
24 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 1, JANUARY 2011

Adaptive Dynamic Programming for Finite-Horizon
Optimal Control of Discrete-Time Nonlinear

Systems with ε-Error Bound
Fei-Yue Wang, Fellow, IEEE, Ning Jin, Student Member, IEEE, Derong Liu, Fellow, IEEE, and Qinglai Wei

Abstract— In this paper, we study the finite-horizon optimal
control problem for discrete-time nonlinear systems using the
adaptive dynamic programming (ADP) approach. The idea is to
use an iterative ADP algorithm to obtain the optimal control
law which makes the performance index function close to the
greatest lower bound of all performance indices within an
ε-error bound. The optimal number of control steps can also
be obtained by the proposed ADP algorithms. A convergence
analysis of the proposed ADP algorithms in terms of performance
index function and control policy is made. In order to facilitate
the implementation of the iterative ADP algorithms, neural
networks are used for approximating the performance index
function, computing the optimal control policy, and modeling the
nonlinear system. Finally, two simulation examples are employed
to illustrate the applicability of the proposed method.

Index Terms— Adaptive critic designs, adaptive dynamic pro-
gramming, approximate dynamic programming, learning control,
neural control, neural dynamic programming, optimal control,
reinforcement learning.

I. INTRODUCTION

THE optimal control problem of nonlinear systems has
always been the key focus of control fields in the past sev-

eral decades [1]–[15]. Traditional optimal control approaches
are mostly implemented in infinite time horizon [2], [5],
[9], [11], [13], [16], [17]. However, most real-world systems
need to be effectively controlled within finite time horizon
(finite-horizon for brief), such as stabilized or tracked to a
desired trajectory in a finite duration of time. The design of
finite-horizon optimal controllers faces a major obstacle in

Manuscript received April 16, 2010; revised August 20, 2010; accepted
August 24, 2010. Date of publication September 27, 2010; date of current
version January 4, 2011. This work was supported in part by the Natural
Science Foundation (NSF) China under Grant 60573078, Grant 60621001,
Grant 60728307, Grant 60904037, Grant 60921061, and Grant 70890084, by
the MOST 973 Project 2006CB705500 and Project 2006CB705506, by the
Beijing Natural Science Foundation under Grant 4102061, and by the NSF
under Grant ECS-0529292 and Grant ECCS-0621694. The acting Editor-in-
Chief who handled the review of this paper was Frank L. Lewis.

F. Y. Wang and Q. Wei are with the Key Laboratory of Complex Systems and
Intelligence Science, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China (e-mail: feiyue.wang@ia.ac.cn; qinglai.wei@ia.ac.cn).

N. Jin is with the Department of Electrical and Computer Engineering,
University of Illinois, Chicago, IL 60607 USA (e-mail: njin@uic.edu).

D. Liu is with the Department of Electrical and Computer Engineering,
University of Illinois, Chicago, IL 60607 USA. He is also with the Key
Laboratory of Complex Systems and Intelligence Science, Institute of Au-
tomation, Chinese Academy of Sciences, Beijing 100190, China (e-mail:
dliu@ece.uic.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2010.2076370

comparison to the infinite horizon one. An infinite horizon
optimal controller generally obtains an asymptotic result for
the controlled systems [9], [11]. That is, the system will not
be stabilized or tracked until the time reaches infinity, while
for finite-horizon optimal control problems the system must be
stabilized or tracked to a desired trajectory in a finite duration
of time [1], [8], [12], [14], [15]. Furthermore, in the case
of discrete-time systems, the determination of the number of
optimal control steps is necessary for finite-horizon optimal
control problems, while for the infinite horizon optimal control
problems the number of optimal control steps is infinity in
general. The finite-horizon control problem has been addressed
by many researchers [18]–[23]. But most of the existing
methods consider only the stability problems of systems under
finite-horizon controllers [18], [20], [22], [23]. Due to the lack
of methodology and the fact that the number of control steps is
difficult to determine, the optimal controller design of finite-
horizon problems still presents a major challenge to control
engineers. This motivates our present research.

As is known, dynamic programming is very useful in
solving optimal control problems. However, due to the “curse
of dimensionality” [24], it is often computationally untenable
to run dynamic programming to obtain the optimal solu-
tion. The adaptive/approximate dynamic programming (ADP)
algorithms were proposed in [25] and [26] as a way to
solve optimal control problems forward in time. There are
several synonyms used for ADP including “adaptive critic
designs” [27]–[29], “adaptive dynamic programming” [30]–
[32], “approximate dynamic programming” [26], [33]–[35],
“neural dynamic programming” [36], “neuro-dynamic pro-
gramming” [37], and “reinforcement learning” [38]. In recent
years, ADP and related research have gained much attention
from researchers [27], [28], [31], [33]–[36], [39]–[57]. In
[29] and [26], ADP approaches were classified into several
main schemes: heuristic dynamic programming (HDP), action-
dependent HDP, also known as Q-learning [58], dual heuris-
tic dynamic programming (DHP), ADDHP, globalized DHP
(GDHP), and ADGDHP.

Saridis and Wang [10], [52], [59] studied the optimal
control problem for a class of nonlinear stochastic systems
and presented the corresponding Hamilton-Jacobi-Bellman
(HJB) equation for stochastic control problems. Al-Tamimi
et al. [27] proposed a greedy HDP iteration algorithm to
solve the discrete-time HJB (DTHJB) equation of the optimal
control problem for discrete-time nonlinear systems. Though
great progress has been made for ADP in the optimal control

1045–9227/$26.00 © 2010 IEEE

WANG et al.: ADAPTIVE DYNAMIC PROGRAMMING FOR DISCRETE-TIME NONLINEAR SYSTEMS 25

field, most ADP methods are based on infinite horizon,
such as [16], [27], [33], [36], [37], [43]–[45], [53], [56]
and [57]. Only [60] and [61] discussed how to solve the
finite-horizon optimal control problems based on ADP and
backpropagation-through-time algorithms.

In this paper, we will develop a new ADP scheme for finite-
horizon optimal control problems. We will study the optimal
control problems with an ε-error bound using ADP algorithms.
First, the HJB equation for finite-horizon optimal control of
discrete-time systems is derived. In order to solve this HJB
equation, a new iterative ADP algorithm is developed with
convergence and optimality proofs. Second, the difficulties of
obtaining the optimal solution using the iterative ADP algo-
rithm is presented and then the ε-optimal control algorithm
is derived based on the iterative ADP algorithms. Next, it
will be shown that the ε-optimal control algorithm can obtain
suboptimal control solutions within a fixed finite number
of control steps that make the performance index function
converge to its optimal value with an ε-error. Furthermore,
in order to facilitate the implementation of the iterative ADP
algorithms, we use neural networks to obtain the iterative
performance index function and the optimal control policy.
Finally, an ε-optimal state feedback controller is obtained for
finite-horizon optimal control problems.

This paper is organized as follows. In Section II, the
problem statement is presented. In Section III, the iterative
ADP algorithm for finite-horizon optimal control problem is
derived. The convergence property and optimality property are
also proved in this section. In Section IV, the ε-optimal control
algorithm is developed, the properties of the algorithm are also
proved in this section. In Section V, two examples are given to
demonstrate the effectiveness of the proposed control scheme.
Finally, in Section VI, the conclusion is drawn.

II. PROBLEM STATEMENT

In this paper, we will study deterministic discrete-time
systems

xk+1 = F(xk, uk), k = 0, 1, 2, . . . (1)

where xk ∈ R
n is the state and uk ∈ R

m is the control vector.
Let x0 be the initial state. The system function F(xk, uk) is
continuous for ∀ xk, uk and F(0, 0) = 0. Hence, x = 0 is
an equilibrium state of system (1) under the control u = 0.
The performance index function for state x0 under the control
sequence uN−1

0 = (u0, u1, . . . , uN−1) is defined as

J
(
x0, uN−1

0

) =
N−1∑

i=0

U(xi , ui) (2)

where U is the utility function, U(0, 0) = 0, and U(xi , ui) ≥ 0
for ∀ xi , ui .

The sequence uN−1
0 defined above is a finite sequence

of controls. Using this sequence of controls, system (1)
gives a trajectory starting from x0: x1 = F(x0, u0), x2 =
F(x1, u1), . . . , xN = F(xN−1, uN−1). We call the number
of elements in the control sequence uN−1

0 the length of
uN−1

0 and denote it as
∣
∣uN−1

0

∣
∣. Then,

∣
∣uN−1

0

∣
∣ = N . The

length of the associated trajectory x N
0 = (x0, x1, . . . , xN)

is N + 1. We denote the final state of the trajectory as
x (f)

(
x0, uN−1

0

)
, i.e., x (f)

(
x0, uN−1

0

) = xN . Then, for ∀ k ≥ 0,
the finite control sequence starting at k can be written as
uk+i−1

k = (uk, uk+1, . . . , uk+i−1), where i ≥ 1 is the length
of the control sequence. The final state can be written as
x (f)

(
xk, uk+i−1

k

) = xk+i .
We note that the performance index function defined in (2)

does not have the term associated with the final state since in
this paper we specify the final state xN = F(xN−1, uN−1) to
be at the origin, i.e., xN = x (f) = 0. For the present finite-
horizon optimal control problems, the feedback controller
uk = u(xk) must not only drive the system state to zero
within finite number of time steps but also guarantee the
performance index function (2) to be finite, i.e., uN−1

k =
(u(xk), u(xk+1), . . . , u(xN−1)) must be a finite-horizon admis-
sible control sequence, where N > k is a finite integer.

Definition 2.1: A control sequence uN−1
k is said to be finite-

horizon admissible for a state xk ∈ R
n , if x (f)

(
xk, uN−1

k

) = 0
and J

(
xk, uN−1

k

)
is finite, where N > k is a finite integer.

A state xk is said to be finite-horizon controllable (control-
lable for brief) if there is a finite-horizon admissible control
sequence associated with this state.

Let uk be an arbitrary finite-horizon admissible control
sequence starting at k and let

Axk =
{

uk : x (f)
(
xk, uk

) = 0
}

be the set of all finite-horizon admissible control sequences of
xk . Let

A(i)
xk

=
{

uk+i−1
k : x (f)

(
xk, uk+i−1

k

) = 0,
∣
∣uk+i−1

k

∣
∣ = i

}

be the set of all finite-horizon admissible control sequences of
xk with length i . Then, Axk = ∪1≤i<∞A(i)

xk
. By this notation,

a state xk is controllable if and only if Axk �= ∅.
For any given system state xk , the objective of the present

finite-horizon optimal control problem is to find a finite-
horizon admissible control sequence uN−1

k ∈ A(N−k)
xk

⊆
Axk to minimize the performance index J

(
xk, uN−1

k

)
. The

control sequence uN−1
k has finite length. However, before it is

determined, we do not know its length, which means that the
length of the control sequence

∣
∣uN−1

k

∣
∣ = N −k is unspecified.

This kind of optimal control problems has been called finite-
horizon problems with unspecified terminal time [1] (but in
the present case, with fixed terminal state x (f) = 0).

Define the optimal performance index function as

J ∗(xk) = inf
uk

{
J (xk, uk) : uk ∈ Axk

}
. (3)

Then, according to Bellman’s principle of optimality [24],
J ∗(xk) satisfies the DTHJB equation

J ∗(xk) = min
uk

{
U(xk, uk) + J ∗(F(xk, uk))

}
. (4)

Now, define the law of optimal control sequence starting
at k by

u∗(xk) = arg inf
uk

{
J (xk, uk) : uk ∈ Axk

}

and define the law of optimal control vector by

u∗(xk) = arg min
uk

{
U(xk, uk) + J ∗(F(xk, uk))

}
.

26 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 1, JANUARY 2011

In other words, u∗(xk) = u∗
k and u∗(xk) = u∗

k . Hence, we
have

J ∗(xk) = U
(
xk, u∗

k

) + J ∗ (
F

(
xk, u∗

k

))
.

III. PROPERTIES OF THE ITERATIVE ADP ALGORITHM

In this section, a new iterative ADP algorithm is developed
to obtain the finite-horizon optimal controller for nonlinear
systems. The goal of the present iterative ADP algorithm is
to construct an optimal control policy u∗(xk), k = 0, 1, . . .,
which drives the system from an arbitrary initial state x0 to the
singularity 0 within finite time, and simultaneously minimizes
the performance index function. Convergence proofs will also
be given to show that the performance index function will
indeed converge to the optimum.

A. Derivation

We first consider the case where, for any state xk , there
exists a control vector uk such that F(xk, uk) = 0, i.e., we
can control the state of system (1) to zero in one step from
any initial state. For the case where F(xk, uk) = 0 does not
hold, we will discuss and solve the problem later in this paper.

In the iterative ADP algorithm, the performance index
function and control policy are updated by recursive iterations,
with the iteration index number i increasing from 0 and with
the initial performance index function V0(x) = 0 for ∀ x ∈ R

n .
The performance index function for i = 1 is computed as

V1(xk) = min
uk

{U(xk, uk) + V0(F(xk, uk))}
s.t. F(xk, uk) = 0

= min
uk

U(xk, uk) s.t. F(xk, uk) = 0

= U(xk, u∗
k(xk)) (5)

where V0(F(xk, uk)) = 0 and F(xk, u∗
k(xk)) = 0. The control

vector v1(xk) for i = 1 is chosen as v1(xk) = u∗
k(xk).

Therefore, (5) can also be written as

V1(xk) = min
uk

U(xk, uk) s.t. F(xk, uk) = 0

= U(xk, v1(xk)) (6)

where

v1(xk) = arg min
uk

U(xk, uk) s.t. F(xk, uk) = 0. (7)

For i = 2, 3, 4, . . ., the iterative ADP algorithm will be
implemented as follows:

Vi (xk) = min
uk

{U(xk, uk) + Vi−1(F(xk, uk))}

= U(xk, vi (xk)) + Vi−1(F(xk, vi (xk))) (8)

where

vi (xk) = arg min
uk

{U(xk, uk) + Vi−1(xk+1)}
= arg min

uk
{U(xk, uk) + Vi−1(F(xk, uk))} . (9)

Equations (6)–(9) form the iterative ADP algorithm.

Remark 3.1: Equations (6)–(9) in the iterative ADP
algorithm are similar to the HJB equation (4), but they are
not the same. There are at least two obvious differences.

1) For any finite time k, if xk is the state at k, then the opti-
mal performance index function in HJB (4) is unique, i.e.,
J ∗(xk), while in the iteration ADP equation (6)–(9), the
performance index function is different for each iteration
index i , i.e., Vi (xk) �= Vj (xk) for ∀ i �= j, in general.

2) For any finite time k, if xk is the state at k, then the opti-
mal control law obtained by HJB (4) possesses the unique
optimal control expression, i.e., u∗

k = u∗(xk), while
the control law solved by the iterative ADP algorithm
(6)–(9) is different from each other for each iteration
index i , i.e., vi (xk) �= v j (xk) for ∀i �= j, in general.

Remark 3.2: According to (2) and (8), we have

Vi+1(xk) = min
uk+i

k

{
J
(
xk, uk+i

k

) : uk+i
k ∈ A(i+1)

xk

}
. (10)

Since

Vi+1(xk) = min
uk

{U(xk, uk) + Vi (xk+1)}

= min
uk

{
U(xk, uk) + min

uk+1

{
U(xk+1, uk+1)

+ min
uk+2

{
U(xk+2, uk+2) + · · ·

+ min
uk+i−1

{U(xk+i−1, uk+i−1)

+ V1(xk+i)} · · · }
}}

where

V1(xk+i) = min
uk+i

U(xk+i , uk+i)

s.t. F(xk+i , uk+i) = 0

we obtain

Vi+1(xk) = min
uk+i

k

{U(xk, uk) + U(xk+1, uk+1)

+ · · · + U(xk+i , uk+i)}
s.t. F(xk+i , uk+i) = 0

= min
uk+i

k

{
J
(
xk, uk+i

k

) : uk+i
k ∈ A(i+1)

xk

}
.

Using the notation in (9), we can also write

Vi+1(xk) =
i∑

j=0

U
(
xk+ j , vi+1− j (xk+ j)

)
. (11)

B. Properties

In the above, we can see that the performance index function
J ∗(xk) solved by HJB equation (4) is replaced by a sequence
of iterative performance index functions Vi (xk) and the opti-
mal control law u∗(xk) is replaced by a sequence of iterative
control law vi (xk), where i ≥ 1 is the index of iteration. We
can prove that J ∗(xk) defined in (3) is the limit of Vi (xk) as
i → ∞.

Theorem 3.1: Let xk be an arbitrary state vector. Suppose
that A(1)

xk
�= ∅. Then, the performance index function Vi (xk)

WANG et al.: ADAPTIVE DYNAMIC PROGRAMMING FOR DISCRETE-TIME NONLINEAR SYSTEMS 27

obtained by (6)–(9) is a monotonically nonincreasing sequence
for ∀ i ≥ 1, i.e., Vi+1(xk) ≤ Vi (xk) for ∀ i ≥ 1.

Proof: We prove this by mathematical induction. First,
we let i = 1. Then, we have V1(xk) given as in (6) and the
finite-horizon admissible control sequence is ûk

k = (v1(xk)).
Next, we show that there exists a finite-horizon admissible

control sequence ûk+1
k with length 2 such that J

(
xk, ûk+1

k

) =
V1(xk). The trajectory starting from xk under the control of
ûk

k = (v1(xk)) is xk+1 = F(xk, v1(xk)) = 0. Then, we
create a new control sequence ûk+1

k by adding a 0 to the
end of sequence ûk

k to obtain the control sequence ûk+1
k =(

ûk
k, 0

)
. Obviously,

∣
∣ûk+1

k

∣
∣ = 2. The state trajectory under

the control of ûk+1
k is xk+1 = F(xk, v1(xk)) = 0 and

xk+2 = F(xk+1, ûk+1), where ûk+1 = 0. Since xk+1 = 0 and
F(0, 0) = 0, we have xk+2 = 0. So, ûk+1

k is a finite-horizon
admissible control sequence. Furthermore

J (xk, ûk+1
k) = U(xk, v1(xk)) + U(xk+1, ûk+1)

= U(xk, v1(xk))

= V1(xk)

since U(xk+1, ûk+1) = U(0, 0) = 0. On the other hand,
according to Remark 3.2, we have

V2(xk) = min
uk+1

k

{
J
(
xk, uk+1

k

) : uk+1
k ∈ A(2)

xk

}
.

Then, we obtain

V2(xk) = min
uk+1

k

{
J
(
xk, uk+1

k

) : uk+1
k ∈ A(2)

xk

}

≤ J
(
xk, ûk+1

k

)

= V1(xk). (12)

Therefore, the theorem holds for i = 1.
Assume that the theorem holds for any i = q , where q > 1.

From (11), we have

Vq(xk) =
q−1∑

j=0

U
(
xk+ j , vq− j (xk+ j)

)
.

The corresponding finite-horizon admissible control
sequence is ûk+q−1

k = {
vq (xk), vq−1(xk+1), . . . , v1(xk+q−1)

}
.

For i = q + 1, we create a control sequence ûk+q
k ={

vq (xk), vq−1(xk+1), . . . , v1(xk+q−1), 0
}

with length q + 1.
Then, the state trajectory under the control of ûk+q

k is xk ,
xk+1 = F(xk, vq (xk)), xk+2 = F(xk+1, vq−1(xk+1)), . . .,
xk+q = F(xk+q−1, v1(xk+q−1)) = 0, xk+q+1 = F(xk+q , 0) =
0. So, ûk+q

k is a finite-horizon admissible control sequence.
The performance index function under this control sequence is

J (xk, ûk+q
k) = U(xk, vq (xk)) + U(xk+1, vq−1(xk+1))

+· · ·+ U(xk+q−1, v1(xk+q−1)) + U(xk+q , 0)

=
q−1∑

j=0

U
(
xk+ j , vq− j (xk+ j)

)

= Vq(xk)

since U(xk+q , 0) = U(0, 0) = 0.

On the other hand, we have

Vq+1(xk) = min
uk+q

k

{
J
(
xk, uk+q

k

) : uk+q
k ∈ A(q+1)

xk

}
.

Thus, we obtain

Vq+1(xk) = min
uk+q

k

{
J
(
xk, uk+q

k

) : uk+q
k ∈ A(q+1)

xk

}

≤ J
(
xk, ûk+q

k

)

= Vq(xk)

which completes the proof.
From Theorem 3.1, we know that the performance in-

dex function Vi (xk) ≥ 0 is a monotonically nonincreasing
sequence and is bounded below for iteration index i =
1, 2, Now, we can derive the following theorem.

Theorem 3.2: Let xk be an arbitrary state vector. Define the
performance index function V∞(xk) as the limit of the iterative
function Vi (xk)

V∞(xk) = lim
i→∞ Vi (xk). (13)

Then, we have

V∞(xk) = min
uk

{U(xk, uk) + V∞(xk+1)}.
Proof: Let ηk = η(xk) be any admissible control vector.

According to Theorem 3.1, for ∀ i , we have

V∞(xk) ≤ Vi+1(xk) ≤ U(xk, ηk) + Vi (xk+1).

Let i → ∞, we have

V∞(xk) ≤ U(xk, ηk) + V∞(xk+1)

which is true for ∀ ηk . Therefore

V∞(xk) ≤ min
uk

{U(xk, uk) + V∞(xk+1)}. (14)

Let ε > 0 be an arbitrary positive number. Since Vi (xk) is
nonincreasing for i ≥ 1 and limi→∞ Vi (xk) = V∞(xk), there
exists a positive integer p such that

Vp(xk) − ε ≤ V∞(xk) ≤ Vp(xk).

From (8), we have

Vp(xk) = min
uk

{U(xk, uk) + Vp−1(F(xk, uk))}
= U(xk, v p(xk)) + Vp−1(F(xk, v p(xk))).

Hence,

V∞(xk) ≥ U(xk, v p(xk)) + Vp−1(F(xk, v p(xk))) − ε

≥ U(xk, v p(xk)) + V∞(F(xk, v p(xk))) − ε

≥ min
uk

{U(xk, uk) + V∞(xk+1)} − ε.

Since ε is arbitrary, we have

V∞(xk) ≥ min
uk

{U(xk, uk) + V∞(xk+1)}. (15)

Combining (14) and (15), we prove the theorem.
Next, we will prove that the iterative performance index

function Vi (xk) converges to the optimal performance index
function J ∗(xk) as i → ∞.

28 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 1, JANUARY 2011

Theorem 3.3: Let V∞(xk) be defined in (13). If the system
state xk is controllable, then we have the performance index
function V∞(xk) equal to the optimal performance index
function J ∗(xk)

lim
i→∞ Vi (xk) = J ∗(xk)

where Vi (xk) is defined in (8).
Proof: According to (3) and (10), we have

J ∗(xk) ≤ min
uk+i−1

k

{
J (xk, uk+i−1

k) : uk+i−1
k ∈ A(i)

xk

}
= Vi (xk).

Then, let i → ∞, we obtain

J ∗(xk) ≤ V∞(xk). (16)

Next, we show that

V∞(xk) ≤ J ∗(xk). (17)

For any ω > 0, by the definition of J ∗(xk) in (3), there
exists η

k
∈ Axk such that

J (xk, ηk
) ≤ J ∗(xk) + ω. (18)

Suppose that |η
k
| = p. Then η

k
∈ A(p)

xk
. So, by Theorem 3.1

and (10), we have

V∞(xk) ≤ Vp(xk)

= min
uk+p−1

k

{
J (xk, uk+p−1

k) : uk+p−1
k ∈ A(p)

xk

}

≤ J (xk, ηk
)

≤ J ∗(xk) + ω.

Since ω is chosen arbitrarily, we know that (17) is true.
Therefore, from (16) and (17), we prove the theorem.

We can now present the following corollary.
Corollary 3.1: Let the performance index function Vi (xk)

be defined by (8). If the system state xk is controllable, then the
iterative control law vi (xk) converges to the optimal control
law u∗(xk), i.e., limi→∞ vi (xk) = u∗(xk).

Remark 3.3: Generally speaking, for the finite-horizon opti-
mal control problems, the optimal performance index function
depends not only on state xk but also on the time left (see
[60], [61]). For the finite-horizon optimal control problems
with unspecified terminal time, we have proved that the
iterative performance index functions converge to the optimal
as the iterative index i reaches infinity. Then, the time left
is negligible and we say that the optimal performance index
function V (xk) is only a function of the state xk , which is like
the case of infinite-horizon optimal control problems.

By Theorem 3.3 and Corollary 3.1, we know that if xk

is controllable, then, as i → ∞, the iterative performance
index function Vi (xk) converges to the optimal performance
index function J ∗(xk) and the iterative control law vi (xk) also
converges to the optimal control law u∗(xk). So, it is important
to note that for controllable state xk , the iterative performance
index functions Vi (xk) are well defined for all i under the
iterative control law vi (xk).

Let T 0 = {0}. For i = 1, 2, . . . , define

T i = {xk ∈ R
n| ∃ uk ∈ R

m s.t. F(xk, uk) ∈ T i−1}. (19)

Next, we prove the following theorem.
Theorem 3.4: Let T 0 = {0} and T i be defined in (19).

Then, for i = 0, 1, . . ., we have T i ⊆ T i+1.
Proof: We prove the theorem by mathematical induction.

First, let i = 0. Since T 0 = {0} and F(0, 0) = 0, we know
that 0 ∈ T 1. Hence, T 0 ⊆ T 1.

Next, assume that T i−1 ⊆ T i holds. Now, if xk ∈ T i ,
we have F(xk, ηi−1(xk)) ∈ T i−1 for some ηi−1(xk). Hence,
F(xk, ηi−1(xk)) ∈ T i by the assumption of T i−1 ⊆ T i . So,
xk ∈ T i+1 by (19). Thus, T i ⊆ T i+1, which proves the
theorem.

According to Theorem 3.4, we have

{0} = T 0 ⊆ T 1 ⊆ · · · ⊆ T i−1 ⊆ T i ⊆ · · · .

We can see that by introducing the sets T i , i = 0, 1, . . .,
the state xk can be classified correspondingly. According to
Theorem 3.4, the properties of the ADP algorithm can be
derived in the following theorem.

Theorem 3.5:

1) For any i , xk ∈ T i ⇔ A(i)
xk

�= ∅ ⇔ Vi (xk) is defined at
xk .

2) Let T∞ = ∪∞
i=1T i . Then, xk ∈ T∞ ⇔ Axk �= ∅ ⇔

J ∗(xk) is defined at xk ⇔ xk is controllable.
3) If Vi (xk) is defined at xk , then Vj (xk) is defined at xk

for every j ≥ i .
4) J ∗(xk) is defined at xk if and only if there exists an i

such that Vi (xk) is defined at xk .

IV. ε-OPTIMAL CONTROL ALGORITHM

In the previous section, we proved that the itera-
tive performance index function Vi (xk) converges to the
optimal performance index function J ∗(xk) and J ∗(xk) =
minuk

{J (xk, uk), u ∈ Axk } satisfies the Bellman’s equation
(4) for any controllable state xk ∈ T∞.

To obtain the optimal performance index function J ∗(xk),
a natural strategy is to run the iterative ADP algorithm
(6)–(9) until i → ∞. But unfortunately, it is not practi-
cal to do so. In many cases, we cannot find the equality
J ∗(xk) = Vi (xk) for any finite i . That is, for any admissible
control sequence uk with finite length, the performance index
starting from xk under the control of uk will be larger
than, not equal to, J ∗(xk). On the other hand, by running
the iterative ADP algorithm (6)–(9), we can obtain a con-
trol vector v∞(xk) and then construct a control sequence
u∞(xk) = (v∞(xk), v∞(xk+1), . . . , v∞(xk+i), . . .), where
xk+1 = F(xk, v∞(xk)), . . . , xk+i = F(xk+i−1, v∞(xk+i−1)),
. . . . In general, u∞(xk) has infinite length. That is, the
controller v∞(xk) cannot control the state to reach the target
in finite number of steps. To overcome this difficulty, a new
ε-optimal control method using iterative ADP algorithm will
be developed in this section.

A. ε-Optimal Control Method

In this section, we will introduce our method of iterative
ADP with the consideration of the length of control sequences.
For different xk , we will consider different length i for the

WANG et al.: ADAPTIVE DYNAMIC PROGRAMMING FOR DISCRETE-TIME NONLINEAR SYSTEMS 29

optimal control sequence. For a given error bound ε > 0, the
number i will be chosen so that the error between J ∗(xk) and
Vi (xk) is within the bound.

Let ε > 0 be any small number and xk ∈ T∞ be any
controllable state. Let the performance index function Vi (xk)
be defined by (8) and J ∗(xk) be the optimal performance index
function. According to Theorem 3.3, given ε > 0, there exists
a finite i such that

|Vi(xk) − J ∗(xk)| ≤ ε. (20)

We can now give the following definition.
Definition 4.1: Let xk ∈ T∞ be a controllable state vector.

Let ε > 0 be a small positive number. The approximate length
of optimal control sequence with respect to ε is defined as

Kε(xk) = min{i : |Vi (xk) − J ∗(xk)| ≤ ε}. (21)

Given a small positive number ε, for any state vector xk ,
the number Kε(xk) gives a suitable length of control sequence
for optimal control starting from xk . For xk ∈ T∞, since
lim

i→∞ Vi (xk) = J ∗(xk), we can always find i such that (20)

is satisfied. Therefore, {i : |Vi (xk) − J ∗(xk)| ≤ ε} �= ∅ and
Kε(xk) is well defined.

We can see that an error ε between Vi (xk) and J ∗(xk)
is introduced into the iterative ADP algorithm, which makes
the performance index function Vi (xk) converge within finite
number of iteration steps. In this part, we will show that the
corresponding control is also an effective control that drives
the performance index function to within error bound ε from
its optimal.

From Definition 4.1, we can see that all the states xk that
satisfy (21) can be classified into one set. Motivated by the
definition in (19), we can further classify this set using the
following definition.

Definition 4.2: Let ε be a positive number. Define T (ε)
0 =

{0} and for i = 1, 2, . . . , define

T (ε)
i = {xk ∈ T∞ : Kε(xk) ≤ i}.

Accordingly, when xk ∈ T (ε)
i , to find the optimal control

sequence which has performance index less than or equal to
J ∗(xk) + ε, one only needs to consider the control sequences
uk with length |uk | ≤ i . The sets T (ε)

i have the following
properties.

Theorem 4.1: Let ε > 0 and i = 0, 1, Then:
1) xk ∈ T (ε)

i if and only if Vi (xk) ≤ J ∗(xk) + ε;
2) T (ε)

i ⊆ T i ;
3) T (ε)

i ⊆ T (ε)
i+1;

4) ∪iT (ε)
i = T∞;

5) If ε > δ > 0, then T (ε)
i ⊇ T (δ)

i .
Proof:

1) Let xk ∈ T (ε)
i . By Definition 4.2, Kε(xk) ≤ i . Let j =

Kε(xk). Then, j ≤ i and by Definition 4.1, |Vj (xk) −
J ∗(xk)| ≤ ε. So, Vj (xk) ≤ J ∗(xk)+ε. By Theorem 3.1,
Vi (xk) ≤ Vj (xk) ≤ J ∗(xk) + ε. On the other hand, if
Vi (xk) ≤ J ∗(xk) + ε, then |Vi(xk) − J ∗(xk)| ≤ ε. So,
Kε(xk) = min{ j : |Vj (xk) − J ∗(xk)| ≤ ε} ≤ i , which
implies that xk ∈ T (ε)

i .

2) If xk ∈ T (ε)
i , Kε(xk) ≤ i and |Vi (xk)− J ∗(xk)| ≤ ε. So,

Vi (xk) is defined at xk . According to Theorem 3.5 1),
we have xk ∈ T i . Hence, T (ε)

i ⊆ T i .
3) If xk ∈ T (ε)

i , Kε(xk) ≤ i < i + 1. So, xk ∈ T (ε)
i+1. Thus,

T (ε)
i ⊆ T (ε)

i+1.

4) Obviously, ∪iT (ε)
i ⊆ T∞ since T (ε)

i are subsets of T∞.
For any xk ∈ T∞, let p = Kε(xk). Then, xk ∈ T (ε)

p .

So, xk ∈ ∪iT (ε)
i . Hence, T∞ ⊆ ∪iT (ε)

i ⊆ T∞, and we
obtain, ∪iT (ε)

i = T∞.
5) If xk ∈ T (δ)

i , Vi (xk) ≤ J ∗(xk) + δ by part 1) of this
theorem. Clearly, Vi (xk) ≤ J ∗(xk)+ε since δ < ε. This
implies that xk ∈ T (ε)

i . Therefore, T (ε)
i ⊇ T (δ)

i .

According to Theorem 4.1 1), T (ε)
i is just the region where

Vi (xk) is close to J ∗(xk) with error less than ε. This region
is a subset of T i according to Theorem 4.1 2). As stated in
Theorem 4.1 3), when i is large, the set T (ε)

i is also large.
That means, when i is large, we have a large region where we
can use Vi (xk) as the approximation of J ∗(xk) under certain
error. On the other hand, we claim that if xk is far away
from the origin, we have to choose a long control sequence
to approximate the optimal control sequence. Theorem 4.1 4)
means that for every controllable state xk ∈ T∞, we can
always find a suitable control sequence with length i to
approximate the optimal control. The size of the set T (ε)

i
depends on the value of ε. A smaller value of ε gives a smaller
set T (ε)

i , which is indicated by Theorem 4.1 5).
Let xk ∈ T∞ be an arbitrary controllable state. If xk ∈ T (ε)

i ,
the iterative performance index function satisfies (20) under
the control vi (xk), we call this control the ε-optimal control
and denote it as μ∗

ε(xk)

μ∗
ε(xk) = vi (xk) = arg min

uk
{U(xk, uk) + Vi−1(F(xk, uk))} .

(22)

We have the following corollary.
Corollary 4.1: Let μ∗

ε(xk) be expressed in (22), which
makes the performance index function satisfy (20) for xk ∈
T (ε)

i . Then, for any x ′
k ∈ T (ε)

i , μ∗
ε(x ′

k) guarantees

|Vi (x ′
k) − J ∗(x ′

k)| ≤ ε. (23)
Proof: The corollary can be proved by contradiction.

Assume that the conclusion is not true. Then, the inequality
(23) is false under the control μ∗

ε(·) for some x ′′
k ∈ T (ε)

i .
As μ∗

ε(xk) makes the performance index function satisfy
(20) for xk ∈ T (ε)

i , we have Kε(xk) ≤ i. Using the ε-optimal
control law μ∗

ε(·) at the state x ′′
k , according to the assumption,

we have |Vi (x ′′
k) − J ∗(x ′′

k)| > ε. Then, Kε(x ′′
k) > i and

x ′′
k /∈ T (ε)

i . It is in contradiction with the assumption
x ′′

k ∈ T (ε)
i . Therefore, the assumption is false and (23) holds

for any x ′
k ∈ T (ε)

i .
Remark 4.1: Corollary 4.1 is very important for neural

network implementation of the iterative ADP algorithm. It
shows that we do not need to obtain the optimal control law by
searching the entire subset T (ε)

i . Instead, we can just find one
point of T (ε)

i , i.e., xk ∈ T (ε)
i , to obtain the ε-optimal control

30 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 1, JANUARY 2011

μ∗
ε(xk) which will be effective for any other state x ′

k ∈ T (ε)
i .

This property not only makes the computational complexity
much reduced but also makes the optimal control law easily
obtained using neural networks.

Theorem 4.2: Let xk ∈ T (ε)
i and let μ∗

ε(xk) be expressed
in (22). Then, F(xk, μ

∗
ε (xk)) ∈ T (ε)

i−1. In other words, if
Kε(xk) = i , then Kε(F(xk, μ

∗
ε(xk))) ≤ i − 1.

Proof: Since xk ∈ T (ε)
i , by Theorem 4.1 1), we know that

Vi (xk) ≤ J ∗(xk) + ε. (24)

According to (8) and (22), we have

Vi (xk) = U(xk, μ
∗
ε(xk)) + Vi−1(F(xk, μ

∗
ε (xk))). (25)

Combining (24) and (25), we have

Vi−1(F(xk, μ
∗
ε(xk))) = Vi (xk) − U(xk, μ

∗
ε(xk))

≤ J ∗(xk) + ε − U(xk, μ
∗
ε(xk)). (26)

On the other hand, we have

J ∗(xk) ≤ U(xk, μ
∗
ε(xk)) + J ∗(F(x, μ∗

ε(xk))). (27)

Putting (27) into (26), we obtain

Vi−1(F(xk, μ
∗
ε(xk))) ≤ J ∗(F(xk, μ

∗
ε(xk))) + ε.

By Theorem 4.1 1), we have

F(xk, μ
∗
ε (xk)) ∈ T (ε)

i−1. (28)

So, if Kε(xk) = i , we know that xk ∈ T (ε)
i and

F(x, μ∗
ε(xk)) ∈ T (ε)

i−1 according to (28). Therefore, we have

Kε(F(xk, μ
∗
ε(xk))) ≤ i − 1

which proves the theorem.
Remark 4.2: From Theorem 4.2, we can see that the pa-

rameter Kε(xk) gives an important property of the finite-
horizon ADP algorithm. It not only gives an optimal condition
of the iteration process, but also gives an optimal number
of control steps for the finite-horizon ADP algorithm. For
example, if |Vi (xk) − J ∗(xk)| ≤ ε for small ε, then we have
Vi (xk) ≈ J ∗(xk). According to Theorem 4.2, we can get
N = k + i , where N is the number of control steps to drive
the system to zero. The whole control sequence uN−1

0 may
not be ε-optimal, but the control sequence uN−1

k is ε-optimal
control sequence. If k = 0, we have N = Kε(x0) = i . Under
this condition, we say that the iteration index Kε(x0) denotes
the number of ε-optimal control steps.

Corollary 4.2: Let μ∗
ε(xk) be expressed in (22), which

makes the performance index function satisfy (20) for xk ∈
T (ε)

i . Then, for any x ′
k ∈ T (ε)

j , where 0 ≤ j ≤ i , μ∗
ε(x ′

k)
guarantees

|Vi(x ′
k) − J ∗(x ′

k)| ≤ ε. (29)

Proof: The proof is similar to Corollary 4.1 and is omitted
here.

Remark 4.3: Corollary 4.2 shows that the ε-optimal control
μ∗

ε(xk) obtained for ∀ xk ∈ T (ε)
i is effective for any state x ′

k ∈
T (ε)

j , where 0 ≤ j ≤ i . This means that for ∀ x ′
k ∈ T (ε)

j ,
0 ≤ j ≤ i , we can use a same ε-optimal control μ∗

ε(x ′
k) to

control the system.

x

x
k
 ∈T

i
(ε)

iT
0

T
1
(ε)

T
2

(ε)

T
i−1

(ε)

T
i
(ε)

Fig. 1. Control process of the controllable sate xk ∈ T (ε)
i using iterative

ADP algorithm.

B. ε-Optimal Control Algorithm

According to Theorem 4.1 3) and Corollary 4.1, the
ε-optimal control μ∗

ε(xk) obtained for an xk ∈ T (ε)
i is effective

for any state x ′
k ∈ T (ε)

i−1 (which is also stated in Corollary 4.2).
That is to say, in order to obtain effective ε-optimal control,
the iterative ADP algorithm only needs to run at some state
xk ∈ T∞. In order to obtain an effective ε-optimal control
law μ∗

ε(xk), we should choose the state xk ∈ T (ε)
i \T (ε)

i−1 for
each i to run the iterative ADP algorithm. The control process
using iterative ADP algorithm is illustrated in Fig. 1.

From the iterative ADP algorithm (6)–(9), we can see that
for any state xk ∈ R

n , there exits a control uk ∈ R
m that drives

the system to zero in one step. In other words, for ∀ xk ∈ R
n ,

there exists a control uk ∈ R
m such that xk+1 = F(xk, uk) = 0

holds. A large class of systems possesses this property, for
example, all linear systems of the type xk+1 = Axk + Buk

when B is invertible and the affine nonlinear systems with
the type xk+1 = f (xk) + g(xk)uk when the inverse of g(xk)
exists. But there are also other classes of systems for which
there does not exist any control uk ∈ R

m that drives the state
to zero in one step for some xk ∈ R

n , i.e., ∃xk ∈ R
n such that

F(xk, uk) = 0 is not possible for ∀ uk ∈ R
m . In the following

part, we will discuss the situation where F(xk, uk) �= 0 for
some xk ∈ R

m .
Since xk is controllable, there exists a finite-horizon ad-

missible control sequence uk+i−1
k = {uk, uk+1, . . . , uk+i−1} ∈

A(i)
xk

that makes x (f)
(
xk, uk+i−1

k

) = xk+i = 0. Let N = k + i
be the terminal time. Assume that for k + 1, k +
2, . . . , N − 1, the optimal control sequence u(N−1)∗

k+1 =
{u∗

k+1, u∗
k+2, . . . , u∗

N−1} ∈ A(N−k−1)
xk+1

has been deter-
mined. Denote the performance index function for xk+1 as
J
(
xk+1, u(N−1)∗

k+1

) = V0(xk+1). Now, we use the iterative ADP
algorithm to determine the optimal control sequence for the
state xk .

WANG et al.: ADAPTIVE DYNAMIC PROGRAMMING FOR DISCRETE-TIME NONLINEAR SYSTEMS 31

The performance index function for i = 1 is computed as

V1(xk) = U(xk, v1(xk)) + V0(F(xk, v1(xk))) (30)

where

v1(xk) = arg min
uk

{U(xk, uk) + V0(F(xk, uk))}. (31)

Note that the initial condition used in the above expression
is the performance index function V0, which is obtained
previously for xk+1 and now applied at F(xk, uk). For i =
2, 3, 4, . . ., the iterative ADP algorithm will be implemented
as follows:

Vi (xk) = U(xk, vi (xk)) + Vi−1(F(xk, vi (xk))) (32)

where

vi (xk) = arg min
uk

{U(xk, uk) + Vi−1(F(xk, uk))} . (33)

Theorem 4.3: Let xk be an arbitrary controllable state vec-
tor. Then, the performance index function Vi (xk) obtained
by (30)–(33) is a monotonically nonincreasing sequence for
∀ i ≥ 0, i.e., Vi+1(xk) ≤ Vi (xk) for ∀ i ≥ 0.

Proof: It can easily be proved following the proof of
Theorem 3.1, and the proof is omitted here.

Theorem 4.4: Let the performance index function Vi (xk)
be defined by (32). If the system state xk is controllable, then
the performance index function Vi (xk) obtained by (30)–(33)
converges to the optimal performance index function J ∗(xk)
as i → ∞

lim
i→∞ Vi (xk) = J ∗(xk).

Proof: This theorem can be proved following similar steps
to the proof of Theorem 3.3 and the proof is omitted here.

Remark 4.4: We can see that the iterative ADP algo-
rithm (30)–(33) is an expansion from of the previous one
(6)–(9). So, the properties of the iterative ADP algorithm
(6)–(9) is also effective for the current one (30)–(33). But
there also exist differences. From Theorem 3.1, we can see
that Vi+1(xk) ≤ Vi (xk) for all i ≥ 1, which means that
V1(xk) = max{Vi (xk) : i = 0, 1, . . .}, while Theorem 4.3
shows that Vi+1(xk) ≤ Vi (xk) for all i ≥ 0, which means
that V0(xk) = max{Vi (xk) : i = 0, 1, . . .}. This difference
is caused by the difference of the initial conditions of the
two iterative ADP algorithms. In the previous iterative ADP
algorithm (6)–(9), it begins with the initial performance index
function V0(xk) = 0 since F(xk, uk) = 0 can be solved, while
in the current iterative ADP algorithm (30)–(33), it begins with
the performance index function V0 for the state xk+1 which is
determined previously. This also causes the difference between
the proof of Theorems 3.1 and 3.3 and the corresponding
results in Theorems 4.3 and 4.4. But the difference of the
initial conditions of the iterative performance index function
does not affect the convergence property of the two iterative
ADP algorithms.

For the iterative ADP algorithm, the optimal criterion (20)
is very difficult to verify because the optimal performance
index function J ∗(xk) is unknown in general. So, an equivalent
criterion is established to replace (20).

If |Vi (xk)− J ∗(xk)| ≤ ε holds, we have Vi (xk) ≤ J ∗(xk)+ε
and J ∗(xk) ≤ Vi+1(xk) ≤ Vi (xk). These imply that

0 ≤ Vi (xk) − Vi+1(xk) ≤ ε (34)

or

|Vi (xk) − Vi+1(xk)| ≤ ε.

On the other hand, according to Theorem 4.4, |Vi (xk) −
Vi+1(xk)| → 0 implies that Vi (xk) → J ∗(xk). Therefore, for
any given small ε, if |Vi(xk) − Vi+1(xk)| ≤ ε holds, we have
|Vi (xk) − J ∗(xk)| ≤ ε holds if i is sufficiently large.

We will use (34) as the optimal criterion instead of the
optimal criterion (20).

Let ûK−1
0 = (u0, u1, . . . , uK−1) be an arbitrary finite-

horizon admissible control sequence and the corresponding
state sequence be x̂ K

0 = (x0, x1, . . . , xK) where xK = 0.
We can see that the initial control sequence ûK−1

0 =
(u0, u1, . . . , uK−1) may not be optimal, which means that
the initial number of control steps K may not be optimal.
So, the iterative ADP algorithm must complete two kinds
of optimization: one is to optimize the number of control
steps; and the other is to optimize the control law. In the
following, we will show how the number of control steps
and the control law are both optimized in the iterative ADP
algorithm simultaneously.

For the state xK−1, we have F(xK−1, uK−1) = 0. Then, we
run the iterative ADP algorithm (6)–(9) at xK−1 as follows.
The performance index function for i = 1 is computed as

V 1
1 (xK−1) = min

uK−1
{U(xK−1, uK−1) + V0(F(xK−1, uK−1))}
s.t. F(xK−1, uK−1) = 0

= U(xK−1, v
1
1(xK−1)) (35)

where

v1
1(xK−1) = arg min

uK−1
U(xK−1, uK−1) (36)

s.t. F(xK−1, uK−1) = 0

and V0(F(xK−1, uK−1)) = 0. The iterative ADP algorithm
will be implemented as follows for i = 2, 3, 4, . . .

V 1
i (xK−1) = U

(
xK−1, v

1
i (xK−1)

)

+ V 1
i−1

(
F

(
xK−1, v

1
i (xK−1)

))
(37)

where

v1
i (xK−1) = arg min

uK−1

{
U(xK−1, uK−1)

+ V 1
i−1 (F(xK−1, uK−1))

}
(38)

until the inequality
∣
∣
∣V 1

l1(xK−1) − V 1
l1+1(xK−1)

∣
∣
∣ ≤ ε (39)

is satisfied for l1 > 0. This means that xK−1 ∈ T (ε)
l1

and the
optimal number of control steps is Kε(xK−1) = l1.

Considering xK−2, we have F(xK−2, uK−2) = xK−1. Put
xK−2 into (39). If

∣
∣
∣V 1

l1
(xK−2) − V 1

l1+1(xK−2)
∣
∣
∣ ≤ ε holds, then

32 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 1, JANUARY 2011

according to Theorem 4.1 1), we know that xK−2 ∈ T (ε)
l1

.

Otherwise, if xK−2 /∈ T (ε)
l1

, we will run the iterative ADP
algorithm as follows. Using the performance index function
V 1

l1
as the initial condition, we compute for i = 1

V 2
1 (xK−2) = U

(
xK−2, v

2
1(xK−2)

)

+ V 1
l1

(
F

(
xK−2, v

2
1(xK−2)

))
(40)

where

v2
1(xK−2) = arg min

uK−2

{
U xK−2, uK−2)

+ V 1
l1(F(xK−2, uK−2))

}
. (41)

The iterative ADP algorithm will be implemented as follows
for i = 2, 3, 4, . . .

V 2
i (xK−2) = U

(
xK−2, v

2
i (xK−2)

)

+ V 2
i−1

(
F

(
xK−2, v

2
i (xK−2)

))
(42)

where

v2
i (xK−2) = arg min

uK−2

{
U(xK−2, uK−2)

+ V 2
i−1(F(xK−2, uK−2))

}
(43)

until the inequality
∣
∣
∣V 2

l2(xK−2) − V 2
l2+1(xK−2)

∣
∣
∣ ≤ ε (44)

is satisfied for l2 > 0. We can then obtain that xK−2 ∈ T (ε)
l2

and the optimal number of control steps is Kε(xK−2) = l2.
Next, assume that j ≥ 2 and xK− j+1 ∈ T (ε)

l j−1
∣
∣
∣V j−1

l j−1
(xK− j+1) − V j−1

l j−1+1(xK− j+1)
∣
∣
∣ ≤ ε (45)

holds. Considering xK− j , we have F(xK− j , uK− j) = xK− j+1.
Putting xK− j into (45) and, if

∣
∣∣V j−1

l j−1
(xK− j) − V j−1

l j−1+1(xK− j)
∣
∣∣ ≤ ε (46)

holds, then we know that xK− j ∈ T (ε)
l j−1

. Otherwise, if xK− j /∈
T (ε)

l j−1
, then we run the iterative ADP algorithm as follows.

Using the performance index function V j−1
l j−1

as the initial
condition, we compute for i = 1

V j
1 (xK− j) = U

(
xK− j , v

j
1 (xK− j)

)

+ V j−1
l j−1

(
F

(
xK− j , v

j
1 (xK− j)

))
(47)

where

v
j
1 (xK− j) = arg min

uK− j

{
U(xK− j , uK− j)

+ V j−1
l j−1

(F(xK−j , uK−j))
}
. (48)

The iterative ADP algorithm will be implemented as follows
for i = 2, 3, 4, . . .

V j
i (xK− j) = U

(
xK− j , v

j
i (xK− j)

)

+ V j
i−1

(
F

(
xK− j , v

j
i (xK− j)

))
(49)

where

v
j
i (xK− j) = arg min

uK− j

{
U(xK− j , uK− j)

+ V j
i−1(F(xK− j , uK− j))

}
(50)

until the inequality
∣
∣∣V j

l j
(xK− j) − V j

l j +1(xK− j)
∣
∣∣ ≤ ε (51)

is satisfied for l j > 0. We can then obtain that xK− j ∈ T (ε)
l j

and the optimal number of control steps is Kε(xK− j) = l j .
Finally, considering x0, we have F(x0, u0) = x1. If

∣
∣
∣V K−1

lK−1
(x0) − V K−1

lK−1+1(x0)
∣
∣
∣ ≤ ε

holds, then we know that x0 ∈ T (ε)
lK−1

. Otherwise, if x0 /∈
T (ε)

lK−1
, then we run the iterative ADP algorithm as follows,

Using the performance index function V K−1
lK−1

as the initial
condition, we compute for i = 1

V K
1 (x0) = U

(
x0, v

K
1 (x0)

)
+ V K−1

lK−1

(
F

(
x0, v

K
1 (x0)

))
(52)

where

vK
1 (x0) = arg min

u0

{
U(x0, u0) + V K−1

lK−1
(F(x0, u0))

}
. (53)

The iterative ADP algorithm will be implemented as follows
for i = 2, 3, 4, . . .

V K
i (x0) = U

(
x0, v

K
i (x0)

)
+ V K

i−1

(
F

(
x0, v

K
i (x0)

))
(54)

where

vK
i (x0) = arg min

u0

{
U(x0, u0) + V K

i−1(F(x0, u0))
}

(55)

until the inequality
∣
∣∣V K

lK
(x0) − V K

lK +1(x0)
∣
∣∣ ≤ ε (56)

is satisfied for lK > 0. Therefore, we can obtain that x0 ∈ T (ε)
lK

and the optimal number of control steps is Kε(x0) = lK .
Starting from the initial state x0, the optimal number of

control steps is lK according to our ADP algorithm.
Remark 4.5: For the case where there are some xk ∈ R

n ,
there does not exit a control uk ∈ R

m that drives the system
to zero in one step, and the computational complexity of
the iterative ADP algorithm is much related to the original
finite-horizon admissible control sequence ûK−1

0 . First, we
repeat the iterative ADP algorithm at xK−1, xK−2, . . ., x1,
x0, respectively. It is related to the control steps K of ûK−1

0 .
If K is large, it means that ûK−1

0 takes a large number of
control steps to drive the initial state x0 to zero and then the
number of times needed to repeat the iterative ADP algorithm
will be large. Second, the computational complexity is also
related to the quality of control results of ûK−1

0 . If ûK−1
0 is

close to the optimal control sequence u(N−1)∗
0 , then it will take

less computation to make (51) hold for each j .

WANG et al.: ADAPTIVE DYNAMIC PROGRAMMING FOR DISCRETE-TIME NONLINEAR SYSTEMS 33

C. Summary of the ε-Optimal Control Algorithm

Now, we summarize the iterative ADP algorithm as follows.
Step 1: Choose an error bound ε and choose randomly an

array of initial states x0.
Step 2: Obtain an initial finite-horizon admissible control

sequence ûK−1
0 = (u0, u1, . . . , uK−1) and obtain the cor-

responding state sequence x̂ K
0 = (x0, x1, . . . , xK), where

xK = 0.
Step 3: For the state xK−1 with F(xK−1, uK−1) = 0, run

the iterative ADP algorithm (35)–(38) at xK−1 until (39) holds.
Step 4: Record V 1

l1
(xK−1), v1

l1
(xK−1) and Kε(xK−1) = l1.

Step 5: For j = 2, 3, . . . , K , if for xK− j , the inequality
(46) holds, go to Step 7; otherwise, go to Step 6.

Step 6: Using the performance index function V j−1
l j −1 as the

initial condition, run the iterative ADP algorithm (47)–(50)
until (51) is satisfied.

Step 7: If j = K , then we have obtained the optimal
performance index function V ∗(x0) = V K

lK
(x0), the law of the

optimal control sequence u∗(x0) = vK
lK

(x0) and the number of
optimal control steps Kε(x0) = lK ; otherwise, set j = j + 1,
and go to Step 5.

Step 8: Stop.

V. SIMULATION STUDY

To evaluate the performance of our iterative ADP algorithm,
we choose two examples with quadratic utility functions for
numerical experiments.

Example 5.1: Our first example is chosen from [57]. We
consider the following nonlinear system:

xk+1 = f (xk) + g(xk)uk

where xk = [x1k x2k]T and uk = [u1k u2k]T are the state
and control variables, respectively. The system functions are
given as

f (xk) =
[

0.2x1k exp(x2
2k)

0.3x3
2k

]
, g(xk) =

[−0.2 0
0 −0.2

]
.

The initial state is x0 = [1 −1]T . The performance
index function is in quadratic form with finite-time horizon
expressed as

J
(
x0, uN−1

0

) =
N−1∑

k=0

(
x T

k Qxk + uT
k Ruk

)

where the matrix Q = R = I and I denotes the identity matrix
with suitable dimensions.

The error bound of the iterative ADP is chosen as ε = 10−5.
Neural networks are used to implement the iterative ADP
algorithm and the neural network structure can be seen in
[32] and [57]. The critic network and the action network are
chosen as three-layer backpropagation (BP) neural networks
with the structures of 2–8–1 and 2–8–2, respectively. The
model network is also chosen as a three-layer BP neural
network with the structure of 4–8–2. The critic network is
used to approximate the iterative performance index functions,
which are expressed by (35), (37), (40), (42), (47), (49),
(52), and (54). The action network is used to approximate

3 5 7 9 11 13 15
2

2.5

3

3.5

4

1

4.5

Iteration stepsPe
rf

or
m

an
ce

 in
de

x
fu

nc
tio

n

(a)

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

Time steps

C
on

tr
ol

 tr
aj

ec
to

ri
es

(b)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Time steps

St
at

e
tr

aj
ec

to
ry

 x
1

(c)

u
1

u
2

0 2 4 6 8 10
−1

−0.5

0

0.5

(d)

Time steps

St
at

e
tr

aj
ec

to
ry

 x
2

Fig. 2. Simulation results for Example 1. (a) Convergence of performance
index function. (b) ε-optimal control vectors. (c) and (d) Corresponding state
trajectories.

the optimal control laws, which are expressed by (36), (38),
(41), (43), (48), (50), (53), and (55). The training rules of the
neural networks can be seen in [50]. For each iterative step,
the critic network and the action network are trained for 1000
iteration steps using the learning rate of α = 0.05 so that the
neural network training error becomes less than 10−8. Enough
iteration steps should be implemented to guarantee the iterative
performance index functions and the control law to converge
sufficiently. We let the algorithm run for 15 iterative steps to
obtain the optimal performance index function and optimal
control law. The convergence curve of the performance index
function is shown in Fig. 2(a). Then, we apply the optimal
control law to the system for T f = 10 time steps and obtain the
following results. The ε-optimal control trajectories are shown
in Fig. 2(b) and the corresponding state curves are shown in
Fig. 2(c) and (d).

After seven steps of iteration, we have |V6(x0) − V7(x0)| ≤
10−5 = ε. Then, we obtain the optimal number of control
steps Kε(x0) = 6. We can see that after six time steps, the state
variable becomes x6 = [0.912 × 10−6, 0.903 × 10−7]T . The
entire computation process takes about 10 s before satisfactory
results are obtained.

Example 5.2: The second example is chosen from [62] with
some modifications. We consider the following system:

xk+1 = F(xk, uk) = xk + sin
(

0.1x2
k + uk

)
(57)

where xk, uk ∈ R, and k = 0, 1, 2, The performance
index function is defined as in Example 5.1 with Q =
R = 1. The initial state is x0 = 1.5. Since F(0, 0) = 0,
xk = 0 is an equilibrium state of system (57). But since
(∂ F(xk, uk)/∂xk)(0, 0) = 1, system (57) is marginally stable
at xk = 0 and the equilibrium xk = 0 is not attractive.

We can see that for the fixed initial state x0, there does
not exist a control u0 ∈ R that makes x1 = F(x0, u0) = 0.
The error bound of the iterative ADP algorithm is chosen as
ε = 10−4. The critic network, the action network, and the
model network are chosen as three-layer BP neural networks
with the structures of 1–3–1, 1–3–1, and 2–4–1, respectively.

34 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 1, JANUARY 2011

1 3 5 7 9 11 13 15
1.54

1.56

1.58

1.6

1.62

Iteration stepsPe
rf

or
m

an
ce

 in
de

x
fu

nc
tio

n

(a)

0 4 6 8 10 12 1415
4
5
6
7
8
9

2

10

Iteration stepsPe
rf

or
m

an
ce

 in
de

x
fu

nc
tio

n

(b)

0 2 4 6 8 10
−1.5

−1

−0.5

0

Time steps

C
on

tr
ol

 tr
aj

ec
to

ry

(c)

0 2 4 6 8 10
0

0.5

1

1.5

Time steps

St
at

e
tr

aj
ec

to
ry

(d)

Fig. 3. Simulation results for Case 1 of Example 2. (a) Convergence of
performance index function at xk = 0.8. (b) Convergence of performance
index function at xk = 1.5. (c) ε-optimal control trajectory. (d) Corresponding
state trajectory.

According to (57), the control can be expressed by

uk = −0.1x2
k + sin−1(xk+1 − xk) + 2λπ (58)

where λ = 0,±1,±2,
To show the effectiveness of our algorithm, we choose two

initial finite-horizon admissible control sequences.
Case 1: The control sequence is û1

0 = (−0.225 −
sin−1(0.7), −0.064 − sin−1(0.8)) and the corresponding state
sequence is x̂2

0 = (1.5, 0.8, 0).
For the initial finite-horizon admissible control sequences in

this case, run the iterative ADP algorithm at the states 0.8 and
1.5, respectively. For each iterative step, the critic network and
the action network are trained for 1000 iteration steps using the
learning rate of α = 0.05 so that the neural network training
accuracy of 10−8 is reached. After the algorithm runs for
15 iterative steps, we obtain the performance index function
trajectories shown in Fig. 3(a) and (b), respectively. The
ε-optimal control and state trajectories are shown in Fig. 3(c)
and (d), respectively, for 10 time steps. We obtain Kε(0.8) = 5
and Kε(1.5) = 8.

Case 2: The control sequence is û3
0 = (−0.225 −

sin−1(0.01), 2π −2.2201−sin−1(0.29), −0.144−sin−1(0.5),
−sin−1(0.7)) and the corresponding state sequence is x̂4

0 =
(1.5, 1.49, 1.2, 0.7, 0).

For the initial finite-horizon admissible control sequence
in this case, run the iterative ADP algorithm at the states
0.7, 1.2, and 1.49, respectively. For each iterative step, the
critic network and the action network are also trained for
1000 iteration steps using the learning rate of α = 0.05 so
that the neural network training accuracy of 10−8 is reached.
Then, we obtain the performance index function trajectories
shown in Fig. 4(a)–(c), respectively. We have Kε(0.7) = 4,
Kε(1.2) = 6, and Kε(1.49) = 8.

After 25 steps of iteration, the performance index function
Vi (xk) is convergent sufficiently at xk = 1.49, with V 3

8 (1.49)
as the performance index function. For the state xk = 1.5, we
have |V 3

8 (1.5) − V 3
9 (1.5)| = 0.52424 × 10−7 < ε. Therefore,

1 3 5 7 9 11 13 15

1.145
1.15

1.155
1.16

1.165
1.17

Iteration steps

Pe
rf

or
m

an
ce

 in
de

x
fu

nc
tio

n

(a)

0 5 10 15
4

6
5

7
8
9

10

(b)

Iteration steps

Pe
rf

or
m

an
ce

 in
de

x
fu

nc
tio

n

0 5 10 15 20 25
11.5

12

12.5

13

13.5

14

(c)

Iteration steps

Pe
rf

or
m

an
ce

 in
de

x
fu

nc
tio

n

0 2 4 6 8 10
−1.5

−1
−0.5

0
0.5

1
1.5

(d)

Time steps

St
at

e
an

d
co

nt
ro

l
tr

aj
ec

to
ri

es

x
u

Fig. 4. Simulation results for Case 2 of Example 2. (a) Convergence of
performance index function at xk = 0.7. (b) Convergence of performance
index function at xk = 1.2. (c) Convergence of performance index function
at xk = 1.49. (d) ε-optimal control trajectory and the corresponding state
trajectory.

the optimal performance index function at xk = 1.5 is V 3
8 (1.5),

and thus we have xk = 1.5 ∈ T (ε)
8 and Kε(1.5) = 8.

The whole computation process takes about 20 s and then
satisfactory results are obtained.

Then we apply the optimal control law to the system
for T f = 10 time steps. The ε-optimal control and state
trajectories are shown in Fig. 4(d).

We can see that the ε-optimal control trajectory in Fig. 4(d)
is the same as the one in Fig. 3(c). The corresponding state
trajectory in Fig. 4(d) is the same as the one in Fig. 3(d).
Therefore, the optimal control law is not dependent on the
initial control law. The initial control sequence ûK−1

0 can ar-
bitrarily be chosen as long as it is finite-horizon admissible.

Remark 5.1: If the number of control steps of the initial
admissible control sequence is larger than the number of
control steps of the optimal control sequence, then we will
have some of the states in the initial sequence to possess
the same number of optimal control steps. For example, in
Case 2 of Example 2, we see that the two states x = 1.49 and
x = 1.5 possess the same number of optimal control steps,
i.e., Kε(1.49) = Kε(1.5) = 8. Thus, we say that the control
u = −0.225 − sin−1(0.01) that makes x = 1.5 run to x = 1.49
is an unnecessary control step. After the unnecessary control
steps are identified and removed, the number of control steps
will reduce to the optimal number of control steps, and thus
the initial admissible control sequence does not affect the final
optimal control results.

VI. CONCLUSION

In this paper, we developed an effective iterative ADP
algorithm for finite-horizon ε-optimal control of discrete-time
nonlinear systems. Convergence of the performance index
function for the iterative ADP algorithm was proved, and the
ε-optimal number of control steps could also be obtained.
Neural networks were used to implement the iterative ADP
algorithm. Finally, two simulation examples were given to
illustrate the performance of the proposed algorithm.

WANG et al.: ADAPTIVE DYNAMIC PROGRAMMING FOR DISCRETE-TIME NONLINEAR SYSTEMS 35

REFERENCES

[1] A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization,
Estimation, and Control. New York: Wiley, 1975.

[2] T. Cimen and S. P. Banks, “Nonlinear optimal tracking control with
application to super-tankers for autopilot design,” Automatica, vol. 40,
no. 11, pp. 1845–1863, Nov. 2004.

[3] N. Fukushima, M. S. Arslan, and I. Hagiwara, “An optimal control
method based on the energy flow equation,” IEEE Trans. Control Syst.
Technol., vol. 17, no. 4, pp. 866–875, Jul. 2009.

[4] H. Ichihara, “Optimal control for polynomial systems using matrix sum
of squares relaxations,” IEEE Trans. Autom. Control, vol. 54, no. 5, pp.
1048–1053, May 2009.

[5] S. Keerthi and E. Gilbert, “Optimal infinite-horizon control and the
stabilization of linear discrete-time systems: State-control constraints
and nonquadratic cost functions,” IEEE Trans. Autom. Control, vol. 31,
no. 3, pp. 264–266, Mar. 1986.

[6] I. Kioskeridis and C. Mademlis, “A unified approach for four-quadrant
optimal controlled switched reluctance machine drives with smooth
transition between control operations,” IEEE Trans. Autom. Control, vol.
24, no. 1, pp. 301–306, Jan. 2009.

[7] J. Mao and C. G. Cassandras, “Optimal control of multi-stage discrete
event systems with real-time constraints,” IEEE Trans. Autom. Control,
vol. 54, no. 1, pp. 108–123, Jan. 2009.

[8] I. Necoara, E. C. Kerrigan, B. D. Schutter, and T. Boom, “Finite-
horizon min-max control of max-plus-linear systems,” IEEE Trans.
Autom. Control, vol. 52, no. 6, pp. 1088–1093, Jun. 2007.

[9] T. Parisini and R. Zoppoli, “Neural approximations for infinite-horizon
optimal control of nonlinear stochastic systems,” IEEE Trans. Neural
Netw., vol. 9, no. 6, pp. 1388–1408, Nov. 1998.

[10] G. N. Saridis and F. Y. Wang, “Suboptimal control of nonlinear
stochastic systems,” Control-Theory Adv. Technol., vol. 10, no. 4, pp.
847–871, Dec. 1994.

[11] C. Seatzu, D. Corona, A. Giua, and A. Bemporad, “Optimal control of
continuous-time switched affine systems,” IEEE Trans. Autom. Control,
vol. 51, no. 5, pp. 726–741, May 2006.

[12] K. Uchida and M. Fujita, “Finite horizon H∞ control problems with
terminal penalties,” IEEE Trans. Autom. Control, vol. 37, no. 11, pp.
1762–1767, Nov. 1992.

[13] E. Yaz, “Infinite horizon quadratic optimal control of a class of nonlinear
stochastic systems,” IEEE Trans. Autom. Control, vol. 34, no. 11, pp.
1176–1180, Nov. 1989.

[14] F. Yang, Z. Wang, G. Feng, and X. Liu, “Robust filtering with randomly
varying sensor delay: The finite-horizon case,” IEEE Trans. Circuits Syst.
I, vol. 56, no. 3, pp. 664–672, Mar. 2009.

[15] E. Zattoni, “Structural invariant subspaces of singular Hamiltonian
systems and nonrecursive solutions of finite-horizon optimal control
problems,” IEEE Trans. Autom. Control, vol. 53, no. 5, pp. 1279–1284,
Jun. 2008.

[16] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex Analysis and
Optimization. Boston, MA: Athena Scientific, 2003.

[17] J. Doyle, K. Zhou, K. Glover, and B. Bodenheimer, “Mixed H2 and
H∞ performance objectives II: Optimal control,” IEEE Trans. Autom.
Control, vol. 39, no. 8, pp. 1575–1587, Aug. 1994.

[18] L. Blackmore, S. Rajamanoharan, and B. C. Williams, “Active estima-
tion for jump Markov linear systems,” IEEE Trans. Autom. Control, vol.
53, no. 10, pp. 2223–2236, Nov. 2008.

[19] O. L. V. Costa and E. F. Tuesta, “Finite horizon quadratic optimal control
and a separation principle for Markovian jump linear systems,” IEEE
Trans. Autom. Control, vol. 48, no. 10, pp. 1836–1842, Oct. 2003.

[20] P. J. Goulart, E. C. Kerrigan, and T. Alamo, “Control of constrained
discrete-time systems with bounded �2 gain,” IEEE Trans. Autom.
Control, vol. 54, no. 5, pp. 1105–1111, May 2009.

[21] J. H. Park, H. W. Yoo, S. Han, and W. H. Kwon, “Receding horizon
controls for input-delayed systems,” IEEE Trans. Autom. Control, vol.
53, no. 7, pp. 1746–1752, Aug. 2008.

[22] A. Zadorojniy and A. Shwartz, “Robustness of policies in constrained
Markov decision processes,” IEEE Trans. Autom. Control, vol. 51, no.
4, pp. 635–638, Apr. 2006.

[23] H. Zhang, L. Xie, and G. Duan, “H∞ control of discrete-time systems
with multiple input delays,” IEEE Trans. Autom. Control, vol. 52, no.
2, pp. 271–283, Feb. 2007.

[24] R. E. Bellman, Dynamic Programming. Princeton, NJ: Princeton Univ.
Press, 1957.

[25] P. J. Werbos, “A menu of designs for reinforcement learning over time,”
in Neural Networks for Control, W. T. Miller, R. S. Sutton, and P. J.
Werbos, Eds. Cambridge, MA: MIT Press, 1991, pp. 67–95.

[26] P. J. Werbos, “Approximate dynamic programming for real-time control
and neural modeling,” in Handbook of Intelligent Control: Neural, Fuzzy,
and Adaptive Approaches, D. A. White and D. A. Sofge, Eds. New York:
Reinhold, 1992, ch. 13.

[27] A. Al-Tamimi, M. Abu-Khalaf, and F. L. Lewis, “Adaptive critic designs
for discrete-time zero-sum games with application to H∞ control,” IEEE
Trans. Syst., Man, Cybern., Part B: Cybern., vol. 37, no. 1, pp. 240–247,
Feb. 2007.

[28] S. N. Balakrishnan and V. Biega, “Adaptive-critic-based neural networks
for aircraft optimal control,” J. Guidance, Control, Dynamics, vol. 19,
no. 4, pp. 893–898, Jul.-Aug. 1996.

[29] D. V. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” IEEE
Trans. Neural Netw., vol. 8, no. 5, pp. 997–1007, Sep. 1997.

[30] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive
dynamic programming for feedback control,” IEEE Circuits Syst. Mag.,
vol. 9, no. 3, pp. 32–50, Jun. 2009.

[31] J. J. Murray, C. J. Cox, G. G. Lendaris, and R. Saeks, “Adaptive dynamic
programming,” IEEE Trans. Syst., Man, Cybern., Part C: Appl. Rev., vol.
32, no. 2, pp. 140–153, May 2002.

[32] F. Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming:
An introduction,” IEEE Comput. Intell. Mag., vol. 4, no. 2, pp. 39–47,
May 2009.

[33] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time non-
linear HJB solution using approximate dynamic programming: Conver-
gence proof,” IEEE Trans. Syst., Man, Cybern., Part B: Cybern., vol.
38, no. 4, pp. 943–949, Aug. 2008.

[34] S. Ferrari, J. E. Steck, and R. Chandramohan, “Adaptive feedback control
by constrained approximate dynamic programming,” , IEEE Trans. Syst.,
Man, Cybern., Part B: Cybern., vol. 38, no. 4, pp. 982–987, Aug. 2008.

[35] J. Seiffertt, S. Sanyal, and D. C. Wunsch, “Hamilton-Jacobi-Bellman
equations and approximate dynamic programming on time scales,” IEEE
Trans. Syst., Man, Cybern., Part B: Cybern., vol. 38, no. 4, pp. 918–923,
Aug. 2008.

[36] R. Enns and J. Si, “Helicopter trimming and tracking control using direct
neural dynamic programming,” IEEE Trans. Neural Netw., vol. 14, no.
4, pp. 929–939, Jul. 2003.

[37] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Belmont, MA: Athena Scientific, 1996.

[38] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[39] M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for
nonlinear systems with saturating actuators using a neural network HJB
approach,” Automatica, vol. 41, no. 5, pp. 779–791, May 2005.

[40] Z. Chen and S. Jagannathan, “Generalized Hamilton-Jacobi-Bellman
formulation-based neural network control of affine nonlinear discrete-
time systems,” IEEE Trans. Neural Netw., vol. 19, no. 1, pp. 90–106,
Jan. 2008.

[41] T. Hanselmann, L. Noakes, and A. Zaknich, “Continuous-time adaptive
critics,” IEEE Trans. Neural Netw., vol. 18, no. 3, pp. 631–647, May
2007.

[42] G. G. Lendaris, “A retrospective on adaptive dynamic programming for
control,” in Proc. Int. Joint Conf. Neural Netw., Atlanta, GA, Jun. 2009,
pp. 14–19.

[43] B. Li and J. Si, “Robust dynamic programming for discounted infinite-
horizon Markov decision processes with uncertain stationary transition
matrices,” in Proc. IEEE Symp. Approx. Dyn. Program. Reinforcement
Learn., Honolulu, HI, Apr. 2007, pp. 96–102.

[44] D. Liu, X. Xiong, and Y. Zhang, “Action-dependent adaptive critic de-
signs,” in Proc. IEEE Int. Joint Conf. Neural Netw., vol. 2. Washington
D.C., Jul. 2001, pp. 990–995.

[45] D. Liu and H. Zhang, “A neural dynamic programming approach for
learning control of failure avoidance problems,” Int. J. Intell. Control
Syst., vol. 10, no. 1, pp. 21–32, Mar. 2005.

[46] D. Liu, Y. Zhang, and H. Zhang, “A self-learning call admission control
scheme for CDMA cellular networks,” IEEE Trans. Neural Netw., vol.
16, no. 5, pp. 1219–1228, Sep. 2005.

[47] C. Lu, J. Si, and X. Xie, “Direct heuristic dynamic programming for
damping oscillations in a large power system,” IEEE Trans. Syst., Man,
Cybern., Part B: Cybern., vol. 38, no. 4, pp. 1008–1013, Aug. 2008.

[48] S. Shervais, T. T. Shannon, and G. G. Lendaris, “Intelligent supply chain
management using adaptive critic learning,” IEEE Trans. Syst., Man
Cybern., Part A: Syst. Humans, vol. 33, no. 2, pp. 235–244, Mar. 2003.

[49] P. Shih, B. C. Kaul, S. Jagannathan, and J. A. Drallmeier,
“Reinforcement-learning-based dual-control methodology for complex
nonlinear discrete-time systems with application to spark engine EGR
operation,” IEEE Trans. Neural Netw., vol. 19, no. 8, pp. 1369–1388,
Aug. 2008.

36 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 1, JANUARY 2011

[50] J. Si and Y.-T. Wang, “On-line learning control by association and
reinforcement,” IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 264–276,
Mar. 2001.

[51] A. H. Tan, N. Lu, and D. Xiao, “Integrating temporal difference methods
and self-organizing neural networks for reinforcement learning with
delayed evaluative feedback,” IEEE Trans. Neural Netw., vol. 19, no.
2, pp. 230–244, Feb. 2008.

[52] F. Y. Wang and G. N. Saridis, “Suboptimal control for nonlinear
stochastic systems,” in Proc. 31st IEEE Conf. Decis. Control, Tucson,
AZ, Dec. 1992, pp. 1856–1861.

[53] Q. L. Wei, H. G. Zhang, J. Dai, “Model-free multiobjective approximate
dynamic programming for discrete-time nonlinear systems with gen-
eral performance index functions,” Neurocomputing, vol. 72, nos. 7–9,
pp. 1839–1848, Mar. 2009.

[54] P. J. Werbos, “Using ADP to understand and replicate brain intelligence:
The next level design,” in Proc. IEEE Symp. Approx. Dyn. Program.
Reinforcement Learn., Honolulu, HI, Apr. 2007, pp. 209–216.

[55] P. J. Werbos, “Intelligence in the brain: A theory of how it works and
how to build it,” Neural Netw., vol. 22, no. 3, pp. 200–212, Apr. 2009.

[56] H. G. Zhang, Y. H. Luo, and D. Liu, “Neural network-based near-optimal
control for a class of discrete-time affine nonlinear systems with control
constraint,” IEEE Trans. Neural Netw., vol. 20, no. 9, pp. 1490–1503,
Sep. 2009.

[57] H. G. Zhang, Q. L. Wei, and Y. H. Luo, “A novel infinite-time optimal
tracking control scheme for a class of discrete-time nonlinear systems via
the greedy HDP iteration algorithm,” IEEE Trans. Syst., Man, Cybern.,
Part B: Cybern., vol. 38, no. 4, pp. 937–942, Aug. 2008.

[58] C. Watkins, “Learning from delayed rewards,” Ph.D. thesis, Dept.
Comput. Sci., Cambridge Univ., Cambridge, U.K., 1989.

[59] F. Y. Wang and G. N. Saridis, “On successive approximation of optimal
control of stochastic dynamic systems,” in Modeling Uncertainty: An
Examination of Stochastic Theory, Methods, and Applications, M. Dror,
P. Lécuyer, and F. Szidarovszky, Eds. Boston, MA: Kluwer, 2002,
pp. 333–386.

[60] D. Han and S. N. Balakrishnan, “State-constrained agile missile control
with adaptive-critic-based neural networks,” IEEE Trans. Control Syst.
Technol., vol. 10, no. 4, pp. 481–489, Jul. 2002.

[61] E. S. Plumer, “Optimal control of terminal processes using neural
networks,” IEEE Trans. Neural Netw., vol. 7, no. 2, pp. 408–418, Mar.
1996.

[62] N. Jin, D. Liu, T. Huang, and Z. Pang, “Discrete-time adaptive dynamic
programming using wavelet basis function neural networks,” in Proc.
IEEE Symp. Approx. Dyn. Program. Reinforcement Learn., Honolulu,
HI, Apr. 2007, pp. 135–142.

Fei-Yue Wang (S’87–M’89–SM’94–F’03) received
the Ph.D. degree in computer and systems engineer-
ing from Rensselaer Polytechnic Institute, Troy, NY,
in 1990.

He joined the University of Arizona, Tuscon, in
1990, and became a Professor and Director of the
Robotics and Automation Laboratory and the Pro-
gram for Advanced Research in Complex Systems.
In 1999, he founded the Intelligent Control and
Systems Engineering Center at the Chinese Acad-
emy of Sciences (CAS), Beijing, China, with the

support of the Outstanding Overseas Chinese Talents Program. Since 2002,
he has been the Director of the Key Laboratory of Complex Systems and
Intelligence Science at CAS. Currently, he is a Vice-President of the Institute
of Automation, CAS. His current research interests include social computing,
web science, complex systems, and intelligent control.

Dr. Wang is a member of Sigma Xi and an elected Fellow of the International
Council on Systems Engineering, the International Federation of Automatic
Control, the American Society of Mechanical Engineers (ASME), and the
American Association for the Advancement of Science. He was the Editor-
in-Chief of the International Journal of Intelligent Control and Systems and
the World Scientific Series in Intelligent Control and Intelligent Automation

from 1995 to 2000. Currently, he is the Editor-in-Chief of IEEE INTELLIGENT

SYSTEMS and IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION

SYSTEMS. He has served as Chair of more than 20 IEEE, the Association
for Computing Machinery, the Institute for Operations Research and the Man-
agement Sciences, and ASME conferences. He was the President of the IEEE
Intelligent Transportation Systems Society from 2005 to 2007, the Chinese
Association for Science and Technology, Pittsburg, PA, in 2005, and the
American Zhu Kezhen Education Foundation from 2007 to 2008. Currently, he
is the Vice-President of the ACM China Council and Vice-President/Secretary-
General of the Chinese Association of Automation. In 2007, he received
the National Prize in Natural Sciences of China and was awarded the
Outstanding Scientist Award by ACM for his work in intelligent control and
social computing.

Ning Jin (S’06) received the Ph.D. degree in elec-
trical and computer engineering from the University
of Illinois, Chicago, in 2005.

He was an Associate Professor in the Department
of Mathematics at Nanjing Normal University, Nan-
jing, China. From 2002 to 2005, he was a Visiting
Scholar in the Department of Mathematics, Statis-
tics, and Computer Science, University of Illinois.
His current research interests include optimal control
and dynamic programming, artificial intelligence,
pattern recognition, neural networks, and wavelet

analysis.

Derong Liu (S’91–M’94–SM’96–F’05) received the
Ph.D. degree in electrical engineering from the Uni-
versity of Notre Dame, Notre Dame, IN, in 1994.

He was a Staff Fellow with the General Motors
Research and Development Center, Warren, MI,
from 1993 to 1995. He was an Assistant Professor
in the Department of Electrical and Computer Engi-
neering, Stevens Institute of Technology, Hoboken,
NJ, from 1995 to 1999. He joined the University
of Illinois, Chicago, in 1999, and became a Full
Professor of electrical and computer engineering and

of computer science in 2006. He was selected for the “100 Talents Program”
by the Chinese Academy of Sciences in 2008.

Dr. Liu has been an Associate Editor of several IEEE publications. Currently,
he is the Editor-in-Chief of the IEEE TRANSACTIONS ON NEURAL NET-
WORKS and an Associate Editor of the IEEE TRANSACTIONS ON CONTROL

SYSTEMS TECHNOLOGY. He received the Michael J. Birck Fellowship from
the University of Notre Dame in 1990, the Harvey N. Davis Distinguished
Teaching Award from the Stevens Institute of Technology in 1997, the Faculty
Early Career Development Award from the National Science Foundation in
1999, the University Scholar Award from the University of Illinois in 2006,
and the Overseas Outstanding Young Scholar Award from the National Natural
Science Foundation of China in 2008.

Qinglai Wei received the B.S. degree in automa-
tion, the M.S. degree in control theory and control
engineering, and the Ph.D. degree in control theory
and control engineering from Northeastern Univer-
sity, Shenyang, China, in 2002, 2005, and 2008,
respectively.

He is currently a Post-Doctoral Fellow with the
Key Laboratory of Complex Systems and Intel-
ligence Science, Institute of Automation, Chinese
Academy of Sciences, Beijing, China. His current
research interests include neural-networks-based

control, nonlinear control, adaptive dynamic programming, and their industrial
applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

