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† Background and Aims Mongolian Scots pine (Pinus sylvestris var. mongolica) is one of the principal species
used for windbreak and sand stabilization in arid and semi-arid areas in northern China. A model-assisted analy-
sis of its canopy architectural development and functions is valuable for better understanding its behaviour and
roles in fragile ecosystems. However, due to the intrinsic complexity and variability of trees, the parametric
identification of such models is currently a major obstacle to their evaluation and their validation with respect
to real data. The aim of this paper was to present the mathematical framework of a stochastic functional–
structural model (GL2) and its parameterization for Mongolian Scots pines, taking into account inter-plant
variability in terms of topological development and biomass partitioning.
† Methods In GL2, plant organogenesis is determined by the realization of random variables representing the be-
haviour of axillary or apical buds. The associated probabilities are calibrated for Mongolian Scots pines using
experimental data including means and variances of the numbers of organs per plant in each order-based
class. The functional part of the model relies on the principles of source–sink regulation and is parameterized
by direct observations of living trees and the inversion method using measured data for organ mass and
dimensions.
† Key Results The final calibration accuracy satisfies both organogenetic and morphogenetic processes. Our
hypothesis for the number of organs following a binomial distribution is found to be consistent with the real
data. Based on the calibrated parameters, stochastic simulations of the growth of Mongolian Scots pines in planta-
tions are generated by the Monte Carlo method, allowing analysis of the inter-individual variability of the number
of organs and biomass partitioning. Three-dimensional (3D) architectures of young Mongolian Scots pines were
simulated for 4-, 6- and 8-year-old trees.
† Conclusions This work provides a new method for characterizing tree structures and biomass allocation that can
be used to build a 3D virtual Mongolian Scots pine forest. The work paves the way for bridging the gap between a
single-plant model and a stand model.

Key words: Pinus sylvestris var. mongolica, functional–structural plant model, canopy architecture, three-
dimensional, forest canopy, virtual plant, GreenLab, parameterization.

INTRODUCTION

The northern region of China contains arid and semi-arid areas
characterized by low and unreliable precipitation, extreme
temperatures, strong winds and infertile soils. Afforestation
is a major way to combat desertification and to improve eco-
system service functions. Mongolian Scots pine (Pinus sylves-
tris var. mongolica) is one of the principal species used for
windbreaks and for sand stabilization in arid and semi-arid
areas in northern China (Zhu et al., 2003). The natural distri-
bution of Mongolian Scots pine is mainly in the stabilized
sand dunes of the Hulun Buir sands of China. This species
has high tolerance to cold, drought, soil infertility and salinity.
Therefore, Mongolian Scots pines have been introduced to the

edges of other sandy areas in northern China to construct a
protection system against sand dune movement.

A model-assisted analysis of the canopy architectural devel-
opment and functions of Mongolian Scots pines is valuable for
a better understanding of its behaviour and role in fragile eco-
systems. Recently, functional–structural plant models
(FSPMs) have been developed to simulate the growth and
development of trees by integrating eco-physiological pro-
cesses within three-dimensional (3D) architectures (Sievänen
et al., 2000; Eschenbach, 2005; Godin and Sinoquet, 2005;
Pearcy et al., 2005; Fourcaud et al., 2008). Most of the
recent work on FSPMs tend to include (1) fine stochastic archi-
tectural descriptions [e.g. using a hidden semi-Markov chain in
Lopez et al. (2008) or Costes et al. (2008)] and (2) more
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detailed physiological processes, such as light distributions
[e.g. a quasi-Monte Carlo path-tracing algorithm in Cieslak
et al. (2008) and Perttunen et al. (2007)], carbon reserve
dynamics (e.g. Daudet et al., 2002; Pallas et al., 2009), trans-
port resistance (e.g. Prusinkiewicz et al., 2007), maintenance
respiration, and the influence of varying environmental con-
ditions with local effects on organ growth (e.g. Gayler et al.
2008). As a consequence, models have become increasingly
biologically realistic but their parameterization remains weak
and their increasing complexity can also create computational
limitations. In this case, the duration of the growth period for
simulation is usually kept very short, e.g. just 1 year for early
ECOPHYS (Rauscher et al., 1990), SIMWAL (Balandier
et al., 2000) and EMILION (Bosc, 2000). L-PEACH (Allen
et al., 2005) is also a spatially explicit 3D simulation model
that integrates the supply/demand concepts of carbon allo-
cation and a developmental model of tree architecture using
L-systems (Prusinkiewicz and Lindenmayer, 1990;
Prusinkiewicz et al., 1994). These models focus more on the
functioning of plant organs and less on the changes of tree
structure during longer growth periods. For example, the
LIGNUM model shows the growth of Scots pines with a sim-
plified tree architecture which responds to photosynthetically
active radiation with a time step of 1 year (Perttunen et al.,
1996, 1998; Sievänen et al., 2008).

The GreenLab model simplifies the simulations of plant
physiological processes, namely biomass production and allo-
cation for organ morphogenesis. The deterministic version, in
which the time of initiation and the position of the plant organs
are fixed from the beginning of the simulation, is called GL1
(Yan et al., 2004). Until now, GreenLab has been applied to
crops, e.g. maize (Y. Guo et al., 2006), wheat (Kang et al.,
2008b) and tomato (Dong et al., 2008), and trees, e.g.
Chinese pine saplings (H. Guo et al., 2006). However, these
calibration processes were based on plants having determinis-
tic architectures that represented either specific individuals
or an average topological structure derived from several
samples.

Deterministic topological development is quite unrealistic
bearing in mind the high variability of branching patterns
observed in an actual tree stand. It is important to consider
the randomness of topological development. Wang et al.
(2007) presented a stochastic modelling method for describing
a 3D canopy architecture of Mongolian Scots pine, in which
the sizes of individual organs were forced, instead of resulting
from eco-physiological processes within the plant. A stochastic
version of GreenLab, called GL2 (Kang et al., 2008a), was
developed to consider the effects of random topological devel-
opment on plant function. An interesting property of the GL2
model is that it is possible to calculate analytically, i.e. without
explicitly computing the plant architecture, the theoretical
mean and variance of the numbers of organs at any growth
stage to fit the parameters driving the topological development
as well as the functional processes. It implies that the model
parameterization does not rely on Monte Carlo simulations,
this last method inducing a high computational cost to
obtain an average virtual population (to compare with obser-
vations). Monte Carlo simulations can also introduce bias if
the number of individuals simulated is not large enough.

Wang et al. (2009) presented a procedure for parametric
identification for Mongolian Scots pines by incorporating
topological information in the set of target data.

In this study, we introduce a new protocol for the parameter-
ization of the GreenLab model, by taking advantage of the
simplicity of the GL2 model and its analytical solutions for
calculating average plants. This work is based on both topolo-
gical and organ biomass data. The model is thus used to
explore the variability of organ number and biomass within
Mongolian Scots pine plantations. The detailed mathematical
framework of the stochastic functional and structural model
GL2 is presented. The parameterization method and the
results, which were first introduced in Wang et al. (2009),
are re-used with the following results. Using the calibrated
model for Mongolian Scots pine, we have analysed the range
of variation of organ number and biomass of Mongolian
Scots pine stands by stochastically simulating the number
and biomass of their organs. Eventually, 3D views of nine
young Mongolian Scots pines are presented to illustrate the
opportunities of using this stochastic model for functional
visualization of individual-based stand growth.

MATERIALS AND METHODS

Experiments

The experimental site is located in plantations affiliated with
the Liaoning Sand Stabilization and Afforestation Institute in
Zhanggutai (122822′E, 42843′N), Liaoning Province, China.
The study region is on the edge of the Kerqin sands.
Long-term (1953–2006) mean annual precipitation is
505.9 mm, which falls mainly between May and October.
Mean annual temperature is 6.0 8C with monthly mean temp-
eratures ranging from a low of –12.1 8C in January to a high of
24.1 8C in July. The soil type at the experimental site is classi-
fied as an aeolian sandy soil according to the Chinese
Classification, or as an arenosol according to the World Soil
Classification.

Two experiments to observe tree topological structure and
organ biomasses were carried out in November 2006 and in
August 2007. Measurements were performed for trees of
different ages. At a first stage, the branching pattern of
Mongolian Scots pines, i.e. monopod, and the duration
of needle functioning (duration of needle photosynthesis)
were determined. The number, angle and azimuth of branches
of different orders were then recorded for 100 tree samples,
each grouped into one of three age-groups (4-, 5- and
6-year-old trees). Samples of 1-, 2-, 3-, 5- and 6-year-old
trees were also taken for destructive measurements of
biomass and geometry with four replications for each tree
age. To prevent water loss during measurement, plants were
dug up with their roots and soil and transported to the labora-
tory. For 6-year-old trees, the detailed measurements for each
growth unit (GU), which is the part of the stem produced
during a 1-year growth cycle (GC), were the length, diameter,
and fresh and dry biomass of internodes and of needles. For
trees younger than 6 years, fresh biomass of internodes and
needles was measured for each branching order.
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Stochastic organogenesis model

The GL2 model is a stochastic functional–structural model,
in which plant organogenesis depends on the probabilities of
bud state. In general, a bud may die, or remain dormant, or
give rise to a different number of metamers at each develop-
mental stage. For Mongolian Scots pine, each year an apical
bud can develop into a growth unit (arbitrarily regarded as a
single metamer), so growth probability is always 1. Based on
our observations, the probabilities of death or dormancy are
negligible in young trees. The variability of tree architecture
is represented mainly by the number of branches arising at
different nodes. Thus, only the branching probabilities are
taken into consideration.

In the GreenLab model, biomass computation is based on
knowledge of the number of sink and source organs. Mean
and standard deviation of the numbers of organs for each
tree in a stand were chosen as input variables. In GreenLab,
the plant architectural description is hierarchically organized
using the botanical notion of physiological age (PA)
(Barthélémy and Caraglio, 2007). In this case, PA is equival-
ent to branching order: 1 for the trunk, 2 for first-order
branches, 3 for second-order branches and 4 for third-order
branches, which is the maximum PA for the trees in this
study. An assumption inherent to GreenLab is that organs of
a given type (internode or leaves) or PA that appear in the
same year have the same biomass regardless of their position

in the plant’s architecture. Making this assumption, although
the actual branching probability evolved with node rank
(Fig. 1), an average branching probability for each PA is pro-
posed and the criterion is that the number of organs from the
sampled trees can be satisfactorily fitted by the organogenesis
model.

Theoretical computation of stochastic organogenesis model

To fit the number of organs from the observations, we use
the theoretical mean and variance of organ numbers as a func-
tion of their branching probability. These are calculated in an
analytical way (Kang et al., 2008a), which is more efficient
than a Monte Carlo simulation, making the iterations in the
fitting process more affordable.

Let pk, the probability that a lateral bud of PA k can develop
into a branch, be called the branching probability of PA k, for k
ranging from 2 to 4. Suppose that there are potentially nk

lateral buds at each node with bud of PA k. The number of
branches that actually appears at a node then follows a bino-
mial law (nk, pk). The mean MB

k and variance VB
k of the

numbers of branches at such a node are:

Mk
B = nkpk

Vk
B = nkpk(1 − pk)

{
(1)
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FI G. 1. Frequency distribution of first-order branch numbers at the different node positions of Mongolian Scots pines. Note: ST2, ST3, ST4 and ST5 refer to the
second, third, fourth and fifth nodes counting from the bottom of the trunk.
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We define a substructure of PA p as the whole branch originating
from a bud of PA k. Let Sn

k , p be the number of GUs of a given PA
p in a substructure of PA k and of chronological age (CA) n. Sn

k , p

is a function of the branching probabilities of different orders.
When k ¼ 1, Sn

1,p refers to the number of GUs of PA p in the
whole plant structure. Using compound law formulae, their
mean and variance, M

S
k,p
n

and V
S

k,p
n

, can be computed recurrently
from the highest PA value (Kang et al., 2008a):

M
S

k,p
n

= Mk+1
G Mk+1′

X

V
S

k,p
n

= Vk+1
G Mk+1′

X + Mk+1
G Vk+1

X Mk+1′
G

{
p . k (2)

In eqn (2), MG
k+1 and VG

k+1 are the mean vector and covariance
matrix of the number of branches along the axis of substructure
k, and their elements are computed from eqn (1); for example:

Mk+1
G = [Mk+1

B Mk+1
B . . . Mk+1

B ]

Vk
G =
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B 0
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B
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(3)

Remember that, for a pine, axes of PA k bear branches of PA k +
1. For VG, their non-diagonal elements are zeros based on the
hypothesis that the numbers of branches per node are indepen-
dent of each other. MX and VX are the mean vector and covari-
ance matrix of the number of GUs in branches along the axis, i.e.
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(4)

The recursive computation as in eqn (2) starts with the maximum
PA, which has no branches. The number of GUs in a branch with
the maximum PA is simply the total number of GUs in its axis,
which is a deterministic variable for a young pine as each year
a new GU is formed, i.e. MS

p,p
n

= n;VS
p,p
n

= 0. This equation
holds for the number of GUs in the axis of any PA. The
number of GUs in a substructure of PA p – 1Sn

p21,p is dependent
on the branching probability of a bud of PA p (eqn 3). Equation
(2) gives recursively the mean and variance of the number of
GUs in a plant (with PA 1), which follows a binomial distribution
as a compound of binomial laws. As the number of organs per GU
is regarded as a deterministic value (all needles in a GU are
regarded as one leaf), the number of organs of any age is
known. Once the mean number of organs is calculated for each
cycle of plant growth, it is possible to compute the dynamics of
average plant production and demand throughout its growth
using the sink–source model that was developed in GL1.

Simulation of stochastic trees

Simulation of the stochastic tree consists of three parts: simu-
lation of bud events, computation of organ biomass and size (see

below), and construction of tree geometrical structure. The
history of bud behaviour (being dormant or active) is recorded
so that once the tree structure is given in the next cycle, the
same tree continues growing. The stochastic substructure algor-
ithm (Kang et al., 2003) is applied to increase the efficiency of
the Monte Carlo simulation: a small sample of stochastic
branches is re-used in building the branches of a lower PA.
The biomass computation is based on the number of organs of
a sample tree. As a consequence, the biomass varies between
individual trees. By simulating a population of trees, the mean
and variance of both the numbers of organs and the biomasses
can be obtained for the population.

Biomass production and allocation

The component of GL2 for biomass production and allo-
cation follows the same principles as for GL1 so we refer to
Yan et al. (2004) for a more detailed description. Note that
only above-ground growth is modelled in this study. The
biomass production per growth cycle is assumed to be pro-
portional to leaf area per unit ground area and to plant tran-
spiration. In GreenLab, the effects of light, water and
temperature are accounted for in a function E(n). E(n) is the
average potential of biomass production during growth cycle
n, which is the potential evapotranspiration in this study, but
can be adjusted to other environmental variables if required.
Hence, the assimilates available for a plant in growth cycle
n, Q(n) [g] is calculated using the Beer–Lambert law to
account for a diminishing contribution per unit leaf area as
the latter increases, as in eqn (5):

Q n( ) = E n( )Sp

R
1 − exp −k

S(n)
Sp

[ ]{ }
(5)

where Sp [m22] is the ground area available to a plant, com-
puted as the inverse of the population density. R is an empiri-
cal parameter to be estimated with the inversion method. The
value of k is 1, which is analogous to the extinction coefficient
in the Beer–Lambert law. S(n) [m22] is the total functioning
leaf area of a plant, being the sum of the individual leaf
areas at tree age n.

At each growth cycle, the assimilates available for growth
are considered to be located in a virtual common pool
(Heuvelink, 1995). From the common pool, biomass is allo-
cated dynamically among individual organs according to
organ number, age and relative sink strength (Lacointe,
2000). The relative sink strength for organs of given type o
and PA p is a dimensionless variable indicating the ability of
that organ to compete for biomass. The sink strength of
needles in the top GU of the trunk is set to 1 as a reference
value. Hence, the overall demand D(n) at tree age n is the
sum of the sink strengths of all growing organs appearing in
the above-ground parts of the plant, as expressed in eqn (6):

D(n) =
∑

o=a,e

∑M

k=1

po(k)No(k, n) + pc (6)

where o represents organ type, a stands for needles (all needles
on one GU are treated as a single entity), e stands for internode
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and pc stands for the sink strength for secondary growth; M is
the maximum PA of the tree (4 in our study); No(k, n) rep-
resents the number of organs of type o and PA k appearing
in growth cycle n; and po(k) represents the relative sink
strength of organs of type o and PA k.

A new organ o (leaf or internode) with PA k gains biomass
in proportion to its sink strength and the ratio between the
biomass supply from the previous cycle and current demand
at tree age n, as shown in eqn (7):

qo(k, n) = po(k)
D(n) Q(n − 1) (7)

The biomass of internodes comes from their primary growth
(corresponding to internode elongation) and from secondary
growth (corresponding to the annual growth-ring increment).
Primary growth takes place exclusively during the first year
while secondary growth does not stop until the branch is
dead. Simulation of secondary growth proceeds in two steps.
First, biomass is allocated globally to the ring compartment
DQc(n), which is calculated according to the biomass pro-
duction Q(n – 1) and relative sink strength of secondary
growth pc. In the second step, DQc(n) is distributed to each
metamer according to two different rules: a uniform allocation
rule and the Pressler rule (Deleuze and Houllier, 2002), as
shown in eqn (8). In the uniform mode, all needles contribute
to the cambial growth of each metamer, independent of their
position, and thus the biomass for the annual ring is allocated
to each internode according to a coefficient of secondary
growth for each PA Rp(k) and the length of the internode. In
the Pressler mode, the allocation of biomass for the annual
ring is dependent on the number of living needles above the
internode in the architecture. As a result, the internodes in
the lower positions can have more secondary growth than
the internodes in the upper positions. These two modes can
be mixed with a proportion coefficient l in [0, 1], which can
be used to assess the effects of numbers of leaves and their
positions on the partitioning of ring biomass (Letort et al.,
2008).

Dg(n) =
∑M
k=1

∑n−1

m=1

Ne(k,m, n − 1) l(k,m − n + 1) Rp(k)

Dp(n) =
∑M
k=1

∑n−1

m=1

Na(k,m, n − 1) Ne(k,m, n − 1)

l(k,m − n + 1) Rp(k)

Dqc(k,m, n) = 1 − l

Dg(n)
+ lNa(k,m − 1, n − 1)

Dp(n)

( )
l(k,m − n + 1) Rp(k) DQc(n)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

In this equation M is the maximal physiological age; Ne(k, m,
n – 1) represents the number of GUs of PA k, and CA m at tree
age n – 1; l(k, m – n + 1) represents the length of the GU of
PA k that appears at GC m – n + 1; Rp(k) is a repartition coef-
ficient for biomass allocation to cambial growth of the GU of
PA k [m21] – it is a relative value, with its reference being the
GU of PA 1; Na(k, m, n – 1) is the number of living needles
above a GU of PA k and CA m at tree age n – 1; Dg(n) and
Dp(n) represent the plant demand for ring growth at tree age

i with the uniform and Pressler modes, respectively; and
Dqc(k, m, n) is the ring biomass increment of the GU of PA
k and CA m at tree age n.

Model calibration

Some parameters in the model, namely the number of
branches, leaf functioning time and plant density, were obtained
directly from observations in the experimental plot. Specific leaf
weight 1, organ scale coefficient b and shape coefficient b were
calculated according to plant organ fresh biomass and organ
(needle and internode) lengths and diameters.

The other parameters in the model were estimated by the
generalized least square method, which is used to find a set
of parameters that minimize the difference between the
model output and the measured data. The accuracy of fitting
is expressed in the root-mean-squared error (RMSE) between
the target data and the corresponding model output.
Compared with the classical fitting protocols of GreenLab,
the novelty of this approach is that the measured data
include the mean and variances of number and biomass of
organs. Therefore, the fitting process has to be carried out in
two steps in the GL2 model. The first step concerns plant top-
ology and includes fitting the branching probabilities for
branches of each order so that the organogenesis model pro-
duced the closest number of organs to the observations.
During the observations, the numbers of branches were
counted, from which the numbers of GUs were calculated.
By fitting the observed and calculated number of GUs from
eqn (2), the branching probabilities were estimated. Note that
the aim of fitting was to find the average bud probabilities
that gave the closest organ numbers to the real data. The
numbers of branches of 5- and 6-year-old trees were used to
estimate the branching probabilities.

The second step was to solve for the sink–source parameters
by fitting the organ biomasses of an average plant. As the
numbers of internodes and needles (considering all the
needles in one metamer as a single entity) can be calculated
from that of the GUs, the number of sink and source organs
of a plant is known. The sink–source parameters were ident-
ified using the GreenScilab toolbox (http://liama.ia.ac.cn/
greenscilab) for GL2. After calibration, the architecture and
biomass of these Mongolian Scots pines were stochastically
simulated using the GreenScilab software.

RESULTS

Model parameters from direct observations

The maximum branching order of young trees was three on
6-year-old trees. The number of branches per node varied sig-
nificantly between the different orders. The maximum number
of branches per node was 15 for the first-order branch (n2 ¼
15, Fig. 1C), six for the second-order branch (n2 ¼ 6) and
four for the third-order branch (n3 ¼ 4). The maximum
number of branches on the whorl reduced with increasing
branching order. Average specific leaf weight (SLW ¼
0.035 g cm22) and internode allometry scale ratio were used
to calculate organ dimensions from their biomasses. The
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descriptions and values of the main parameters used in the
model are listed in Table 1.

Fitting results

The values of bud probabilities and sink–source parameters
are shown in Table 1. Both the mean and the variance of the
number of GUs, for the trunk and different order branches,
were satisfactorily simultaneously fitted by the model. This
result supported the hypothesis that the number of GUs
follows a binomial distribution (Fig. 2). The trunk of a
Mongolian Scots pine grows by one GU each year. As a
result, the number of GUs of the trunk increases linearly
with tree age and the variance is zero. The mean number of
GUs in a second-order branch (PA3) increases rapidly with
tree age, as does its variance. Because a 6-year-old
Mongolian Scots pine is still very young, the number of
GUs in a third-order branch (PA4) remains at a low level.
Taking a 6-year-old tree as example, the simulated mean and
variance of the total numbers of GUs are 112.2 and 28.3 %
respectively. The mean and variance of GUs of first-order
branches are 39.2 and 27.6 % for measured values, while
their simulated values are 39.8 and 23.6 %. The maximum
number of GUs is for second-order branches, of which the
mean and variance are 51.3 and 35.9 % for measured values
and 52.7 and 33.9 % for simulated values. The minimum
number of GUs is for third-order branches, of which the
measured and simulated values are 11.3 and 13.7, but the var-
iance is large. The bud probabilities identified are given in
Table 1. It can be seen that these decrease with higher branch-
ing orders. The mean numbers of branches per node for first-,
second- and third-order branches were 3.98, 1.33 and 0.52,
respectively, from eqn (1).

The measured data and fitting results can be used to inves-
tigate the trends in biomass partitioning among the different
branching orders throughout growth of the plant from 1 to 6
years. Figure 3A and B show the fitting results on the length
and diameter of each GU in the 6-year-old trees. From these
results, we can obtain tree height and stem diameter at the
base, which are 82.9 and 3.1 cm, respectively. Compared
with the fitting results on fresh biomass of GUs of trunk
(Fig. 3C), the results for internode length and diameter were
less accurate. This may be due to the continuing growth of
internodes when the measurements were taken in August.

Figure 4A shows the observed and simulated values for fresh
biomass (including internodes and needles) of branches of
different orders, i.e. the sum of internodes and needle biomass
for all branches of the same order. For trees less than 6 years
old, the fresh biomass of the trunk is the largest and this
decreases with at higher orders. This trend is reversed when
tree age reaches 6 years: the fresh biomass of first-order branches
overtakes that of the trunk. The fresh biomass of the third-order
branches is the lowest because the number of branches is very
low. From Fig. 4B we can obtain the above-ground fresh
biomass of the reconstructed plants, which are 2.4, 16.2, 39.3,
123.6, 411.8 and 924.7 g, respectively, for trees from 1 to 6
years old. The corresponding relative errors with reference to
these measurements (except for the 4-year-old trees for which

TABLE 1. The descriptions and values of the main parameters
used in the GL2 model for Mongolian Scots pines

Parameter Description (units) Value

Observation
nl Needles functioning time 3
nk Maximum number of branches per

node (PA ¼ 2, 3, 4)
15, 6, 4

1 Specific leaf weight (g cm22) 0.035
b Scale coefficient of single

internodes (PA ¼ 1, 2, 3, 4)
76.4, 163.3, 197.7, 358.0

b Shape coefficient of single
internodes (PA ¼ 1, 2, 3, 4)

–0.24, –0.30, –0.20, 0.14

Fitting
pk Branching probabilities (PA ¼ 2, 3,

4)
0.27, 0.22, 0.13

rp Biomass production resistance 0.92
pe Relative sink strength of

‘internode’ (PA ¼ 1, 2, 3, 4)
0.45, 0.24, 0.07, 0.02

pa Relative sink strength of needles
(PA ¼ 2, 3, 4)

0.46, 0.17, 0.05

pc Relative sink strength of ring
demand

7.16

Rp Secondary sink for ring repartition
(PA ¼ 2, 3, 4) (cm21)

0.05, 0.01, 0.001

l Coefficient for blade influence on
ring partitioning

0.03
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there were no data) are 50.8, 43.7, –44, –11.3 and –3.7 %. The
relative error is lowest for the 6-year-old trees because its
detailed measurement data were included in the fitted file
while only compartment data (total biomass of internodes and
needle) were included for the trees of other ages.

Stochastic simulation of plant growth

Tree growth was stochastically simulated with 50 replica-
tions using the calibrated model. The simulation results of

the biomass of shoot (above-ground part), needles, internodes
and growth rings are presented in Fig. 5. For the 6-year-old
trees, the above-ground biomass ranged from 677.5 to
1051.8 g with a mean of 846.1 g and variance of 10.8 %
(Fig. 5A). Mean values of needle biomasses were close to
those of internode biomasses but the dispersion of the bio-
masses of the needles was much higher than that of internodes
(Fig. 5B). Needle biomass ranged from 260.9 to 595.8 g while
internode biomass ranged from 393.7 to 490.6 g (Fig. 5C). In
the model, rings begin to appear at the end of the year of inter-
node formation. At the sixth year, ring biomass ranged from
268.0 to 364.0 g, with a mean of 328.2 g and a variance of
7.6 %. Ring growth represented an average of 56.9 % of the
total increase of above-ground biomass (Fig. 5D). We can
see from Fig. 5 that means of all measured values are very
close to the simulated lines. However, the long error bars cor-
responding to standard deviations indicate that the measured
values have sparse distributions. The descriptive statistics for
biomass partitioning, simulated for trees from 1 to 6 years
old, are presented in Table 2.

Visualization of canopy architecture

The different architecture of each individual tree is caused
mainly by the number of branches in the model. Tree height
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is also influenced by the number of branches. The greater the
number branches, the more biomass can be produced, but the
larger the consumption of biomass by the internodes of

branches. To obtain an explicit idea of these trees, we repro-
duced their architecture stochastically using the Monte Carlo
method with the branching probabilities given in Table 1.
Three sequences of trees with significant differences in top-
ology were selected and visualized at 4, 6 and 8 years of age
(Fig. 6). It can be seen that the numbers of branches of each
order are random. Taking the 6-year-old trees shown in
Fig. 6 as an example, tree heights of the three samples are
175 cm (Fig. 6D), 157 cm (Fig. 6E) and 149 cm (Fig. 6F),
and the corresponding numbers of total internodes are 265,
500 and 509.

DISCUSSION

Model performance

This paper presents a simulation study of structure and
biomass of Mongolian Scots pines using the stochastic
FSPM GL2 model. This work is based on the previous study
of Wang et al. (2007), which presents a stochastic method to
reconstruct the 3D architecture of Mongolian Scots pines,
and of H. Guo et al. (2006), which adapts the deterministic
GreenLab model to analyse sink–source relationships in
Chinese pine saplings. The specificity of GL2 is used to
account for inter-individual variability of plant topology and
morphology. By incorporating branching probabilities within
the GreenLab model, we ensured that the variability of branch-
ing structures observed in the field was preserved in the model
output. A major achievement of this study is to have demon-
strated the possibility of fitting the branch probabilities using
the means and variances of the number of organs from
actual Mongolian Scots pine plantation trees. The functional
part of the model was calibrated using organ biomass data.
The fitting results suggest that the principles of source–sink
relationships can be an appropriate modelling choice to simu-
late the biomass allocation to different organs of a plant during
its growth. The fitting results of the mean and variance of
organ number represented fairly well the various character-
istics of the architecture of tree stands. However, the variance
of simulated biomass (Table 2) is smaller than that of
measured values (Fig. 5). This may be due to the means of cal-
culation of biomass production based on a Beer–Lambert law
formalism, which is not very sensitive to the tree topology
because of the phenomenon of saturation of intercepted light
(Letort et al., 2009). Therefore, this modelling choice tends
to homogenize biomass production, even for trees that do
not have the same number of organs. The results suggest that
this phenomenon might not be as influential in reality,
especially for young trees which can exhibit strong heterogen-
eity in their canopy geometry. In particular, good estimates of
trunk size are useful in predicting tree height and wood volume
reasonably precisely. The 3D architecture and biomass of a
6-year-old Mongolian Scots pine was stochastically simulated
after model calibration, to represent the stochastic characters
observed in a natural tree stand.

An assumption of our model is that the variances observed
in tree plantations are merely stochastic, whereas in reality
they can be the result of many unknown factors [e.g. the
history of carbon allocation, shading influence of neighbours
and orientation of the tree with respect to latitude
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(i.e. predominant solar angle]. Therefore, although the true
functions that generate the given architectures are certainly
not as simple, our results show that these architectures are
reproduced well (in mean and variance) by simulations using
stochastic functions tied to a binomial distribution.

Comparison with other models

Le Roux et al. (2001) considered that the description of
interactions between tree structure and function was the
weakest point of most tree-growth models. In the func-
tional–structural tree models presented by Sterck et al.

(2005), the flush probability of each metamer depends on its
position, axillary inhibiting factor, local light level and,
indirectly, carbon status of the tree. However, these probabil-
ities driving apical and lateral bud breaks in their models
were set intuitively, and were obtained merely by simple pie-
cewise functions. In contrast, the branching probabilities in
GL2 were estimated based on actual experimental data, and
so reflect the observed stochastic characters of a real
Mongolian Scots pine stand.

A current research topic is the simulation of stand growth
built from an individual-based and functional–structural
approach. The complexity of tree growth models raises

TABLE 2. The descriptive statistics of fresh biomass (g) simulated for Mongolian Scots pines

Shoot Needles Internodes Ring

Tree age (years) Mean s.d. Mean s.d. Mean s.d. Mean s.d.

1 0.98 0.00 0.57 0.00 0.41 0.00 – –
2 8.67 0.00 1.29 0.00 7.38 0.00 6.45 0.00
3 23.59 0.00 4.39 0.75 19.20 0.75 16.88 0.92
4 90.36 10.76 27.45 8.60 62.91 3.11 52.69 2.42
5 375.24 72.83 154.55 51.10 220.69 24.64 172.23 15.35
6 846.05 91.58 401.45 82.06 444.60 23.42 328.17 24.98

A B C

D E F

G H I

6-year-old

8-year-old

4-year-old

FI G. 6. Three stochastic Mongolian Scots pines at 4, 6 and 8 years old.
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problems of computational resource and the time required. The
LIGNUM model simulated a forest consisting of individual
Scots pines on a small plot (Sievänen et al., 2008).
However, their model simplified the stand description by simu-
lating the growth only of one tree in the middle of the plot and
by assuming that the other trees were, at all times, identical to
it. The differences in structure of individual trees in real stands
are obvious and are influenced by light competition during
growth (Sievänen et al., 2008). Therefore, the LIGNUM
model neglected the inherent differences in tree structure in
the initial growth stages. Host et al. (2008) implemented a par-
allel modelling strategy to run simultaneous individual tree
models across an 8 × 8 patch of trees. The patch consists of
‘core’ trees, which are individually simulated instances of
trees with varied physiological and phenological character-
istics, surrounded by rings of ‘neighbour trees’ with canopies
created as translations of the core trees. The physiological
and phenological characteristics of each tree are individually
simulated according to direct and diffuse radiation, hourly
temperature, relative humidity, and atmospheric CO2 and O3

concentrations. This would require high-performance compu-
ters to support multiple simulations in parallel.

Therefore, a simplified tree model such as GL2 is a useful
tool to realize individual-based stands with varied structures
and functions for each tree. It would thus be possible to recon-
struct a virtual forest canopy with stand characters of structure
and function by using field observations and a relatively small
number of destructive measurements. The original version of
the stochastic model was coded in Scilab (GreenScilab soft-
ware) and run on a personal computer with a Microsoft
Windows operating system. It took less than 1 s to simulate
a single Mongolian Scots pine at 6 years old. Stand simulation
cannot be performed using the same software as GreenScilab
is dedicated to single tree simulation. However, previous
studies based on other software implementing the GreenLab
model have underlined that the introduction of structure factor-
ization (Yan et al., 2004) results in a substantial gain in the
computational cost of simulation: the runtime is now simply
proportional to the chronological age and the number of phys-
iological ages (and not to the number of organs that have to be
simulated). For instance, it takes around 4700 s to simulate a
15-year-old pine with the classical method simulating every
organ, whereas it takes only 0.7 s for the same simulation
with the factorization (Cournede et al., 2006).

Improvements of the model and future applications

Although the strong influence of the environmental con-
straints and endogenous growth processes on plant organogen-
esis has been extensively reported by botanists (Barthélémy
and Caraglio, 2007), there are no retro-active effects of plant
biomass production on tree development in the stochastic
model presented here. In nature, plant architecture is the
result of both genotypic and environmental influences. The
numbers of branches is strongly influenced by plant physio-
logical activities (Buck-Sorlin and Bell, 2000). For instance,
it can be expected that branching probabilities are dependent
on soil water content. Therefore, a new functional and struc-
tural tree model coupled with soil water balance is currently
under development for Mongolian Scots pines.

In GL2, biomass is allocated to the different parts of the
plant according to their numbers and types of sinks, which
means that we actually ignore the effects of source variations
on sink numbers and types (Dingkuhn et al., 2005). From
our data, we can see that the number of first-order branches
increased with plant age and with node rank (Fig. 1), and
the same trend is observed with the second- and third-order
branches. This suggests that bud behaviour may be strongly
related to plant biomass production, which is neglected in
our study. Thus, another perspective is to integrate these obser-
vations into a recent version of GreenLab where plant develop-
ment is mechanistically determined by the current trophic state
of the plant, represented by the ratio of biomass supply to
demand (Mathieu et al., 2009). This mechanistic model,
with retro-actions between plant physiology and development,
has been first applied to simulate the growth plasticity of two
beech trees (Fagus sylvatica) grown in different local environ-
ments (Letort et al., 2008). However, the model used was fully
deterministic and only partial measurements of the trees were
available. Thus, from the perspective of the present work, a
significant improvement would be to account for the inter-
and intra-individual topological variabilities in that mechanis-
tic version. A possible method would be to modulate the
stochastic variables of tree development by this supply-to-
demand ratio. It would also require the adaptation of the
parameterization method. It would allow simulation of the
variations of topological structure depending on dynamic
sink–source relationships of trees.

Concluding remarks

The stochastic FSPM GL2 has been calibrated successfully
for young Mongolian Scots pine plantations from 1 to 6 years
old in northern China. It is the first calibration of GL2 and the
method benefits from the analytical expressions of mean and
variance of organs numbers. The model parameters include
different order branch probabilities, parameters for the
biomass production equation and organ sink strengths. They
were obtained through a fitting method from actual experimen-
tal data of plant topology and biomass. After calibration, it is
possible to assess the range of variations in the numbers of
different organ types and their corresponding masses. The
results show that simulated numbers of organs and their
mass are consistent with actual measurements of stands of
living trees. This suggests that the hypothesis that the
number of GUs follows a binomial distribution is reasonable.
Our simulation has produced several samples of stochastic
3D architectures of Mongolian Scots pines. The results here
provide the characteristics of a stand’s structure and biomass
for building a 3D virtual Mongolian Scots pine plantation.
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