
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 2, JUNE 2011 343

A Game-Engine-Based Platform for Modeling and
Computing Artificial Transportation Systems

Qinghai Miao, Fenghua Zhu, Yisheng Lv, Changjian Cheng, Cheng Chen, and Xiaogang Qiu

Abstract—A game-engine-based modeling and computing plat-
form for artificial transportation systems (ATSs) is introduced.
As an important feature, the artificial-population module (APM)
is described in both its macroscopic and microcosmic aspects.
In this module, each person is designed similarly to the actors
in games. The traffic-simulation module (TSM) is another im-
portant module, which takes advantage of Delta3D to construct
a 3-D simulation environment. All mobile actors are also man-
aged by this module with the help of the dynamic-actor-layer
(DAL) mechanism that is offered by Delta3D. The platform is
designed as agent-oriented, modularized, and distributed. Both
modules, together with components that are responsible for mes-
sage processing, rules, network, and interactions, are organized
by the game manager (GM) in a flexible architecture. With the
help of the network component, the platform can be constructed
to implement a distributed simulation. Finally, four experiments
are introduced to show functions and features of the platform.

Index Terms—Artificial transportation systems (ATS), distrib-
uted simulation, game engine.

I. INTRODUCTION

FROM THE viewpoints of sociology and anthropology,
which are based on the artificial society, computational

intelligence, and parallel computing, which are aimed at ana-
lyzing the transportation as a subsystem in the whole society
[1], [2], the artificial transportation system (ATS) distinguished
itself from traditional transportation-simulation systems. In our
opinion, four key problems need to be solved to implement a
complete ATS, i.e., modeling, computing, experimenting, and
parallel management [3]. Here, modeling is an agent-based
design of each simulation-related objects, including vehicles,
pedestrians, traffic infrastructures, buildings, vegetation, and
even the weather. Computing is processing the actions of all

Manuscript received February 25, 2009; revised August 20, 2009 and
April 21, 2010; accepted December 23, 2010. Date of publication January 28,
2011; date of current version June 6, 2011. This work was sup-
ported in part by the Chinese National Basic Research Program under
Project 2006CB705500; by the National Natural Science Foundation of
China under Project 61004090, Project 60904057, Project 60921061, Project
60974095, and Project 90920305; and by the Shandong Province Taishan Chair
Professor Fund under Project 011006005. The Associate Editor for this paper
was R. J. F. Rossetti.

Q. Miao is with the College of Computing and Communication Engineering,
Graduate University of the Chinese Academy of Sciences, Beijing 100049,
China (e-mail: miaoqh@gucas.ac.cn).

F. Zhu, Y. Lv, C. Cheng, and C. Chen are with the Key Laboratory of
Complex Systems and Intelligence Science, Institute of Automation, Chinese
Academy of Sciences, Beijing 100080, China.

X. Qiu is with the College of Mechatronic Engineering and Automation,
National University of Defense Technology, Changsha 410073, China.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2010.2103400

objects and interactions between objects in each time step.
Experimenting stands for simulations with the variance of
parameters, such as the change of the average speed when it
is raining. Finally, when the generated traffic flow becomes
similar to the real-world traffic flow, the evaluation results of the
ATS can be used to optimize and improve the real-world traf-
fic control, which is called parallel management. Apparently,
modeling and computing are the basis of experimenting and
parallel management. For these two fundamental problems, the
ATS requires better solutions than traditional traffic-simulation
systems. First, the transportation system is an open complex
system, which should be studied using methods in complexity
science. We took the principle of “emergence” to model the
ATS from the bottom up [4]. That is to say, what needs to be
modeled is each person of the whole population. The traffic
flow naturally emerged from the population and was influenced
by traveling persons. Then, one problem is how to properly
manage the thousands of objects, with attributes including
3-D meshes that the object looks like. Second, as previously
mentioned, an ATS study needs to cover large areas, which
are usually from a town to several cities, and involves several
social subsystems aside from transportation [5]. There are too
many elements for a stand-alone computer to finish a step of
computing in a proper time range. Therefore, we must adopt a
parallel computing technology to put all the different models
into a distributed framework. Each computer in the distributed
framework is only a charge of a subarea, which ensures the
computing performance when the population is relatively large.

To address these problems, we could use a traffic-simulation
software as most researchers usually do [6] or develop a
simulation system by ourselves [7]. Some traffic-simulation
software has the ability of distributed computing and real-time
3-D demonstrations. Moreover, some activity-based traffic-
simulation softwares, to some extent, match the ideas of the
ATS, such as the TRansportation ANalysis and SIMulation
System (TRANSIMS) and the best-practice model from New
York Metropolitan Transportation Council. Aside from these
two aspects, we want the ATS to have the ability to interact with
the real world. There may be two kinds of these interactions.
First, the ATS should have an interface to read in real-world
information such as control signals. Second, to use the ATS as
a training system, there should be client terminals from which
users can “drive” in the virtual environment that is similar to
playing games. Furthermore, one of our long-range goals is to
make the proposed platform a new type of online game that is
dedicated to transportation, which is a system that is similar
SecondLife [8]. Thus, it is hard to use a traditional traffic-
simulation software to construct such gamelike simulation

1524-9050/$26.00 © 2011 IEEE

344 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 2, JUNE 2011

platforms; on the other hand, a game engine seems to be a
feasible choice.

In this paper, we introduced a game-engine-based modeling
and computing platform for ATSs. The platform depends (not
entirely but highly) on the Delta3D game engine [9]. We
organized this paper as the following six sections. Section II
introduces the backgrounds and the related works that are
using a game engine as simulation platforms. Sections III and
IV address the modeling problem. The artificial-population
model is very important, and we have separately described it in
Section III. Section IV introduces the agent-based modeling
and programming for the traffic flow, which utilizes the actor-
proxy mechanism of Delta3D. Section V introduces the overall
architecture that depends on Delta3D; emphasis is placed on the
integration of different modules under the game-manager (GM)
architecture and on the way to build a distributed computing
system in a client/server style. Section VI introduces three test
experiments; although primary, they show that the platform is
feasible and reasonable. Section VII draws conclusions and
discusses some important “to do” work in the next developing
cycle.

II. BACKGROUNDS AND RELATED WORKS

A. Game Engine and Simulation

Behind a lot of well-known games, e.g., Final Fantasy, people
seldom know how the games were created, and most people
have no idea of the difference between the game engine and the
game. Similar to the engine in a car, the game engine is the heart
of a game. Traditionally, a game engine is a software system
that is designed for the creation and the development of video
games. The core functionality that is typically provided by a
game engine includes a rendering engine (“renderer”) for 2-D
or 3-D graphics, a physics engine for collision detection and
response, and a scene graph for the management of both static
and animation models, sound, scripting, artificial intelligence,
networking, streaming, memory management, threading, etc.
[10]. Nowadays, the game engine has become a general soft-
ware platform; the application of game engines has broadened
in scope. A trend is using game engines for serious games, i.e.,
visualization, training, medical, and military simulation appli-
cations [11]. There are a lot of such applications. For example,
Ship Simulator [12] is a revolutionary simulation game that puts
players at the helm of some of the most varied and detailed ships
to be found at sea. Players will need to perform a multitude of
tasks within a stunning 3-D environment, taking control of a
wide array of ship types—from massive cargo ships and ferries
to speedboats, yachts, and water taxis. Virtual Battlespace
[13] is a fully interactive 3-D training system that provides a
premium synthetic environment that is suitable for a wide range
of military (or similar) training and experimentation purposes.
In fact, a serious game comes from the battle simulation, and
applications for military purposes occur far more than other
areas.

In the field of traffic simulation, there are also reports
mainly focused on training. In [14], a game-based learning
environment is described to help novice police officers to

investigate the traffic accidents in Dubai. In [15], the authors
report on the construction and the evaluation of a game-based
driving simulator using a real car as a joystick. The feasibility
of the simulator as a learning tool has been experimentally
evaluated. In [16], a complex model is described for vehi-
cles that are involved in traffic accidents has been devel-
oped, including multibody components and different collision
models.

There are a lot of game engines that are available. These
game engines can be classified into three types according to
their claimed intellectual property. The first ones are commer-
cial game engines, such as the famous DOOM, Unreal, and
LithTech, the latest versions of which are the most powerful.
However, before using them, a very expensive license must be
bought. The second ones are engines with a low cost, such as
Torque and Truevision3D. They have good performance for a
lot of applications with licenses that cost less than $100. The
third type covers a series of open-source game engines. Some of
them are the older versions of commercial game engines, such
as Quake 3, which is open source under a certain license. Some
of them have been developed by small or academic groups, for
example, Nebula [17], Delta3D, IrrLicht [18], Crystal Space
[19], etc. The performance of this type of game engine de-
pends on specified applications and programmers’ efforts for
optimization. However, the knowledge base and the technical
support are easily available from the official Web site, as well as
open-source communities. What is more attractive is that they
are usually under the Lesser General Public License (LGPL)
or Massachusetts Institute of Technology license, which give
people the maximum freedom to use them. That is to say, we
can develop our applications based on these game engines,
distribute them with our own intellectual property, and even
publish them for commercial purposes.

Although game-engine technology has become more user
friendly, there is still a learning curve to master all parts of
a full-function game engine. Because we have been learning
and using Delta3D for about two years, we choose Delta3D to
construct our modeling and computing platform. Delta3D is an
open-source engine, which can be used for games, simulations,
or other graphical applications. Its modularized design inte-
grates well-known open-source projects such as Open Scene
Graph, Open Dynamics Engine (ODE), Character Animation
Library 3D, and Open Audio Library, as well as projects such as
Trolltech’s Qt, Crazy Eddie’s Graphical User Interface (GUI),
Xerces-C, InterSense Tracker Drivers, HawkNL, and the Game
Networking Engine (GNE). Rather than burying the under-
lying modules, Delta3D integrates them together in an easy-
to-use application programming interface, which allows direct
access to the important underlying behavior when needed.
Furthermore, Delta3D has an extensive architectural suite that
is integrated throughout the engine. This suite includes a
frameworks such as the application base classes for getting
started, the dynamic actor layer (DAL) for actor proxies and
properties, the signal/slot support for direct-method linking,
and the GM for the game management and high-level messag-
ing for the actor communication. In fact, several other game
engines are able to take Delta3D’s role, e.g., IrrLicht is a good
choice.

MIAO et al.: GAME-ENGINE-BASED PLATFORM FOR MODELING AND COMPUTING ATSs 345

B. Related Traffic-Simulation Software

A computing platform is important to the traffic simula-
tion. Researchers always pursue platforms with more-feasible
models, a faster speed, and a larger capacity with parallel
computing. There are several traffic-simulation platforms that
have good performance in aspects that are previously listed,
e.g., Paramics, Split, Cycle and Offset Optimization Technique
(SCOOT), TRANSIMS, Vissim, and so on. Here, we will
discuss TRANSIMS [20] because the proposed platform in this
paper has some similar features. For example, they are both
component integrated systems, both have a disaggregate model
instead of a four-step model, both have microsimulation, etc.

However, a bottleneck constrains such activity-based models
to narrow applications, i.e., population census data. For exam-
ple, TRANSIMS adopted three types of census data: Standard
Tape File 3A (STF-3A), public use microdata sample, and
Master Area Block Level Equivalency (MABLE) file [21].
All the information, such as age, gender, household, incomes,
vehicles, together with activity chains, depends on those data.
However, in some countries or maybe in most of the world, we
have no such data. For example, in China, the population is too
large to collect the information of only a part of it. Additionally,
the proportion of the transient population is relatively high in
such a developing country, which makes it more difficult to do a
census. Thus, a novel population model is needed as substitute.

In addition, there are differences that make the proposed
platform unique. First, the proposed platform is based on
an open-source game engine with the LGPL, without much
funding. The long goal is to build a traffic-specified serious
game that runs similar to a massive multiplayer online role-
playing game (MMORPG). Second, the disaggregate model
for the travel demand is the integration of the macroscopic
and microscopic designs. It tracks physiological indexes of
each person using sociology and Maslow’s theory, whereas
the disaggregate model in TRANSIMS tracks individuals and
households based on census data. Third, TRANSIMS has a 3-D
display module, but the proposed platform has a built-in 3-D
rendering because it is the basic function of the game engine.
Finally, the proposed platform has an interface for users to
interact with the simulation, and in the future, many players can
act as residents in the virtual world. Together with the artificial
population that is introduced in Section III, we can construct a
virtual city, which can be used to evaluate control algorithms or
as a training system.

III. ARTIFICIAL-POPULATION MODULE

The artificial-population module (APM) is the most impor-
tant module of the ATS. Here, two viewpoints of the ATS
should be emphasized. First, the society is a giant complex
system that includes many subsystems such as industry, com-
mercial, culture, climate, etc. Transportation is only one such
subsystem and interacts with the others [22]. Second, the hu-
man is the primary element of the society; travel is one of the
human behaviors. All traveling people generate traffic flow [4].
In a traditional transportation simulation, the initial input data
are usually origin–destination (OD) matrices. However, in the
ATS, the initial input is the data of the population. We designed

TABLE I
CLASSIFICATION OF THE CHINESE URBAN STRATA

the APM to reach these requirements. That is to say, the APM
takes the place of the role of the OD matrix as input data.
In the APM, each single person is designed as an actor. The
APM offers a mechanism to assign attributes of an actor, as
well as how the attributes change over time. This mechanism
can be described in two different aspects, i.e., macroscopic and
microcosmic, as follows.

A. Macroscopic Design

The purpose of the macroscopic design is to answer ques-
tions about where a person lives, where he will go, and how he
will get there. Collecting such information person by person is
impossible; thus, we adopt theories and statistic data from soci-
ology and anthropology. In sociology, populations are divided
into different strata [24]. People from different stratum have
different properties such as income, education, consumption
capacity, etc. For example, a chief executive officer of a big
company may live in a high-order community. He drives to the
office in a central business district (CBD) with his own car.
A worker of a steel company lives in a common community
and goes to the factory in a suburb by bus. There are strata
statistic data that we can be used in the ATS. For example,
the Chinese Academy of Social Sciences released a report on
the Chinese strata analysis in 2001 [23]. In this report, there
are ten different strata in the modern China society, and each
stratum was described in detail. However, the data cannot be
directly used for two reasons. First, the agricultural population
should not be included in an urban traffic simulation. Although
it accounts for two thirds of all of the Chinese population, their
residents are not in the cities. Second, people under 16 years
old, who are not included in the report, should be considered
in the ATS. These young people, who are mainly students,
obviously contribute to the traffic flow. After such revisions, we
got a transportation-oriented classification of the Chinese urban
strata, which is shown in Table I.

346 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 2, JUNE 2011

As shown in Table I, the urban population was classified into
nine strata. When a person was generated at the beginning of
simulation, a random number was used to assign him a stratum
according to the percentage for which each stratum accounts.
By assigning a stratum to each person, we can determine his
travel origins, destinations, and travel modes in the next steps.

According to theories of urban sociology [25], we divided the
city space into nine regions: 1) CBD; 2) outlying commercial
district; 3) government and education district; 4) industrial
park; 5) upper class residential area; 6) middle-class residential
area; 7) lower class residential area; 8) sports and leisure area;
and 9) transport corridor area. Each region may include one or
more areas in the city. A person from a different stratum has a
different probability of staying in a certain place. For example,
a manager of a big company lives in an upper class community
and works at a CBD, but a primary student from a family of
industrial workers lives in a middle-class community and stays
in school most of the daytime. In such a way, travel origins and
destinations can be determined using random numbers.

We can determine the travel mode from Table I as well.
People from a different stratum have different travel capacities
and different travel habits. For example, a senior official may
go to work via a special vehicle; a worker may go to work via
bus or bicycle, whereas a student may go to school on foot.
A person has access to all travel modes according to different
probabilities.

B. Microcosmic Design

In Section III-A, we set several attributes of a person, e.g.,
potential travel origins and destinations. Here, we will address
the questions about when and how these attributes change
over time. After analyzing varieties of social behaviors, the
American social-psychologist Newcomb conformed that the
physiological status and the social impact are causes of human
behaviors [26]. According to the principles of Maslow’s hierar-
chy of needs, the five levels of needs are physiological needs
(basic needs for body function), safety, love and belonging,
esteem, and self-actualization [27]. There was a regular order
to the needs that were added when people had enough basic
necessities. The microcosmic design of the APM is based on
Maslow’s principles.

First, we classified a person’s common behaviors into four
states, i.e., physiological, working, chore, and relax states. Each
state contains several specific actions. There may be a lot of
actions under each state, but we only consider important ones
for simplicity. For example, in the physiological state, there are
actions such as eating and sleeping; in the chore state, there are
actions such as shopping and financing; and in the relax state,
there are actions such as going to theater or playing basketball.
All the states are connected by a special state, i.e., travel, as
shown in Fig. 1. In such a way, each actor is programmed as a
finite-state machine.

Second, we designed a mechanism to cause the state trans-
lation. This mechanism is somewhat similar to the design of
actors in video games. For each state of a person that has
previously been introduced, we define a demand index, the
value of which varies as time passed by. For example, a person

Fig. 1. Travel is a special state that connects all state translations.

Fig. 2. Daily change of the four demand indexes.

of stratum 3 may have a set of index shown in Fig. 2. A person
from a different stratum has different index curves, particularly
the curves for relax and chore states. We set the minimum value
of each state as 0 and the maximum value as 360. The reason is
that it is easy to calculate when the simulation step is 1 s.

All the indexes are added together as a total value, i.e.,
IndexTotal, and the probability for a person to translate to the
next state i is

Probi =
Indexi

IndexTotal
.

A uniformly distributed random number, which is ranging
from 0 to IndexTotal, is generated to decide which state is
selected. Only when a certain state is selected three successive
times, it is set as the next state. Then, the person enters into the
travel state, joins the traffic flow, and travels on the road until
the person’s arrival.

C. Working Process of the APM

The designs that are introduced in Section III-A and B
together form the APM. The APM, as an engine, runs all people
that are involved in the ATS and generates the traffic flow. The
people in the traffic flow only account for a small percentage of
the entire population. When running, each person in the APM
goes through five steps, as shown in Fig. 3:

Step 1. The APM generates a uniformly distributed random
number. Then, according to the probabilities in Table I,
a person gets a social stratum. Based on the stratum,

MIAO et al.: GAME-ENGINE-BASED PLATFORM FOR MODELING AND COMPUTING ATSs 347

Fig. 3. Working mechanisms of the APM.

the person obtains a set of potential travel origins and
destinations, as well as the travel mode.

Step 2. The APM initializes the variable set of each person
according to the simulation time and assigns that person
a beginning state.

Step 3. Variables change over time, and the APM arbitrates a
state translation according to the decision mechanism.

Step 4. Once a translation was triggered, the person changes to
the travel state. The traffic status determines how long this
procedure lasts.

Step 5. The person arrives at the destination; the corresponding
variable was reset by taking specific actions. The state
returns to step 3, and a new cycle begins.

IV. TRAFFIC-SIMULATION MODULE

When a person translates to the travel state, the traffic-
simulation module (TSM) will handle all his actions and prop-
erties. Objects in the TSM, such as pedestrians, varieties of
vehicles, roads, buildings, vegetation, etc., are all regarded as
actors. All these actors are divided into two types, i.e., static
and mobile. Static actors cover all the traffic infrastructures,
whereas mobile actors include pedestrians and vehicles, which
can change positions over time. Mobile agents are designed us-
ing the DAL of Delta3D, and the static actors are designed and
configured using a 2-D editor and then loaded into Simulation,
Training, and Game Editor (STAGE), which is an editor tool of
Delta3D. All 3-D models in STAGE are organized as a scene
graph, which can be used by the game engine.

A. DAL

First of all, the concept of the actor in games is equal to
what we named as the agent in the simulation. Delta3D built
an architecture that is completely generic, and it let us build
our own actors. The DAL provides a flexible nonintrusive
mechanism for generically exposing the properties of game
actors in C++ [28].

Fig. 4. DAL plays an important role in the whole platform. Through the DAL,
all the agents such as vehicles, roads, and buildings can be processed in a
uniform way in a dynamic-link-library file.

The two primary components of this design are ActorProxies
and ActorProperties. The proxy component is a wrapper for the
underlying game actor and holds a collection of the individual
properties. The property component exposes the data for a sin-
gle game-actor property via getter and setter function objects.
The proxy knows about its properties, and the properties know
how to access their data. These two components are used to
generically expose all underlying data without ever modifying
the original game-actor code. Using these data-driven com-
ponents instead of the underlying game actor promotes data
encapsulation and code reusability.

Another important component is ActorLibraries. Actor li-
braries are distributable components that serve to package
groups of related actors and actor proxies. Actor libraries are
dynamic libraries of C++ code that are loaded into the TSM or
STAGE. The overview of the DAL and the editor architecture
is shown in Fig. 4.

B. Mobile-Actor Design

A person in the TSM is designed as an actor, which is
represented either as a pedestrian or a vehicle when traveling
in road networks. A person will move from place to place in the
traffic environment and will sometimes need to transfer from
one host computer to another through the network. Thus, the
mobility is the first feature of these agents.

When moving in the same host computer, the walking or
driving actions of the actors are controlled by a cellular-
automaton method. When one actor is moving out of the area
that is simulated by the current host computer, a connection to
the computer that is simulating the adjacent area will be set up
through the network. We will introduce the distributed network
later in detail.

Aside from the mobility, the mobile actors have a set of at-
tributes. First, each actor has a unique ID for identification just
as each car has a unique license. Second, each actor has position
coordinates that are noted as (x, y, z) in the 3-D city space.
Third, each actor has dimensions in length, width, and height.
Fourth, to display the traffic simulation with 3-D rendering,
each actor has a 3-D mesh model that is corresponding to its
travel mode.

In addition to actions that are introduced in the APM, an actor
also has some traffic-related actions. For example, selecting a
route and getting a signal-light information, as well as flowing

348 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 2, JUNE 2011

Fig. 5. Map that is constructed in the 3-D editor.

cars and changing of lanes, are all necessary for the microscopic
simulation.

All the attributes and actions are capsulated in one or
more ActorLibraries. Through ActorProxies and ActorProper-
ties components, the TSM manages all actors at run time. When
a new type of actors need to be added in the system, we just add
it in the ActorLibrary or separately make a new library.

C. Static-Actor Design

Static actors, which include not only traffic infrastructures
but also buildings, vegetation, etc., compose the traffic environ-
ment. Two steps are needed to construct such a 3-D virtual-
reality environment.

First, construct and configure road networks in 2-D edi-
tors. It is a simple but laborious work when the simulation
environments need to cover large areas in great detail. Thus,
we developed a 2-D editor to accelerate the process. In the
2-D editor, one can draw road networks with precise coor-
dinates, revise the number of lanes, set connections to other
roads, and configure the signal-light phases, as well as place
buildings and vegetation according to the real world. The con-
structed map is saved as extensible-markup-language (XML)
files, which are used for both 3-D environment construction and
simulations.

The ATS is from the point view of complex systems, which
insist on studying a system from the bottom up. Therefore, there
must be a communication-and-interaction mechanism between
actors and environments. We designed a low-level interaction
method for mobile actors. For each road link, there is a 2-D data

array, which is indexed by lane numbers and road length. The
position of a vehicle is marked by the element of these arrays,
i.e., 1 for engaged and 0 for empty. Thus, when a vehicle drives
along the link, it interacts with other vehicles on this road by
inquiring neighbor elements of the array.

Second, construct 3-D environments based on the 2-D map.
STAGE organizes all static actors in a hierarchical format called
the map to construct 3-D scenes. In STAGE, read in the XML
files that are produced by the 2-D editor. The footprints of road
networks and places are shown in four views, i.e., top, front,
left, and perspective, respectively. With help of STAGE, we can
create new actors or delete unnecessary actors. We can assign
and change 3-D meshes and accordingly translate, rotate, and
scale them. We can also set up the light, the weather, and some
other effects. When all static actors have been correctly placed,
the 3-D environment was completed and saved as the Delta3D
map, which can be directly loaded by applications. Fig. 5 shows
a 3-D map being constructed in STAGE.

V. COMPONENT-BASED DESIGN AND

SYSTEM INTEGRATION

The ATS modeling and computing platform takes advantages
of Delta3D’s features, such as GM, DAL, 3-D rendering, net-
works, physics, audio, GUI, etc. With help of the DAL, all
objectives can be treated as the uniform actor format. That is
to say, not only vehicles but also traffic lights, roads, build-
ings, trees, etc., are actors. Based on the GM architecture, the
platform is modularized. Modules with different functions,
such as artificial-population modeling, message processing,

MIAO et al.: GAME-ENGINE-BASED PLATFORM FOR MODELING AND COMPUTING ATSs 349

user interface, network communication, etc., can be separately
designed and can be added or removed from the platform when
needed. Furthermore, HawkNL and the GNE enable the ATS
platform to compute in the distributed mode. Alternatively,
we can substitute them with the message passing interface
and Open Multiprocessing to run the ATS platform on high-
performance computing cluster machines.

In addition to the two important modules that were previ-
ously introduced, we designed a rule module for traffic reg-
ulations, a control module for signal-light control, a network
module for the distributed computing that is based on a
client/server network, an input module for user–machine in-
teraction, a statistic module for the traffic-flow data record
and display, and a hardware module for the real-world-in-loop
implementation. In addition, an ATS also requires conveniently
adding or removing a specific module when needed. Therefore,
it is a tremendous engineering effort with numerous complexi-
ties to logically integrate all these modules into one system. The
component mechanism that is offered by the GM of Delta3D
alleviates this problem. The GM helps decouple applications
into independent components and integrate them as one entity.
Here, we give an overview of the main GM features, i.e.,
the GM itself, the messaging passing architecture, and the
game components, together with the mechanism to construct
a modularized ATS system that is based on the GM.

A. Messaging Passing Architecture

Aside from the 2-D array as the interaction space that is
previously introduced, we can also utilize the messaging archi-
tecture of the GM to send and process messages among objects
(actors and components) at a high level.

The GM exposes methods for sending and processing mes-
sages and knows what actors are interested in a certain message.
For example, a person needs the public-transport information
to select the shortest route when traveling. In our design, the
public-transport information is a message that is periodically
sent out by the statistic module, and actors register for this
message at the GM. The message was not directly sent to actors
but was sent to the GM instead. It is the GM that accordingly
processes this message and sends it to the registered actors.
By enforcing communication through a central interface, there
is more flexibility in extending the behavior of the message
passing architecture without breaking the existing code.

In addition to the messages that are related to the traffic
simulation, there are special messages for the system control.
For example, the tick message is the most important system
message to trigger each simulation step. In the case of a
networked simulation, there is a RemoteTick message that is
emitted by the server, which is received by all clients as a
synchronous heart beat. The GM might forward messages to
the server or perform message validation. Note that the GM and
the message passing architecture do not enforce either server-
or client-centric games. As many or as few of the actors in
the system can be simulated on the server. In a client-centric
simulation, the server would just be a rule enforcer and a data
collector. In a server-centric case, the clients would only exist
to display the scene and accept the user input.

B. Game Components

An ATS system usually involves thousands of actors. To
improve the computing performance, each individual actor is
designed as simply as possible. Thus, actors are not powerful
enough to handle all the ways in which messages could be used.
How does an actor directly interact with the global simulation
information or intercept the message stream? The answer is the
components. A component is a special type of object that works
with the GM. Components receive all messages and can there-
fore work at a much higher level than an actor. Components
perform all sorts of behavior, such as network connectivity,
message logging, and rule validation. Similar to actors, we can
dynamically add components at either runtime or compile time.
The component is a direct result of the component-based design
discussion in the game-actor layer.

Components are the high-level processors in this archi-
tecture. Any time the system-level sophisticated behavior is
required, a component is most likely constructed. In our im-
plementation, we designed several important components as
follows.

1) Message Processor Component. The message processor
is a GM component that handles messages that are com-
mon to all games and simulations. For example, messages
that an actor enters and leaves the TSM are handled by
this component. Most, if not all, of the message handling
methods can be overridden, thus providing a great entry
point for custom-game or simulation applications to hook
into the message stream if the custom behavior is required
for such messages.

2) Statistic Component. The statistic component is used to
collect traffic-related statistic data during the simulation.
These statistic data include the traffic flow, the average
speed, and the density on a certain road. Other data
such as the stop times and the average queue length can
also be calculated. These statistic data are important for
the verification of the models, as well as the analysis
evaluation of the traffic-control methods.

3) Network Component. Since the GM plays such a cen-
tral role in the actor management and organization, it
serves as a perfect entry point for networking capabilities.
The networking capabilities are designed to follow the
component-based design strategy that is mentioned at the
beginning. Due to its complex nature, the networking
component is actually comprised of two separate com-
ponents, one of which for the server side and one for
the client side. With such a design, we can configure the
network that is both a peer-to-peer model and a client–
server model at the same time. For actors, it is a peer-to-
peer network that agents can travel from one computer
to another; for traffic-statistic data, it is a client–server
network from which the server collects the distributed
data and displays the dynamic data charts. The network-
ing component is responsible for any and all network
connectivity and flow.

4) Input Component. As a game-engine-based platform, it is
easy for users to interact with the simulation. The input
component responses to the keyboard and mouse inputs.
Aside from control actions such as start and stop, this
component can be used for driver training. By keyboard

350 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 2, JUNE 2011

Fig. 6. Distributed architecture that is based on the GM.

and mouse or by joystick, users can drive a car in the
3-D simulation environment that is similar to playing a
game. Morever, a learning management system can be
integrated as the evaluation.

5) Real-World Component. This component is the interface
that is used to run an ATS with the hardware in the loop.
In our design, we connect ten signal controllers to our
platform. The signal controllers, with control methods
programmed in, interchange information according to
China’s National Transportation Communications for ITS
Protocol.

Aside from the components that are previously introduced,
there are also an XML component for reading and parsing
XML documents and a heads-up display component for real-
time data display. Additional components can be easily added
when needed.

C. System Integration

The GM is the core of the architecture, the glue that holds
everything in the system together, and the system entry point
of the simulation. It is responsible for managing all actors,
ensuring messaging and interobject communication, and direct-
ing the component behavior. It knows which components exist,
what actors are interested in which messages, and what actors
exist in the simulation. It is then responsible for making sure
that messages get to the components and interested actors, as
well as for handling low-level events from the Delta3D system,
such as frame and preframe events.

Fig. 6 shows a high-level relationship between the GM, the
actors, and the game components that were discussed here. As
previously introduced, actors and components within the same
GM (or the same computer) communicate by local messages,
whereas actors and components in different GMs (or com-
puters) communicate by remote messages. Remote messages
are sent and received through the network component, which
constructs a distributed system.

VI. EXAMPLES OF EXPERIMENTS

It is necessary to test and improve the proposed platform
through experiments and applications. Here, we introduced

Fig. 7. Real traffic flow of Zhongguancun East Road.

four cases to test the performances of the platform in different
aspects.

A. Evaluation of the APM

In this experiment, we constructed a traffic environment of
the Zhongguancun area in Beijing. The simulation was taken on
the proposed platform, which is based on a road network only
that extracts the main roads. The parameters are as follows. The
road network includes 18 intersections and 42 road links. There
are 71 places, including shopping malls, colleges, hospitals,
theaters, factories, and so on. For the APM, we set a population
with 50 000 persons. All persons are divided into nine strata
with the proportion that is listed in Table I and live a life that is
described in Section III. What we are interested in is to make a
generated traffic flow approach a real traffic flow. We recorded
the daily traffic flow of Zhongguancun East Road with a video
camera from March 1–7, 2009. Then, we got the average flow
shown in Fig. 7. We also got a simulation traffic flow of the
same position by the proposed platform, which is shown in
Fig. 8.

By comparing the two curves, we can see that the simulation-
generated data are very different from the real data. There are
two ways to reduce the differences. First, the population that is
used in the experiment is too small. Because we cannot get the
accurate population size of the Zhongguancun area, a series of
experiments is needed to test the changes in the traffic flow with
the increased population size. Second, for the simulation area is
a part of the big city, we should consider the passing-through

MIAO et al.: GAME-ENGINE-BASED PLATFORM FOR MODELING AND COMPUTING ATSs 351

Fig. 8. Simulation-generated traffic flow of Zhongguancun East Road.

Fig. 9. Main road network of Jinan, which is divided into three parts.

vehicles. However, in spite of the differences, the simulation-
generated traffic flow has the feature of double peak in the
morning and the dusk, which is similar to the real traffic flow.
Of course, much effort is needed to improve the APM to get
similar traffic data to the data in the real world.

B. Tests for System Performance

This experiment aimed to test the system performance, par-
ticularly for distributed simulation of large areas. The exper-
iment constructed a road network that is covering main city
roads of Jinan, China. The simulation area is 17 km in length
and 15 km in width. The road network includes 81 intersections
and 646 road links. There are 320 places, including all nine
types. We divided the road network into three parts, as shown in
Fig. 9. The system ran on three computers that are connected in
a local-area-network environment; each computer was in charge
of one part of the area. Vehicles (persons) travel from computer
to computer if the road link is cut off and connected through
the network. We ran simulations with population sizes from
70 000 to 230 000 and recorded the average speed of vehicles in
the road network from 6:00 A.M. to 14:00 P.M. Fig. 10 shows
that, as the population increases, the average speed of vehicles
in the road network drops. The generated traffic data meet our
common sense.

It took 2.5 h to simulate a whole day with a population size
of 230 000, without the real-time 3-D display. The computers’
platform is based on Intel Core 2 Duo E4400. It will be running

Fig. 10. Average speed drops with increased population.

Fig. 11. Simulation road network around Guangzhou Tianhe Sports Center.

much slower with the 3-D real-time display turned on, but it is
still much faster as compared with a single computer.

C. Support for the Traffic Scheduling of the 2010 Asian Games

The 16th Asian Games were held in Guangzhou in November
2010. To improve the traffic environment, we were invited as
a partner of the Committee of the Guangzhou Asian Games.
Based on the proposed platform, we evaluated different traffic
scheduling schemes around the areas of the Tianhe Sports
Center. Fig. 11 shows the road network of the simulation.

The network involves 19 crosses and 79 places. The aim is
to select the best scheduling scheme that helps to most quickly
disperse the audiences in different conditions. The parameters
are as follows: the number of people in the audience at the
Tianhe Sports Center, which we take to be 30 000, 50 000, and
70 000 at most; and the percentage of different vehicles, includ-
ing bus rapid transits, subways, taxis, bicycles, and by foot.
Through a series of simulations, we acquired the evacuation
time of different combined conditions, which were adopted by
the Traffic Council of the 2010 Asia Games as a reference to
optimize the traffic control. The details of this work will be
introduced in another paper. Fig. 12 shows the scene of the
audiences that are exiting the Tianhe Sports Center in one of
the simulations.

D. Using the Platform as Driver Training System

This experiment is more like a serious game. To keep the sim-
ulation at a normal frame rate (about 30 ft/s), we took a small

352 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 2, JUNE 2011

Fig. 12. Audiences that are exiting the Tianhe Sports Center in the simulation.

Fig. 13. Using the platform as a training system, the car that is marked with a
circle is controlled by the user.

area of Jinan, covering five intersections, with a population size
of 10 000. Users take part in the simulation through the input
component that was introduced in Section V. One can drive
the car owned by him using the four keys, i.e., “↑, ↓, ←, and
→,” which is similar to what we usually do in a race game. In
Fig. 13, the “beetle” car that is marked with a circle is controlled
by a user. This user-controlled car is different from other actor
vehicles. First, by the physics-engine ODE that is integrated in
Delta3D, the car has the ability of collision diction. Second, the
car is driven by users instead of a person from the APM. Such
an experiment can be used to train drivers before they drive a
real car on a real road.

VII. CONCLUSION AND FUTURE WORK

This paper has introduced a modeling and computing plat-
form based on the Delta3D game engine. The APM has been
designed to take place of the OD matrix. The APM depends on
the social strata and Maslow’s principle and acts as the traffic
demands generation. The TSM has been designed to process
all the microbehaviors of vehicles or pedestrians. A pair of 2-D
and 3-D editors has been used to convert or design virtual envi-
ronments, including road networks and activity places. There
are also components for Internet, communication, statistics,
interface, etc. All the modules and components are organized
by the GM of Delta3D in a flexible architecture. Each module
can be added and substituted as needed.

Results of experiments show that this modeling and comput-
ing platform has the basic functions as a simulation platform.
However, there is a lot of work to do on this platform. For
example, a more detailed and larger scale APM is needed to
replace this one, and consequently, a larger network or a cluster
is necessary to do ATS experiments for big cities such as
Beijing. In addition, we are working on making the platform an
online system that is similar to a MMORPG. This is interesting
but more challenging, for the revision of the engine and a more-
powerful network component must be added.

ACKNOWLEDGMENT

The authors would like to thank Prof. F.-Y. Wang for his
intensive instructions, the Laboratory of Complex Adaptive
Systems for Transportation, Prof. S. Tang, and the hard work
of H. Zhao and Y. Ou. Without their support, the authors could
not have implemented the introduced platform.

REFERENCES

[1] F. Y. Wang, “Toward a revolution in transportation operations: AI
for complex systems,” IEEE Intell. Syst., vol. 23, no. 6, pp. 8–13,
Nov./Dec. 2008.

[2] F. Y. Wang and S. J. Lansing, “From artificial life to artificial societies:
New methods in studying social complex systems,” J. Complex Syst.
Complexity Sci., vol. 1, no. 1, pp. 33–41, 2004.

[3] F. Y. Wang and S. M. Tang, “Artificial societies for integrated and sustain-
able development of metropolitan systems,” IEEE Intell. Syst., vol. 19,
no. 4, pp. 82–87, Jul./Aug. 2004.

[4] M. M. Waldrop, Complexity: The Emerging Science at the Edge of Order
and Chaos. New York: Simon and Schuster, 1992.

[5] F. Y. Wang, “Computational experiments for behavior analysis and de-
cision evaluation of complex systems,” J. Syst. Simul., vol. 16, no. 5,
pp. 893–898, 2004.

[6] A. Kotsialos, M. Papageorgiou, C. Diakaki, Y. Pavlis, and
F. Middelham, “Traffic flow modeling of large-scale motorway networks
using the macroscopic modeling tool METANET,” IEEE Trans. Intell.
Transp. Syst., vol. 3, no. 4, pp. 282–292, Dec. 2002.

[7] J. Maroto, E. Delso, J. Félez, and J. M. Cabanellas, “Real-time traffic
simulation with a microscopic model,” IEEE Trans. Intell. Transp. Syst.,
vol. 7, no. 4, pp. 513–527, Dec. 2006.

[8] [Online]. Available: http://secondlife.com/
[9] [Online]. Available: http://www.delta3d.org

[10] J. Simpson, Game Engine Anatomy. [Online]. Available: http://www.
extremetech.com/article2/0,2845,594,00.asp

[11] M. O. H. Duin, “Serious game development by distributed teams: A case
study based on the eU project prime,” in Proc. 3rd Int. Conf. WEBIST ,
vol. 3, Society, e-Business and e-Government, e-Learning, Barcelona,
Spain, 2007.

[12] [Online]. Available: http://www.shipsim.com/home.php
[13] [Online]. Available: http://virtualbattlespace.vbs2.com/
[14] A. Binsubaih, S. Maddock, and D. Romano, “A serious game for traffic

accident investigators,” Interactive Technol. Smart Educ., vol. 3, no. 4,
pp. 329–346, 2006.

[15] P. Backlund, H. Engstrom, M. Johannesson, and M. Lebram,
“Games and traffic safety—An experimental study in a game-based
simulation environment,” in Proc. 11th Int. Conf. Inf. Vis., Jul. 4–6, 2007,
pp. 908–916.

[16] J. Félez, J. Maroto, G. Romero, and J. M. Cabanellas, “A full driving
simulator of urban traffic including traffic accidents,” Simulation, vol. 83,
no. 5, pp. 415–431, May 2007.

[17] [Online]. Available: http://nebula.emulatronia.com/
[18] [Online]. Available: http://irrlicht.sourceforge.net/index.html
[19] [Online]. Available: http://www.crystalspace3d.org/main/Main_Page
[20] [Online]. Available: http://transims-opensource.net/
[21] Virginia Tech, TRANSIMS Fundamentals. [Online]. Available: http://

www.transims-opensource.net
[22] F. Y. Wang et al., “A complex systems approach for studying integrated

development of transportation, logistics, and ecosystems,” J. Complex
Syst. Complexity Sci., vol. 1, no. 2, pp. 60–69, 2004.

MIAO et al.: GAME-ENGINE-BASED PLATFORM FOR MODELING AND COMPUTING ATSs 353

[23] X. Y. Lu, Report on Social Strata of Modern China. Beijing, China:
Social Sci. Academic, 2002.

[24] A. Giddens, Sociology, 4th ed. Beijing, China: Beijing Univ. Press, 2006.
[25] Y. F. Zheng, Urban Sociology. Beijing, China: China City, 2002.
[26] D. Coon, Introduction to Psychology: Gateways to Mind and Behavior,

9th ed. Beijing, China: China Light Ind., 2004.
[27] A. H. Maslow, Toward a Psychology of Being, 3rd ed. Hoboken, NJ:

Wiley, 1998.
[28] BMH Associates, Inc., Game Manager, Delta3D Game and Simulation

Engine SOFTWARE DESIGN DOCUMENT, 2005. [Online]. Available:
http://www.delta3d.org

Qinghai Miao received the Ph.D. degree in
automatic-control engineering from the Chinese
Academy of Sciences, Beijing, China, in 2007.

Currently, he is a Lecturer with the College of
Computing and Communication Engineering, Grad-
uate University of the Chinese Academy of Sciences.
His research interests include software agents and
multiagent systems, parallel computing and high-
performance computing, and massively distributed
simulation of artificial transportation systems.

Fenghua Zhu received the Ph.D. degree in control
theory and control engineering from the Chinese
Academy of Sciences, Beijing, China, in 2008.

He is currently an Associate Researcher with
the Key Laboratory of Complex Systems and In-
telligence Science, Institute of Automation, Chi-
nese Academy of Sciences. His research interests
include artificial transportation systems and parallel-
transportation management systems.

Yisheng Lv received the Ph.D. degree in control
theory and control engineering from the Chinese
Academy of Sciences, Beijing, China, in 2010.

He is currently an Assistant Researcher with the
Key Laboratory of Complex Systems and Intel-
ligence Science, Institute of Automation, Chinese
Academy of Sciences. His research interests include
intelligent transportation systems and emergency
transportation management.

Changjian Cheng received the Ph.D. degree in
chemical engineering from the Chinese Academy of
Sciences, Beijing, China, in 2008.

Currently, he is an Associate Professor with the
Institute of Automation, Chinese Academy of Sci-
ences. His research interests include multiagent sys-
tems, parallel-management theory and applications,
and high-efficiency computing and simulation of
transportation systems.

Cheng Chen is currently working toward the Ph.D.
degree with the Key Laboratory of Complex Systems
and Intelligence Science, Chinese Academy of Sci-
ences, Beijing, China.

His research interests include multiagent sys-
tems and distributed artificial intelligence and its
applications.

Xiaogang Qiu received the Ph.D. degree in system
simulation from the National University of Defense
Technology, Changsha, China.

Currently, he is a Professor with the College
of Mechatronic Engineering and Automation, Na-
tional University of Defense Technology. His
research interests include simulation, multiagent
systems, knowledge management, and parallel
control.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

