‖QBP‖) , (1+‖QBP‖)} .

Obviously, ε2 > 1.
From Assumption 2, (A.13) gives

(∥∥ub
n(k − 1)

∥∥+ ‖� (δxn(k))‖ + ‖�en(k)‖)

≤
k−1∑
j=0

εk−j−1
2 ‖QBP‖∥∥δuf

n(j)
∥∥). (A.14)

By substituting (A.14) into (A.9), we can obtain∥∥∥δuf
n+1(k)

∥∥∥ ≤ ‖I − βQBP‖∥∥δuf
n(k)

∥∥
+ ε1

k−1∑
j=0

εk−j−1
2 ‖QBP‖∥∥δuf

n(j)
∥∥ . (A.15)

Multiplying ε−λk
2 on both sides of (A.15) over the interval

[0, K] and taking the supreme norm result in the following
relationship:

sup
k∈[0,K]

ε−λk
2

∥∥∥δuf
n+1(k)

∥∥∥≤‖I−βQBP‖ · sup
k∈[0,K]

ε−λk
2

∥∥δuf
n(k)

∥∥

+ ε1 ‖QBP‖ sup
k∈[0,K]

ε−λk
2

k−1∑
j=0

εk−j−1
2

∥∥δuf
n(j)

∥∥ . (A.16)

Since

sup
k∈[0,K]

ε−λk
2

k−1∑
j=0

εk−j−1
2

∥∥δuf
n(j)

∥∥

= ε−1
2 sup

k∈[0,K]

⎛
⎝k−1∑

j=0

ε−λj
2

∥∥δuf
n(j)

∥∥ ε
(λ−1)(j−k)
2

⎞
⎠

≤ ε−1
2 sup

k∈[0,K]

⎛
⎝k−1∑

j=0

(
sup

k∈[0,K]

ε−λj
2

∥∥δuf
n(j)

∥∥) ε
(λ−1)(j−k)
2

⎞
⎠

≤ ε−1
2

∥∥δuf
n(k)

∥∥
λ
× sup

k∈[0,K]

k−1∑
j=0

ε
(λ−1)(j−k)
2

=
∥∥δuf

n(k)
∥∥

λ
× 1 − ε

−(λ−1)K
2

ελ
2 − ε2

(A.17)

then (A.16) becomes∥∥∥δuf
n+1(k)

∥∥∥
λ
≤ ‖I − βQBP‖∥∥δuf

n(k)
∥∥

λ

+ ε1 ‖QBP‖∥∥δuf
n(k)

∥∥
λ
× 1 − ε

−(λ−1)K
2

ελ
2 − ε2

. (A.18)

Thus, there exists a sufficient large constant λ such that the
following inequality holds when ‖I − βQBP‖ < 1, i.e.,

‖I − βQBP‖ + ε1‖QBP‖ × 1 − ε
−(λ−1)K
2

ελ
2 − ε2

≤ ρ < 1.

(A.19)

We can conclude that∥∥∥δuf
n+1(k)

∥∥∥
λ
≤ ρ

∥∥δuf
n(k)

∥∥
λ

. (A.20)

Equation (A.20) implies that limn→∞ ‖δuf
n+1(k)‖λ = 0,

that is

uf
n(k) → ud(k) ∀k ∈ [0,K].
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To prove the convergence of the density, following the pre-
ceding derivation procedure, we obtain, from (A.14), that(∥∥ub

n(k − 1)
∥∥

λ
+ ‖� (δxn(k))‖λ + ‖�en(k)‖λ

)
≤ sup

k∈[0,K]

ε−λk
2

k−1∑
j=0

εk−j−1
2 ‖QBP‖∥∥δuf

n(j)
∥∥

= ‖QBP‖∥∥δuf
n(k)

∥∥
λ
× 1 − ε

−(λ−1)K
2

ελ
2 − ε2

. (A.21)

Since the right-hand side of the equation tends to zero as the
iteration goes infinity, and all the items on the left-hand side are
nonnegative, so we can reach the final conclusion, i.e.,

lim
n→∞‖� (yd(k) − yn(k))‖λ = 0.

�

APPENDIX B
PROOF OF THEOREM 4

The traffic system with input constraints becomes

xn(k + 1) = f (xn(k),yn(k)) (B.1)

yn(k + 1) =A (xn(k))yn(k) + BPsat (un(k))

+ η (xn(k)) − B · s(k). (B.2)

Define

δuf
n+1(k) =ud(k) − uf

n+1(k)

=ud(k) − sat (un(k)) − β�en(k + 1). (B.3)

Using (17) and Assumption 3, we have

�en(k + 1)

= �{A (xd(k))yd(k) + BPud(k)

+ η (xd(k)) − B · s(k) − A (xn(k))yn(k)

− BPsat (un(k)) − η (xn(k)) + B · s(k)}
= �{A (xd(k))yd(k) − A (xn(k))yd(k)

+ A (xn(k))yd(k) − A (xn(k))yn(k)

+ BPud(k) + η (xd(k))

− BPsat (un(k)) − η (xn(k))}
= �{δA (xn(k))yd(k) + A (xn(k)) en(k)

+ BP [ud(k) − sat (un(k))] + δη (xn(k))}
= � [δA (xn(k))yd(k)] + � [A (xn(k)) en(k)]

+ QBP [ud(k) − sat (un(k))] + � [δη (xn(k))] .

(B.4)

Substituting (B.4) into (B.3) yields

δuf
n+1(k) =ud(k)−sat (un(k))−β�en(k+1)

=ud(k)−sat (un(k))

− β{�[δA(xn(k))yd(k)]+�[A(xn(k))en(k)]

+ QBP [ud(k)−sat (un(k))]+�[δη (xn(k))]}
= (I−βQBP) [ud(k)−sat (un(k))]

− β�[δA(xn(k))yd(k)]−β�[A(xn(k))en(k)]

− β�[δη (xn(k))] . (B.5)

Note that

δun(k) =ud(k) − un(k) = ud(k) − uf
n(k) − ub

n(k)

= δuf
n(k) − ub

n(k) (B.6)∥∥ub
n(k)

∥∥ ≤ ∥∥ub
n(k − 1)

∥∥+ ‖ϕ‖ ‖�en(k)‖ . (B.7)

Then, taking the norm on both sides of (B.5) and using
Lemma 1, we have∥∥∥δuf

n+1(k)
∥∥∥

≤ ‖I − βQBP‖ ‖ud(k) − sat (un(k))‖
+ ‖β‖kAbyd ‖� (δxn(k))‖
+ ‖β‖bA ‖�en(k)‖ + ‖β‖kη ‖� (δxn(k))‖

≤ ‖I − βQBP‖ ‖δun(k)‖ + ‖β‖kAbyd ‖� (δxn(k))‖
+ ‖β‖bA ‖�en(k)‖ + ‖β‖kη ‖� (δxn(k))‖

≤ ‖I − βQBP‖∥∥δuf
n(k)

∥∥+ ‖I − βQBP‖∥∥ub
n(k − 1)

∥∥
+ (‖β‖kAbyd + ‖β‖kη) ‖� (δxn(k))‖
+ (‖β‖bA + ‖ϕ‖ ‖I − βQBP‖) ‖�en(k)‖ . (B.8)

The relation (B.8) can be rewritten as∥∥∥δuf
n+1(k)

∥∥∥ ≤ ‖I − βQBP‖ · ∥∥δuf
n(k)

∥∥
+ ε1

(∥∥ub
n(k − 1)

∥∥+ ‖� (δxn(k))‖ + ‖�en(k)‖)
which is the same as (A.9). Therefore, by following the deriva-
tion procedure of Theorem 2, we can prove Theorem 4 in the
same way. �
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