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Abstract—For the last two decades, intelligent transportation
systems (ITS) have emerged as an efficient way of improving the
performance of transportation systems, enhancing travel security,
and providing more choices to travelers. A significant change in
ITS in recent years is that much more data are collected from
a variety of sources and can be processed into various forms for
different stakeholders. The availability of a large amount of data
can potentially lead to a revolution in ITS development, changing
an ITS from a conventional technology-driven system into a more
powerful multifunctional data-driven intelligent transportation
system (D?ITS): a system that is vision, multisource, and learn-
ing algorithm driven to optimize its performance. Furthermore,
D?ITS is trending to become a privacy-aware people-centric more
intelligent system. In this paper, we provide a survey on the
development of D?ITS, discussing the functionality of its key
components and some deployment issues associated with D*ITS.
Future research directions for the development of DITS is also
presented.

Index Terms—Data mining, data-driven intelligent transporta-
tion systems (D2ITS), machine learning, microblog, mobility, vi-
sual analytics, visualization.

I. INTRODUCTION

URRENTLY, transportation systems are an indispensable
part of human activities. It was estimated that an average
of 40% of the population spends at least 1 h on the road
each day. As people have become much more dependent on
transportation systems in recent years, transportation systems
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themselves face not only several opportunities but several chal-
lenges as well. First, congestion has become an increasingly
important issue worldwide as the number of vehicles on the
road increases. For example, Beijing, China, had a total of 4
million vehicles at the beginning of 2010 and added another
800 000 in that year. Congestion can lead to an increase in fuel
consumption, air pollution, and difficulties in implementing
plans for public transportation [1]. It can also increase the risk
of heart attack, as indicated by a medical report [2]. Second,
accident risks increase with the expansion of transportation sys-
tems, particularly in several developing countries. Zheng et al.
[3] showed that in China, there were 104 373 fatalities in 2003
and 67 759 fatalities in 2009. It was pointed out by Malta et al.
[4] that almost three fourths of all traffic accidents can be
attributed to human error. The reports published by the U.S.
Federal Highway Administration indicated that traffic accidents
that happened in cities account for about 50%—60% of all
congestion delays [5]. Undoubtedly, there is a need to re-
duce traffic accidents and to detect accidents once they have
occurred to minimize their impact. Third, land resources are
often limited in several countries. It is thus difficult to build
new infrastructure such as highways and freeways. After the
terrorist attacks in New York City on September 11, 2001,
the effectiveness of transportation systems is increasingly tied
to a country’s capability to handle emergency situations (e.g.,
mass evacuation and security enhancement) [6]—[8]. The com-
petitiveness of a country, its economic strength, and produc-
tivity heavily depend on the performance of its transportation
systems [9].

Some of the aforementioned problems can be solved by
implementing new transportation policies. For example, during
the 2008 Beijing Olympics, the city government of Beijing,
China, imposed a restriction on car owners based on odd/even
license plate numbers to keep 50% of private cars off the road.
This approach has certainly alleviated congestion and the air
pollution problem to some extent. In general, the approach
works for special events but may not be appropriate under
nominal circumstances. Another strategy is to add additional in-
frastructure by constructing new roads and/or to improve the ex-
isting infrastructure such as widening the roads. This approach,
however, can be costly and demanding for the use of already
very limited land resources. The third strategy is to optimize the
use of the existing transportation system by analyzing the data
that are collected from a large amount of auxiliary instruments,
e.g., cameras, inductive-loop detectors, Global Positioning Sys-
tem (GPS)-based receivers, and microwave detectors. Ideally,
these three approaches should be complementary to each other.
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Note that, currently, data can not only be processed into useful
information but can also be used to generate new functions and
services in intelligent transportation systems (ITS). For exam-
ple, GPS data can be utilized to analyze and predict the behavior
of traffic users, which is a function that is not fully utilized in
conventional ITS. We envision that the conventional ITS will
eventually evolve into a data-driven intelligent transportation
system (D2ITS) in which data that are collected from multiple
sources will play a key role in ITS. It is necessary to examine,
in more detail, the pros and cons of D?ITS. It is also important
to build a strong theoretical basis to establish a data-driven
approach to improve the performance of D?ITS. The system
structure of D2ITS that we envisioned is illustrated in Fig. 1.

This paper focuses on some of the key components of
D?ITS. The remainder of this paper is organized as follows.
In Section II, we define the D?ITS and provide a survey on
its recent development. In Section III, we discuss its potential
issues and future directions, followed by the final conclusion in
Section IV.

II. DATA-DRIVEN INTELLIGENT
TRANSPORTATION SYSTEM

There are six fundamental components in ITS [9] as follows:

1) advanced transportation management systems;

2) advanced traveler information systems;

3) advanced vehicle control systems;

4) business vehicle management;

5) advanced public transportation systems;

6) advanced urban transportation systems.

Whether the functions of these components can fully be
realized depends on how data are collected and processed into
useful information. D?ITS can be summarized as follows.

D2ITS, which are supported by a large amount of data that
are collected from various resources, are systems that would
allow users to interactively utilize data resources that pertain to
transportation systems, access and employ data through more
convenient and reliable services to improve the performance of
transportation systems, and realize and extend the functions of
the six fundamental components of ITS.

Clearly, D?ITS directly interfaces with people or users of
transportation systems. For D?ITS to widely be accepted, first,
it should be privacy aware and people centric. Unlike the data-
driven model proposed by van Lint [10], in which models are
designed to directly learn the complex traffic dynamics from
traffic data, the concept of D?ITS considered here covers the
current state of ITS and prescribes a possible framework for
futuristic ITS. Furthermore, the work of van Lint [10], [11]
and van Lint et al. [12] focused on a specific ITS application,
i.e., the short-term prediction of travel time on freeway. The
distinction between D?ITS and conventional technology-driven
ITS is that conventional ITS mainly depend on historical and
human experiences and place less emphasis on the utilization
of real-time ITS data or information. For example, Lin and
Liu [13] improved the existing linear-programming-based an-
alytical system-optimal dynamic traffic assignment model to
enhance realism in modeling merge junctions. Zhao et al. [14]
used linear program to achieve fast signal timing for individual
oversaturated intersections. Alonso-Ayuso et al. [15] applied
a mixed 0-1 linear optimization model for collision avoid-
ance between an arbitrary number of aircraft in the airspace.
Mulder et al. [16] investigated the car-following kinemat-
ics to design a haptic feedback algorithm to achieve “safely
promoting comfort” in active support systems for drivers.
Shieh et al. [17] employed unidirectional cosine functions to
approximate the irregular radiation pattern. These models are
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Fig. 2. Some examples of traffic-related objects. From left to right and from top to bottom. Vehicle [19], pedestrian [21], license plate [23], traffic sign [25], lane

[27], pedestrian counting [33], and vehicle trajectory [34].

built based on historical or human experiences. Furthermore,
data that are used in conventional ITS are collected from
limited sources, e.g., inductive loops, floating cars, and video
monitoring and recording.

According to the type of data used, the way that data are
processed, and the specific D?ITS applications, a full D2ITS
can be classified into several major categories, as discussed in
the following sections.

A. Vision-Driven ITS

As a main component of D2ITS, vision-based devices have
broadly been employed in several other areas and generated
unprecedented quantity of data in recent years for the following
four reasons.

1) In a perceptual sense, people are more used to visual
information than to other forms of perceptual information
(e.g., voices).

2) Video sequences cover a broad range of information
that can reflect, in the most direct way, the status of
transportation systems and can be employed to detect
some time-varying trends, e.g., the collision of vehicles,
an important feature for ITS.

3) Video sensors can easily be installed, operated, and main-
tained [18].

4) The price-to-performance ratio of a vision-based device
has greatly been improved.

Consequently, a large number of applications in ITS are
implemented with vision-driven technologies, where input data
are collected from video sensors, and output is used for ITS-
related applications. Several representative vision-driven appli-
cations are listed as follows:

1) traffic object detection, tracking, and recognition
[Methodologies have been developed to detect such
traffic-related objects, including vehicle detection [19],
[20], pedestrian detection [21], [22], license plate

recognition [23], traffic sign detection [24]-[26], and
lane tracking [27] (see Fig. 2 for a few examples).];

2) traffic behavior analysis, e.g., detecting irregular vehicle
behavior and the concealment of intent in transportation
systems [28], [29], and automatic incident detection [30];

3) vehicle density [31] and pedestrian density estimation
[32], [33] (see Fig. 2);

4) construction of vehicle trajectories [34];

5) statistical traffic data analysis [20].

The detection, recognition, and tracking of the traffic-related
objects have broad applications in ITS. In particular, vehicle
detection and identification are commonly used for identifying
cases for traffic violation (e.g., speeding and red light running),
which is important for reducing traffic accidents. In addition,
vehicle identification is complementary to the license plate
recognition approach in several ITS applications, e.g., parking
lot access control, easy-pass toll collection, and stolen vehicle
recovery [19], [35]. Several research on vision-driven technolo-
gies for ITS development focuses on these applications. The
following five main issues are listed as follows [35].

1) Vehicles greatly vary in shape, size, and color.

2) The appearance of a vehicle always changes with its
poses change.

3) Complex outdoor environments can add difficulties to the
design of a general vehicle detection and identification
system.

4) The computing power is often very demanding due to the
rapid movement of on-road vehicles.

5) Itisdifficult to design a system that is robust to a vehicle’s
movements and drifts.

To address these issues, Wang and Lien [19] proposed a ve-
hicle detection method by extracting local features from subre-
gions in each frame. This approach will enable the performance
of vehicle detection that is less susceptible to the geometrical
variance [19]. Vehicle detection is also a critical step toward
the intelligent vehicle research. Effective car-following and
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lane-changing control measures can be implemented for a ve-
hicle if the position of its neighboring vehicles can be captured
precisely. Sivaraman and Trivedi [36] built an on-road vehicle
detection system by integrating active-learning-based vehicle
recognition with particle filter tracking. Cherng et al. [37]
proposed a dynamic visual model that performs visual analysis
of video sequences to detect critical motions of nearby moving
vehicles while driving on a highway (see [35] for a complete
review of on-road vehicle detection systems).

Similarly, an effective pedestrian detection can help reduce
the occurrence of pedestrian-vehicle-related injuries. If a sys-
tem can issue a warning in time and start some proactive mea-
sures once a pedestrian has been discovered in a risky region,
then the pedestrian-vehicle-related accident can be mitigated
and even avoided. Obviously, the detection of the sign of such
potential risks from both the frontal and lateral views should
be a prerequisite of an effective pedestrian detection system
(PDS). The main issues are given as follows: 1) It is not an
easy task to separate pedestrians from background in an image
or video sequences in the computer vision domain [38], and
2) the pedestrian appearances vary in clothing, hairstyles, and
bags [39]. To solve the aforementioned issues, Broggi et al.
[40] studied the use of in-vehicle cameras to detect pedestri-
ans who have a high risk of subjecting themselves to traffic
incidents. With a single camera, Cao ef al. employed a cascade
classifier to detect the candidate risky region and estimate the
distance between each pedestrian and the vehicle [41]. Munder
et al. utilized a Bayesian multicue approach to combine the
extracted shape, texture, and depth information to detect and
track pedestrians in a clutter urban environment [21]. For a
more comprehensive review of research on pedestrian detection
and protection, see [38], [42], and [43].

License plate recognition is a core module for intelligent
infrastructure systems and intelligent vehicle management use-
ful for a variety of applications, ranging from vehicle be-
havior monitoring to travel-time estimation. Typical license
plate recognition software consists of the following three key
parts: 1) license plate detection; 2) character segmentation;
and 3) character recognition. Similar to vehicle and pedestrian
detection, we have the following two ways of identifying a
license plate: 1) from still images or 2) from video sequences
[23]. Although commercialized products have been developed
for this application and are available on the market, the problem
itself remains to be challenging. The major challenges remain to
be the design of a robust license plate detection and recognition
system that can work under a variety of complex conditions
with the movement of multiple objects. Furthermore, the detec-
tion should be less sensitive to the angle variation between the
ground and the license plate installed in the bumper. A detailed
review on license plate recognition is given in [23].

Traffic-related object recognition can also be useful for re-
fining the performance of driver assistant systems (DASs), in
which the used video devices are mobile, whereas in several
other cases, the devices are static [41]. In addition to the afore-
mentioned vehicle and pedestrian detection, lane detection and
tracking in real time is very important to the development of a
collision-warning system in DASs. However, the lane detection
and tracking system usually suffers from a wide variety of lane
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markings and lane surfaces, as well as weather conditions and
time of days. McCall and Trivedi [44] gave a comprehensive
survey on the detection and tracking from five aspects, in-
cluding road modeling, road marking extraction, preprocessing,
vehicle modeling, position tracking, and common assumptions
and comparative analysis. The authors pointed out [44] the
following four cases.

1) Lane recognition can have better performance at night
and dawn than during day and dusk, because there are
larger contrasts between road and road markings and the
lack of complex shadows at night, and a morning fog can
help eliminate shadows at dawn.

2) Lanes with solid and segmented line markings are recog-
nized better than with other markings.

3) A lane departure warning system should pay more atten-
tion to the recognition of the edge of the lane, whereas a
lane-keeping system should focus on the location near the
center of the lane.

4) Lane recognition will suffer from some special scenarios
such as tunnel and complex shadows.

They also proposed a steerable filter for robust and accu-
rate lane marking detection. In real-time lane tracking under
various challenging scenarios, Kim employed several machine-
learning algorithms, e.g., neural networks and support vector
machines, to learn the lane mark from a collection of image
patches, followed by utilizing particle-filtering-based tracking
algorithm to track the lanes [27]. By modeling a road with
varying curvature as a hyperbola function with some nonlinear
terms, Wang et al. estimated the parameters of the model
and employed a condensation model to track the road in real
time [45].

Vehicle speeding can significantly increase the chance of
fatal crashes. Speeding sometimes occurs due to drivers’ failure
in spotting the speed sign. Laboratory experiments revealed that
distraction is a main source that can result in an increase in the
failure to detect simulated traffic signals. To address this issue,
Barnes et al. introduced a fast symmetry detector to detect the
speed limit sign under a broad range of lighting conditions.
One additional advantage of using the detector is that, as the
authors pointed out, it can well combine with the subsequent
speed sign recognition [24]. Baré proposed an evolutionary
version of AdaBoost to detect the sign by employing the error-
correcting output code framework to achieve an effective traffic
sign classification [25]. Khan et al. [26] utilized two basic
geometric properties—the relationship between the area and
the perimeter, and the number of sides of a given shape—to
analyze different shapes and achieved an automatic road-sign
recognition based on image segmentation and joint transfor-
mation correlation. Recently, Gémez-Moreno et al. [46] have
evaluated the influence of image segmentation algorithms for
traffic sign recognition. To obtain better recognition on low-
quality sign images, Ruta et al. [47] developed a robust sign
similarity measure based on the domain-specific traffic sign im-
ages. To reduce traffic accidents that result from the distraction
of drivers, e.g., drunk or drowsy driving, Chang et al. developed
the following two vision-based modules: 1) an unexpected lane
departure avoidance module for preventing lateral collisions
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and 2) a rear-end collision avoidance module for avoiding
longitudinal accidents [28]. Within the two modules, radial
basis probability networks are employed to distinguish between
the normal lane change and the abnormal lane departure. Neural
networks and fuzzy membership functions have been used for
raising a warning to the potential longitudinal accidents.

Note that one disadvantage of these algorithms is that they
only work during daylight. To construct an effective vision-
driven system for nighttime, one way is to use an infrared
camera, which is less sensitive to the lighting conditions of
the surrounding environment. Based on detecting images of
specific size and aspect ratio in far infrared (FIR), Bertozzi et al.
[48] implemented a PDS with night vision. Ge et al. [49]
combined a monocular near-infrared (NIR) camera with il-
lumination from full-beam headlights to achieve a real-time
pedestrian detection and tracking systems during nighttime
driving. With this method, the cost of purchasing expensive
FIR cameras can greatly be saved without compromising the
desired recognition rate. Using image-based metrics, Bi et al.
modeled pedestrian detection performance with night-vision
systems. In particular, they described a model of the probability
of pedestrian detection as a function of distance and image-
based clutter, contrast, and pedestrian size metrics [22]. More
recently, Lim et al. [50], [51] have studied the influence of
human factor to driver performance with night-vision systems.
They pointed out the following two cases: 1) FIR night-vision
systems can produce less cluttered images than NIR systems
[50], and 2) compared with NIR systems, FIR night-vision-
enhancement systems can help drivers shorten search times
and pay more glances to the scenes that have pedestrians in
it [51].

Pedestrian counting is useful for emergency evacuation. In
general, evacuation strategies can be divided into static and
dynamic approaches. The former approach can utilize geo-
graphical information systems (GISs) to provide information
on surface transportation, whereas the latter approach heavily
depends on the availability of real-time traffic and pedestrian
information [6]. Compared with other technologies, video se-
quence is a cost-effective way of collecting such information.
However, the performance of a pedestrian-counting system
significantly suffers from occlusion in the scenes when the
density of the pedestrian crowd increases. Furthermore, its
performance is influenced by large variances in pedestrian
appearances, including height, clothing, and accessories [32],
[33]. To address the issues, research has been performed to
extracting a collection of high-dimensional statistical features
from the pedestrian image sequences, followed by employing
the supervised dimension reduction technique, a technique
that makes use of the counting label of each sample in the
training set to guide the reduction in selecting the representa-
tive features. Experiments that have been conducted showed
promise of this approach compared with several existing al-
gorithms [32]. By utilizing temporal relationships between
each frame and its neighboring frames as the constraint term,
Tan et al. [33] developed a semisupervised elastic net to achieve
pedestrian counting. Another important application of vision-
driven ITS is to analyze the vehicle/pedestrian trajectories from
video sequences, because trajectories can be useful for plan-
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ning applications, emission modeling, and abnormal behavior
detection. For example, Atev et al. [34] studied the vehicle
trajectories by proposing a trajectory-similarity measure based
on the Hausdorff distance.

Flow, occupancy, and speed are, so far, the most used in-
dices for characterizing traffic conditions. They are routinely
generated for traffic control and transportation system manage-
ment. These indices remain to be the key input to ITS. For
several years, these data have been collected with inductive-
loop detectors that are embedded in the road’s surface. One
of the major disadvantages with the loop detectors is their
high installation and maintenance costs. In recent years, video
devices have been utilized to generate these measures. For ex-
ample, Morris and Trivedi developed a visual vehicle classifier
and traffic flow analyzer (VECTOR) module to obtain traffic
flow measures from video sequences. Furthermore, they con-
structed a probabilistic scene motion model to perform activity
analysis so that some potential traffic abnormality that results
from accidents or special events can be detected in time [20].
Chitturi et al. [52] evaluated the effect of shadows and time
of day on the performance of three video detection systems
(Autoscope, Peek, and Iteris) at a signalized intersection. There
is a trend that commercial roadside or overhead video detectors
have gained much more market share in detecting traffic.

B. Multisource-Driven ITS

D2ITS can be supported by data from multiple sources, e.g.,
inductive-loop detectors, laser radar, and GPSs. To a certain
extent, multisensor-driven systems play a complementary role
for vision-driven systems, which are often easily subject to
environmental constraints as aforementioned [53]. Although
vision-driven automatic incident detection (AID) systems can
provide an effective and automatic way of detecting incidents
without a need for human operators, for example, its perfor-
mance suffers from the change of outdoor environments, e.g.,
snow, static or dynamic shadows, rain, and glare [18], [30].

In recent years, GPSs have much more frequently been used
in ITS, because they provide real-time positioning information
that would allow us to trace the movement of vehicles, a feature
that is particularly useful to ITS.

Clanton et al. [53] developed a lane departure warning
system through estimating GPS bias measurement by treating
an automative-grade navigation GPS as an auxiliary element
of vision-based systems. Huang and Tan applied a differential
Global Positioning System (DGPS) and intervehicle commu-
nication device to build a future-trajectory-based cooperative
collision warning system (CCWS) [54] in which the time-
dependent location of a vehicle and its neighboring vehicles
are measured and processed through a GPS platform. To reduce
the errors that result from measurements and to enhance the
robustness of the proposed CCWS, the authors used the Kalman
filter technique to estimate the magnitude of errors so that
proactive actions can be taken based on the probability of
collision [55]. By clustering the GPS-derived speed pattern,
Kianfar and Edara [56] attempted to optimize freeway traffic
sensor locations for better estimating travel times. Chen et al.
[57] proposed a GPS-based data reduction algorithm to remove
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redundant GPS location data and preserve some key points for
the Qinghai-Tibet railway system.
The main issues with GPS the following three conditions:

1) the multipath issue, i.e., a place may receive multiple GPS
positioning information, particularly in an urban area
with high-rise buildings, where signals from the satellite
can be blocked, resulting in potential errors in vehicle
positioning data;

2) the missing data issue, e.g., during the time that a vehicle
goes through a tunnel;

3) few visible satellites.

Due to these disadvantages of GPS, the performance of some
GPS-based traffic applications can be degraded. To address the
problem, Schleischer et al. [58] considered visual information
as a complementary data source for GPS data. Their research
fused these two heterogeneous data sets to generate the vehicle
positioning information with high precision by estimating the
fingerprint of each vehicle (or vehicle poses) with stereovision
and then refining the vehicle orientation estimation with a low-
cost GPS. Experiments show that the proposed method is much
more robust for tracing vehicles in an urban environment. To
reduce possible errors, Meguro et al. [S9] proposed to mount on
a car an omnidirectional infrared camera, which is less sensitive
to its surrounding environment.

There are other types of detectors that are used for ITS,
e.g., laser radar detectors and ultrasound detectors. Although
very costly at the present time, radar detectors can successfully
be used in a parking-aid system, whereas other conventional
methods, e.g., the ultrasonic-based method and the graphical-
user-interface-based method will fail [60]. Jung et al. further
introduced scanning laser radar to a parking-aid system to
position vehicles with high accuracy [60]. To avoid the strong
sensitivity to atmospheric conditions and the impossibility of
obtaining direct and accurate information with regard to depth,
Gidel et al. [61] used a multilayer laser scanner that is mounted
onboard a vehicle to detect pedestrians. With the combination
of traffic features and meteorological features, e.g., wind speed
and wind direction, Zito et al. studied the prediction of real-time
roadside carbon monoxide (CO) and nitrogen oxide concentra-
tions by using neural networks. Extensive experiments indicate
that the proposed neural network models have a good trans-
ferability, which can easily be adapted to data sets collected
from other areas [62]. This research can bring benefits to the
improvement of the near-road air quality and, in some sense,
the influence of the performance of vision-driven tasks, because
most such tasks depend on the imaging quality.

There is an interesting trend toward the utilization of some
unconventional transportation sensors that enable us to collect
and analyze traffic information in a more cost-effective way.
Sohn and Hwang studied the feasibility of utilizing the already-
installed mobile cellular networks for automatic vehicle iden-
tification (AVI) [63]. One major focus of their work is to
employ a probe phone to estimate the vehicle passage time on
a freeway and investigate the factors that may affect the accu-
racy of such estimates. Compared with the known surveillance
systems, the proposed cell phone probing systems play a com-
plementary role in enhancing the quality of traffic information.
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Calabrese et al. [64] used the real-time data collected from
mobile phones to monitor the vehicular traffic status and the
movements of pedestrians in Rome, Italy. Gandhi and Trivedi
employed omnidirectional cameras mounted on an automobile
to achieve a 360° surrounding view map [65]. Gandhi et al. [66]
designed a multisensory testbed for the collection, synchroniza-
tion, and analysis of multimodal data for monitoring the status
of transportation infrastructures. In the testbed, the video and
seismic sensors supply information about vehicles and can be
used together with other data sources to improve the reliability
of vehicle classification [66]. Ehlgen et al. utilized catadioptric
cameras—a combination of cameras and mirrors—to view the
surrounding area of vehicles, potentially reducing the accidents
resulting from blind spots of trucks and trailers [67].

When multiple sensors are installed on a vehicle, one issue is
that they would communicate with each other. For example, it
was shown that, when multiple ultrasonic sensors are installed
in front of a vehicle, crosstalk will happen [68]. This condition
is one of the major sources that would lead to a failure of the
short-range collision-warning systems in congested traffic envi-
ronment and parking-assistance system. The authors proposed
to use a microcontroller to produce a pseudorandom number of
sinusoidal pulses to reduce the occurrence of crosstalk.

Finally, one of the challenging issues in data fusion is how we
can build a universal similarity measure to align images from
different sources. When motion vehicles are present on a road,
the condition will become more difficult, because in general,
such a motion will bring a detrimental effect to the performance
of image alignment [69]. Jwa et al. [69] presented an effective
image registration to align images from different sources, e.g.,
unmanned aerial vehicles (UAVs) or conventional cameras. The
contents of multisource-driven ITS are summarized in Fig. 3.

C. Learning-Driven ITS

Although video devices and multiple sources can generate
data of transportation systems for a broad scope of applications
in ITS, it is not sufficient to rely on only these devices to
generate data to serve as input used for traffic control, par-
ticularly for real-time traffic control and transportation system
analysis. Furthermore, the latest development in ITS exhibits
a new trend toward proactive control as opposed to conven-
tional passive control and management [70]. For example, the
effective prediction of the occurrence of accidents can enhance
the safety of pedestrians by reducing the impact of vehicle
collision. Thus, there is a need to learn the intrinsic mechanism
of the transportation system using both real-time and historical
data. Several major learning-driven approaches are summarized
in the following sections.

1) Online Learning: As an example, one typical application
that is related to the learning-driven ITS is the prediction of
trip travel time or vehicle passage time in a transportation
network, an important input for several ITS components [10].
The difficulty for this case is that the travel time depends on
traffic conditions that are highly dynamic and nonlinear in
nature, changing over time and space. As a result, it is not
easy to accurately estimate the trip time of a driver when the
driver starts the trip. To solve the problem, van Lint proposed
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to employ the state-space neural network, which is an online
learning algorithm, to achieve the short-term prediction of
travel time on freeways [10]. By adopting the node-arc network
representation, with arcs representing the roadway segments
and nodes representing the junctions or intersections, Jula et al.
proposed a real-time Kalman filter model to predict travel time
at the arc level and estimate the arrival time at the node of the
stochastic traffic networks by combining historical data with
real-time measurements of travel times along the arcs [71].
Linda and Manic [72] proposed to evaluate the spatiotemporal
risk based on the combination of online nearest neighbor and
fuzzy inference.

Furthermore, the vehicle or pedestrians’ trajectory/motion
pattern analysis is a crucial goal of autonomous navigation
in different regions, e.g., cities and parking lots. However, it
is difficult for most offline trajectory/motion pattern analysis
algorithms to predict or identify a real-time-basis new pattern
with high accuracy. To address the issue, Vasquez et al. [73]
proposed a growing hidden Markov model where the structure
and parameter of the model is through online learning so that
the new motion patterns can effectively be identified. Aiming at
automatically learning models of vehicle activities with mini-
mal human training, Veeraraghavan and Papanikolopoulos [74]
transformed the observed trajectories into an action sequence
and presented a semisupervised learning algorithm that can
learn activities as complete stochastic context-free grammars.
Angkititrakul er al. [75] employed Gaussian mixture models
to model stochastic driver behavior, e.g., lane-cross events and
intentional driver correction events, and then used the online
observed driving signals to achieve a lane departure warning
system.

Schematic of the multisource-driven ITS. Here, the bidirectional arrow means that vision- and multisource-driven ITS are complementary in D2ITS.

Another application of online learning is to develop effective
evacuation strategies. Chiu and Mirchandani utilized feedback
information to achieve an online behavior-robust routing strat-
egy for mass evacuation [6]. Compared with the open-loop-
based approaches, the proposed approach is more effective in
guiding vehicles to some prespecified safe location by regularly
providing frequently updated evacuation route information [6].

2) Data Fusion: In general, it is insufficient, in most cases,
to use a single model to attain good performance in ITS. To
address the issue, Tan et al. [76] fitted three models using
three traffic flow sets and utilized neural network as a data
aggregation model to combine the prediction results of the three
models. Here, two of the three data sets—daily time series data
and weekly time series data—are generated from the conven-
tional traffic flow data. Considering the fact that vehicles tend
to practice different maneuvers under different traffic scenarios.
Toledo-Moreo and Zamora-Izquierdo proposed an interactive
multiple model to better predict lane changing for different
traffic conditions [77]. Malta et al. combined a brake-pedal
force model and a speech model to better capture the driver be-
havior [4]. Fusion strategy can effectively utilize multisource-
driven ITS to better analyze and predict traveler behavior and
traffic dynamics [1]. The fusion of data from multisources
can provide us with holistic and comprehensive information
and can thus improve the performance of ITS, e.g., guiding
emergency evacuation and congestion control. Jwa et al. [69]
attempted to detect and track vehicles using multiple UAVs.
They aligned images that are collected from different UAVs
based on their proposed robust alignment algorithm and
tracked vehicles with their proposed outlier rejection algorithm.
Masini et al. surveyed several fusion techniques that are used
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to fuse video streams in the long- and short-wave infrared
bands, e.g., the fusion of coefficients in the two Laplacian
pyramids, and evaluated their performance by examining
frame-by-frame images that are extracted from the video
streams [78]. Considering the pros and cons of the loop de-
tectors and GPS receivers, Kong et al. fused data that are
collected from these two sensors based on the evidence theory
[79], leading to improved estimates of traffic state information.
Polychronopoulos ef al. designed a hierarchical structure to
fuse environmental data and vehicle dynamics data for predict-
ing the trajectories of moving vehicles [80]. Sun and Zhang
proposed a new selective random subspace predictor to deal
with the prediction of traffic flow under incomplete data. They
presented a data fusion algorithm to improve the accuracy of
the prediction based on the fusion of multiple outputs [81].
Based on the complementary properties of infrared receivers
and ultrasonic barriers, Garcia et al. [82] utilized a set of diverse
techniques of data fusion and proposed a multisensory system
for obstacle detection on railways with high reliability.

3) Rule Extraction: Another function of learning-driven
ITS is to gain insight into some useful patterns, trends, and
correlation between different traffic data sets. This function is
conventionally realized through the use of association rules.
Barai [83] employed the association rule to explore the re-
lationship between the type of roads and specific types of
traffic accidents. Gong and Liu [70] combined association rules
with association analysis to predict the traffic network flow.
Furthermore, with association rules, Haluzova discovered that
the number of traffic accidents influences the delay rate in the
affected areas [84].

One alternative strategy for obtaining insight is to use the
rough set theory proposed by Pawlak [85]. The theory can
derive some important attributes through the attribute reduction
without utilizing any a priori information outside the data set.
Chang et al. [86] extracted a reduction of pavement mainte-
nance and rehabilitation based on the rough set theory. Wong
and Chung [87] employed the rough set theory to model the
mechanism of traffic accidents as factor chains, including driver
properties, travel properties, driver behaviors, and environmen-
tal factors. In addition, they also discovered a relationship
between the bump-into-facility accidents and humid road.

4) ADP-Based Learning Control: One of the major prob-
lems for D?ITS is how we can realize learning-based per-
formance optimization of ITS in an uncertain dynamic
environment. This problem is usually difficult, if not impossi-
ble, to handle with the traditional mathematical programming
approach. One promising way is to develop adaptive dynamic
programming (ADP) and reinforcement learning (RL) methods
[88] for the performance optimization of complex dynamic
systems, because ADP and RL have been shown to be powerful
in solving Markov decision processes with large or continuous
state and action spaces. RL and ADP can be utilized here to
provide a framework for solving the learning control problem.
In the last decade, research on ADP-based learning control and
optimization of ITS has received much more attention in the
literature. For example, Ling et al. [89] studied automate street-
car bunching control through multiple RL agents that act on
a series of successive signalized intersections. Abdulhai et al.
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[90] proposed a (Q-learning algorithm, which is a type of
simple yet powerful RL algorithm, for traffic signal control.
Salkham et al. [91] developed a collaborative reinforcement
learning approach for optimal traffic control in an urban setting.
Although much research needs to be done in the future, it can be
expected that ADP-based learning control will provide a basic
tool for realizing D?ITS with online learning and performance
optimization in dynamic uncertain conditions.

5) ITS-Oriented Learning: 1TS have their unique character-
istics and properties that should be considered when it comes
to the development of learning-driven algorithms. For roadway
transportation, the spatial-temporal relationship between traffic
data and the corresponding geographical information of the
roadway infrastructure should be considered when performing
a learning-driven ITS. For example, in the data collection,
traffic data from a roadway segment should be distinguished by
the direction of traffic for spatial clustering. Otherwise, two data
points from different lanes with different driving directions may
incorrectly be clustered into the same group [92]. Furthermore,
the occurrence of traffic accidents will usually generate traffic
patterns that are different from traffic patterns that result from
recurrent congestion [93]. The occupancy upstream the incident
site will usually increase, and the occupancy downstream will
decrease. Such traffic patterns should be incorporated into the
learning-driven ITS. The framework of a learning-driven ITS is
shown in Fig. 4.

D. Visualization-Driven ITS

From a perceptual viewpoint, visualization, as a specific
application of D?ITS, is the most intuitive way of helping
people understand and analyze traffic data. Compared with
computers, human beings have a stronger judgment ability to
analyze visualized data when the dimension of the data space is
less than three. Therefore, it is not surprising that visualization
has become a substantial and ubiquitous tool in ITS. For
example, changeable/variable message signs provide a simple
and intuitive way of visualizing the congestion information on
the freeways in real time. As a result, travelers can better plan
their travel routes in response to the change in traffic conditions.
For traffic management, visualization can help decision makers
quickly identify abnormal traffic patterns and accordingly take
necessary measures to bring the system back on track [94].

The following four approaches are the commonly used visu-
alization techniques [67]:

1) line charts;

2) bidirectional bar charts;

3) rose diagrams;

4) data images.

For example, line charts are used to illustrate the variation
of traffic flow in some phase or some region. The bidirectional
bar chart can effectively describe the directional difference of
traffic flows. By encoding data with color, a data image can
be used to evaluate traffic conditions, detect irregular traffic
patterns, and identify the trend. Details on the introduction of
these visualization methods are discussed in [95].

Lee et al. [96] visualized the relationship between headway,
speed, and occupancy by using a 5-D stack bar chart, which
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allowed them to identify irregularities in traffic associated
with accidents. Lu et al. [94], [97] developed a web-based
visualization package, named CubeView, to aggregate data for
identifying major traffic trends.

III. ROADMAP AND FUTURE DIRECTIONS OF
DATA-DRIVEN INTELLIGENT TRANSPORTATION SYSTEM

The previous section discussed the technology side of the
development in D?ITS. In the following sections, we will
discuss some issues related to the deployment of D?ITS and
identify areas that are worth in-depth research in the future.

A. Learning Issues

Data play a key role in the effectiveness and efficiency of the
D2ITS. As Barai [83] pointed out, a large amount of data that
can be used for ITS are, in fact, highly irregular, heterogeneous,
and high dimensional in ITS. Because most data are sampled
from either vision or multisource devices and are transmitted
with various ways, it leads to the following four challenging
tasks.

1) Data Cleansing and Imputing: It is well known that
traffic data are full of noise due to various known and unknown
factors. For example, during a study performed on freeway
traffic flow in the third ring of the City of Beijing, it was
observed that the speed data that were collected contained
samples with vehicle speeds much higher than the speed limit
posted on the road [98]. The reason for this is that the detector
that was used always autochecks its working status by sending
a pseudospeed signal with fixed-time intervals. Obviously, it
is necessary to perform data cleansing to remove the noisy
and/or abnormal data in D?ITS. However, the development of
an automatic data-cleansing process is very challenging. Wu
and Zhu attempted to fuse data cleansing with data analysis and
proposed a noise-aware data-mining algorithm to detect and

remove noise. Meanwhile, they refined the data-mining per-
formance by estimating the statistical information of different
types of noise [99]. One major disadvantage of their approach
is that they assume noise to be of some known form, whereas
noise in data in the real world in D?ITS is often random and
hard to be characterized with a single well-defined probability
distribution function.

Detector malfunction can also lead to the loss of data package
during transmission [100]. Because the cause of missing data
could vary, Qu et al. [100] introduced probabilistic princi-
pal component analysis (PPCA)-based missing data imputa-
tion, where PPCA is used to capture the main structure, and
maximum-likelihood estimation is used to estimate the missing
value. The advantage is that the method considers not only
local information such as the traffic flow data of each day but
the global information as well, including neighboring relation-
ships between historical data. One major disadvantage of this
approach is that the underlying linear assumption used in the
method does not always hold.

2) Dimension Reduction: In the ITS domain, most data are
high dimensional. For example, when one pixel is regarded as
one dimension, then a vehicle image has multiple dimensions.
The “curse of dimensionality” issue would arise, i.e., as the
dimension increases, the number of samples must exponen-
tially be increased. Consequently, the learning problem can be
highly complex. Fortunately, one common viewpoint is that
data can be generated from a set of intrinsic low-dimensional
variables. Several dimension reduction methods have been
proposed in recent years. Several newly developed and rep-
resentative theories include manifold learning [101], [102],
nonnegative matrix factorization (NMF) [103], and kernel di-
mension reduction [104].

Manifold learning discovers the underlying low-dimensional
manifold embedded in the high-dimensional Euclidean space.
When projecting data onto a low-dimensional space, for
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example, isometric mapping [101] preserves approximated geo-
desic distances of any two points, and locally linear embed-
ding [102] keeps the local topology between a sample and its
neighboring samples. A survey on the recent development of
manifold learning is shown in [105].

The initial motivation of NMF is to extract the nonnegative
part from data, e.g., extracting the eyebrows and mouth of a face
image. Ding et al. [106] generalized the method of applying to
areas such as clustering and enhanced its interpretability.

Kernel dimension reduction utilizes supervised information
to guide the dimension reduction to maximize statistical inde-
pendence. The statistical independence means that a projection
subspace of data space will have the same contribution as the
original space, and the corresponding orthogonal complement
subspace of a subspace will contribute nothing to the inference
of response variable and is thus redundant [82]. The kernel di-
mension reduction method was adopted for pedestrian counting
with promising performance, as discussed in [32].

The aforementioned three methods can help us uncover
insightful information for ITS data, enabling us to improve the
performance of learning-driven tasks under a reduced dimen-
sional space.

3) Sparsity Learning: Unlike dimension reduction, which
intends to discover some underlying low-dimensional structure,
sparse learning directly removes some redundant features from
the original feature space but preserves the interpretability of
the remaining features. One classical sparse learning algorithm
is Lasso, which is proposed by Tibshirani [107], [108]. In this
algorithm, features that are not related to response variables
will be weighted by zeros and are thus naturally removed
from the original feature space. To obtain higher sparsity,
several refinements have been proposed for the last decade.
Yuan and Lin proposed Group-Lasso to group variables of
higher order interactions and emphasize the main effect of
these variables [109]. Qi et al. exploited the sparsity nature
of high-dimensional feature space and utilized an L, -penalized
log-determinant regularization to develop an efficient sparse
metric-learning algorithm in the high-dimensional space [110].
Duchi and Singer incorporated sparsity penalization into the
boosting algorithms to achieve better performance with high
sparsity [111]. Huang er al. employed coding complexity as-
sociated with the structure to study the structure sparsity of
a featured set, which is a generalization of the group sparsity
idea [112]. Traffic data consist of several redundant features
that need to be removed. It is also important to have a good
assessment of features that are crucial to the performance of
D2ITS.

Another branch of sparse learning is compressive sensing
(CS) [113]-[115]. CS assumes that most data are sparse, which
can be sampled at a lower rate than the Shannon—-Nyquist sam-
pling rate.! If the coherence between the original measurement
and the proposed measurement is low, then it is possible to
consider a form of sparse learning with a high probability. In
particular, the proposed measurements can be nonadaptive and
thus be universal for all the data. A CS resource can be accessed

!To avoid the loss of information, sampling frequency should be at least two
times faster than the signal bandwidth [113].
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at http://dsp.rice.edu/cs. Because D?ITS heavily depends on
vision and multiple sensors, it would be interesting to study how
CS can be incorporated into D?ITS. In addition, CS techniques
can save costs incurred that result from installing expensive
devices with a high sampling rate for ITS.

4) Heterogeneous Learning: Multiple sensors for improv-
ing the performance of ITS would generate data from different
sources. As a result, data sets that are collected for transporta-
tion management, accident analysis, and traffic signal analysis
demonstrate a strong heterogeneous property, with remarkably
different features. Although heterogeneous data can uncover
different facets of tasks, how we can compare and fuse the data
is still a challenging task.

The problem can be considered with machine learning. There
are two major areas in machine learning to deal with heteroge-
neous learning issues. One method is to search a common space
for the heterogeneous data sets. For example, both canonical
correlation [116] and Procrustes analyses [117] are devoted to
aligning two heterogeneous data into a common space. These
two methods assume that transformation between two hetero-
geneous data sets is linear. One natural generalization from
linear to nonlinear transformation is to use a kernel trick that
implicitly maps the data into some higher dimensional inner
product space through the kernel canonical correlation analysis
[116]. The other method is to utilize transfer learning [118],
which aims at generalizing the regularity learned from one or
more data sets into other heterogeneous data sets. A survey of
transfer learning theories is given in [118].

B. Cost Issues

Although new technologies for ITS have rapidly been de-
veloped for the last two decades, cost is still a major concern
for deployment at the system level. In the vision-driven ITS,
for example, it is impractical and highly expensive to replace
all low-resolution video devices with high-resolution video
devices.

One way of addressing the cost issue is to enhance the
capability of data analysis by designing an effective and reliable
classifier for traffic object recognition [41] or to improve the
quality of image or video sequences [39], [119]. Cao et al
developed a strong classifier to detect pedestrian with only a
single optical camera [41]. Zhang et al. [39] utilized machine-
learning techniques to learn the high-resolution gait images of
the low-resolution counterparts from a collection of high/low-
resolution training gait image pairs. As a result, it is possible to
recognize pedestrians at a larger distance between pedestrians
and a camcorder without the need of purchasing high-resolution
camcorders.

The cost issue can also be resolved by identifying alter-
native devices and developing algorithms for improving their
performance. For example, low-cost DGPS receivers with a
positioning accuracy of approximate 2-3 m are regarded as
a major tool for next-generation automated vehicle location
systems [70]. However, it is still difficult to employ such
receivers to position the vehicle location, because base stations,
which are necessary for ensuring the performance of DGPS
receivers, are quite expensive. Therefore, one alternative way is
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to learn such accuracy from data collected from low-precision
GPS receivers. Zhang et al. employed a refined principal-curve
algorithm, which fits a curve to the data cloud, to learn the
performance of a high-precision GPS device from a collection
of low-precision data points [98]. Experiments indicate that
the maximum difference between the ground-truth and the
modified GPS data is reduced to 1.279 m, making it possible
to position moving vehicles at the lane level.

Another way is to make use of the existing instruments
or systems currently used for other applications [53], [63].
Claton et al. developed a low-cost lane departure warning
system by combining the well-built high-accuracy map and
automative-grade navigation system [53], obviating the need to
purchase high-cost DGPS receivers. Sohn and Hwang claimed
that, with the mobile cellular networks, vehicle passage times
between two points can be estimated based on a probe cell
phone. One advantage is that cellular networks have been
installed worldwide, even in regions where it is hard to install
transportation sensors. Thus, the proposed strategy can reduce
the cost of D2ITS to a certain extent [63].

C. Multimodal Evaluation Criteria

To assess the effectiveness of D?ITS, we need to develop
performance measures to evaluate each application. It may not
be appropriate to evaluate the performance of some applica-
tions in ITS with a single criterion. For example, in planning
our itinerary for a trip, we usually consider several factors,
including the total travel time, the number of transfers, and
the total walking and waiting times [120]. Furthermore, the
status of transportation systems may change over time. It is thus
necessary to construct multimodal evaluation criteria to opti-
mize the itinerary and make a compromise between different
requirements [120].

Several algorithms have been developed for the pedestrian
detection problem, adopting different criteria in dealing with
the problem. Hussein et al. evaluated algorithms with a set
of detection error tradeoff (DET) curves [121]. They claimed
that the detection performance is less influenced by the use of
different types of sensors, e.g., NIR and visible bands, but is
more tied to the window size that is chosen for modeling the
classifiers.

To better understand the performance of a typical red light
camera (RLC), Hobeika and Yaungyai [122] evaluated the
Fairfax County RLC Program. They concluded that the RLC
system has a positive effect on reducing the violation rate but
does not necessarily reduce accident rates. The performance of
the RLC system can be attributed to a large number of different
factors, including the amber time, average daily traffic, speed
limit, geometric configuration, and operation period [122].
Establishing multimodal evaluation criteria would help identify
the root cause of the problem and design a system that explicitly
addresses the key issues associated with the problem.

D. Other Issues

In the aforementioned sections, we consider the future direc-
tions for some of the core components of D2ITS. In the follow-

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 4, DECEMBER 2011

ing discussion, we consider some additional issues for future
research that are important for the development of D?ITS.

First, an ideal way for traffic object recognition is to install
as many sensors as possible to capture the detail from all
different angles. This approach, however, would generate much
redundant data and is extremely costly. In addition, the level
of detail is only relevant in the context of specific applications.
D?ITS should be scenario oriented. Broggi et al. [40] employed
a laser scanner to narrow the search scope and proposed to
detect and track appearing pedestrian for avoiding the potential
accidents. One advantage of this approach is that we can save
much cost for installing irrelative sensors and give more prompt
reflection to the (potential) accidents, which is a key factor
in ITS.

Second, the interaction between system suppliers (e.g., traffic
engineers) and systems users (e.g., travelers) is less considered
in traditional ITS. As the use of mobile phones with a variety of
sensors has rapidly increased in recent years, several new ways
of interactions have emerged, e.g., the people-participation or
the microblog way [123], [124]. Assume that each individual
phone is a “virtual lens.” A microblog can provide a high-
resolution view of the world by integrating several short audios,
embedded videos, or messages on the fly (i.e., multimedia
microblogs) recorded by several active mobile phone users
[123], [124]. People can share information about the event in
which they participate or the environment they are in with a
microblog. Naturally, sooner or later, such ways will influence
several aspects of ITS, e.g., traveler routes, and the visualization
of congestion. With the emergence of microblogs, it is not
surprising that D2ITS will become a people-centric ITS in the
years to come.

Visual analytics is also an approach that can be incor-
porated into D?ITS. Unlike the aforementioned visualization
techniques, it emphasizes the maximal utilization of the ca-
pability of human judgment to process complex information
received through visual channels, resulting in shortening the
response time to the emergency events, making more effective
decisions, and gaining better insight [125]. As shown in [125],
the approach, which involves the fusion of data supported by
a powerful visualization technique, can be utilized to integrate
traffic information into traffic control for improving the real-
time decision-making component in D?ITS.

Furthermore, a virtual environment plays an important role
in D2ITS because of its low cost in providing a safe simulation
for traffic simulators to simulate a variety of transportation
events. For example, Zhang et al. [126] collected data from
a driving simulator to simulate the driver’s behavior and the
vehicle response. To deal with critical scenarios that may appear
in the intersection of railroads and roadways, Huang et al. [127]
utilized deterministic and stochastic Petri nets to simulate a
parallel railroad-level crossing traffic control system. Recently,
some researchers have attempted to utilize the practical ITS
data to enhance the microsimulation of virtual environment,
e.g., mass evacuation [128]. The recent development in parallel
control and management for ITS [129], which explicitly incor-
porates engineering and social complexities into the modeling
and decision making of a large-scale system, has also provided
an ideal platform for deploying D?ITS.
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Finally, traffic objects represented in D?ITS are dynamic
in nature. It is possible to represent the degree of mobility
with an unprecedented quantity of data at a very low cost.
Therefore, a potential application of D?ITS is how we can
address mobility in an efficient way [130]. The advantages of
studying mobility are described as follows. First, it generalizes
the functions of D2ITS. For example, we analyze the mobility
of vehicles to design a better non first-in—first-out (FIFO) queue
strategy (i.e., imposing different speeds on different lanes) on
freeways. Experimentally, this strategy is proven to be more
effective than the FIFO queue strategy in alleviating conges-
tion [131]. Furthermore, the migrant behavior of travelers can
help transportation system managers make better plans on the

infrastructures and physical communication networks, e.g.,
roads and freeways. Second, the enforcement of mobility can
reveal some traffic-related phenomena, e.g., traffic accidents.
Third, it can provide novel services of great societal and eco-
nomic impact to citizens after extracting the knowledge from
mobility data. Note that most movement data are sensitive
to the privacy issue. For example, information about vehicle
trajectories obtained from a traveler’s GPS device can reveal
the traveler’s travel habits, home, and workplace. Therefore,
one potential direction in D?ITS is to make tradeoffs between
maximizing the use of individual vehicles data and minimizing
the invasion of privacy [130]. The potential research directions
in D?ITS are summarized in Fig. 5.
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E. Summary of the Papers Surveyed

Finally, we would like to provide a summary of the papers
cited in this paper. We classify the papers according to the
categories described in this paper and count the number of
papers in each category. The results are shown in Fig. 6.
The result shows the following three observations: 1) Vision-
and learning-driven ITS have received much attention from
researchers in the ITS community; 2) although the number
of papers related to learning issues is 23, only four of these
papers are closely related to the development of ITS, leaving
more room for further research for directly addressing issues in
D2ITS; and 3) several directions, e.g., multimodal evaluation
criteria, visual analytics, and microblogs, have yet to received
enough attention from ITS researchers.

IV. CONCLUSION

In this paper, we have discussed the development of D?ITS
and introduced several important components of D?ITS, includ-
ing vision-, multisource-, and learning-driven ITS. A roadmap
for future directions for the development and deployment
of D2ITS is described, emphasizing the privacy-preserving
people-centric scenario-oriented aspects of the system com-
ponents in D?ITS. Several D?ITS related issues have been
identified for further research, including the learning issues
for missing values, data cleansing, dimension reduction, sparse
learning, and heterogeneous learning. We also identified some
special issues that would affect the development of DZITS,
including the cost issues and multimodal evaluation criteria.
Overall, D?ITS is a very promising field that can provide more
functions and services to further improve our transportation
systems.
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