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Abstract—This paper presents the design of dual heuristic pro-
gramming (DHP) for the optimal coordination of ramp metering
in freeway systems. Specifically, we implement the DHP method
to solve both recurrent and nonrecurrent congestions with queu-
ing consideration. A coordinated neural network controller is
achieved by the DHP method with traffic models. Then, it is used
for verifications with different traffic scenarios. Simulation studies
performed on a hypothetical freeway indicate that the achieved
neural controller maintains good control performance when com-
pared with the classical ramp metering algorithm ALINEA. We
emphasize that these neural controllers can be developed offline by
using approximate traffic models. This offline mechanism avoids
the risks of instability that incur during continual online training.
We also discuss some real-time implementation issues.

Index Terms—Congestion, dual heuristic programming (DHP),
ramp metering, traffic control.

I. INTRODUCTION

W ITH THE rapid development of society, the number
of vehicles and the need for mobility have increased

beyond the current road capacity [2]. This has resulted in con-
gestions, consequent excessive delays, reduced pedestrian and
vehicle safety, and increased air pollution. A promising solution
to these problems exploits the existing infrastructure through
efficient dynamic traffic management and control. Specifically,
in freeway traffic systems, many measures could be adopted to
improve the service quality of freeways, such as ramp metering,
route guidance, reversible lanes, speed limits, and so on [1],
[2]. Among these measures, ramp metering is a well-known
method extensively used in present freeway traffic systems.
This method regulates the volume of traffic entering a given

Manuscript received December 27, 2006; revised July 7, 2008, April 12,
2009, June 22, 2010, and October 21, 2010; accepted February 21, 2011. Date
of publication March 24, 2011; date of current version December 5, 2011. This
work was supported in part by the National Natural Science Foundation of
China under Grant 60921061, Grant 60874043, Grant 61034002, and Grant
60874010. The Associate Editor for this paper was B. De Schutter.

D. Zhao and X. Bai are with the Key Laboratory of Complex Systems
and Intelligence Science, Institute of Automation, Chinese Academy
of Sciences, Beijing 100190, China (e-mail: dongbin.zhao@ia.ac.cn;
baixuerui05@gmail.com).

F. -Y. Wang is with the Key Laboratory of Complex Systems and Intelligence
Science, Chinese Academy of Sciences, Beijing 100190, China, and also with
the Systems and Industrial Engineering Department, University of Arizona,
Tucson, AZ 85721-0020 USA (e-mail: feiyue@gmail.com).

J. Xu is with the IBM China Development Lab, Xi’an 710075, China (e-mail:
xjxujing@cn.ibm.com).

W. Yu is with the Shanghai Key Laboratory of Trustworthy Com-
puting, East China Normal University, Shanghai 200062, China (e-mail:
wensheng.yu@ia.ac.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2011.2122257

freeway at its entry ramps so that the freeway can operate at
some desired level of service. When properly designed, ramp
metering can efficiently alleviate recurrent and nonrecurrent
congestions, which has been proven both by mathematically
sound arguments and in practice [3].

The various existing ramp control algorithms can generally
be classified into two categories: 1) fixed time metering and
2) traffic-responsive metering [34]. The latter has proved to
be more effective in handling freeway congestion than the
former. Typical algorithms of this kind include demand capac-
ity, occupancy control [4], and ALINEA [5], [44]. However,
these metering strategies are purely local; they are unable to
harness integrated consideration over any freeway as a whole.
This greatly limits their capability in combating congestions.
In response to such limitations, researchers proposed several
coordinated (optimal) ramp metering strategies while using var-
ious control techniques, such as Linear Quadratic Regulator [6],
[7], multilayer control [8], [9], model predictive control [10],
nonlinear optimal control [11], [12], reinforcement learning
[13], and neural control [14], [15].

In this paper, we will further develop existing rich strategies
on coordinated ramp metering control by implementing addi-
tional techniques. The technique we used is called approximate
dynamic programming (ADP). The concept of ADP was intro-
duced by Werbos in 1977 [15]–[23].

It is well known that traditional dynamic programming (DP)
is limited in applications due to its high computation and stor-
age complexity for high-order nonlinear systems; this problem
has been designated the curse of dimensionality [25]. However,
ADPs are able to artfully circumvent such difficulties by using
a critic network for estimating the performance index or its
derivatives in DP and an action network for generating optimal
actions. ADPs are able to combine the concepts of backpropa-
gation, reinforcement learning [25]–[27], and traditional DP.

The scheme of a general ADP is shown in Fig. 1. The
solid lines represent signal flow, whereas the dashed lines
represent pathways of backpropagation. The Action module is
the controller with the system state x(k) as the input, generating
control action on the Plant module. The Critic module is unique
in ADP, evaluating how Action works, with the system states
x(k) and the control action u(k) as the inputs. The output of
Critic J(k) is defined to estimate the cost-to-go R(k) in the
Bellman equation. A reward is given according to the state
x(k) together with the control action u(k). The upper right part
constitutes the learning scheme of Critic. The Critic training
error is defined as r(k) + γJ(k) − J(k − 1); therefore, as the
error approaches zero, it could be derived that J(k) = r(k +
1) + γr(k + 2)2 + γ2r(k + 3)3 + · · ·, which is the same form
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Fig. 1. Schematic of ADP methods.

as R(k). That is to say, the trained Critic could guide Action
toward the optimal one.

According to the objectives of the critic approximation, the
existing ADP can be categorized as follows: 1) heuristic DP
(HDP), which approximates the cost function; 2) dual HDP
(DHP), which directly approximates derivatives of the cost
function with respect to its state vector; and 3) globalized DHP
(GDHP), which approximates both the cost function and its
derivatives [19], [21]. Note that all critic approximations of
the foregoing three ADP designs use system states as their
exclusive inputs. Whereas, if the control actions were included
as additional inputs to the critic network, we will get the action-
dependent (AD) versions of HDP, DHP, and GDHP, which
are called ADHDP, AD DHP, and AD GDHP, respectively.
As indicated in Fig. 1, the critic network outputs performance
index J(k) in HDP and outputs the derivatives of J(k) with
respect to the state vector in DHP. Whether the dash dot line
exists determines whether it is an AD method.

ADP-based approaches have many promising benefits, such
as the optimality and feedback of DP, the numerical properties,
and the real-time performance capabilities of neural networks.
Another advantage is that these methods can handle systems
with time-delay elements. For such systems, supervised learn-
ing may not be a valid option because it utilizes instantaneous
errors between the desired output and the actual output. How-
ever, ADPs are effective under such conditions because they
allow the network to learn according to the cost-to-go of the
present error state. This capability of ADP makes it a preferable
method for solving many traffic control problems. In [29] and
[30], we have proposed an ADHDP controller for the local
ramp metering problem. The cost function in ADHDP is scalar,
whereas in DHP, the derivative of the cost function to the states
is a vector. Thus, the derivative may be able to provide more
information than the cost function in the training of critic and
action networks. Therefore, in this paper, we propose the use of
DHP designs to optimally coordinate metering of multiramps.

This paper is organized as follows: In Section II, we for-
mulate the traffic problem with macroscopic traffic models. In
Section III, we present the general DHP design for the traffic
problem. Then, in Section IV, we implement the DHP method
to resolve recurrent and nonrecurrent traffic congestions.

Fig. 2. Freeway section with on/off ramps.

Finally, the conclusion and topics for future research are stated
in Section V.

II. TRAFFIC PROBLEM FORMULATION

The macroscopic freeway traffic model used here was origi-
nally derived by Payne [31] and modified by Papageorgiou [1]
and Cremer and May [32].

Suppose a freeway lane is subdivided into N sections with
a length Li(i = 1, . . . , N), each having, at most, one on-ramp
and one off-ramp (as schematically shown in Fig. 2). The
evolution of freeway traffic flow can then be described by

ρi(k + 1) = ρi(k) +
T

Li
[qi−1(k) − qi(k) + ri(k) − si(k)]

(1)

qi(k) =αρi(k)vi(k) + (1 − α)ρi+1(k)vi+1(k) (2)

vi(k + 1) = vi(k) +
T

Δt
{Ve [ρi(k)] − vi(k)}

+
T

Li
vi(k) [vi−1(k) − vi(k)]

− μT

ΔtLi

ρi+1(k) − ρi(k)
ρi(k) + κ

(3)

where T is the sample time interval, 0 < α < 1 is the weighting
factor, Δt, μ, and κ are positive constants, ρi(k) is the traffic
density in section i at time kT , vi(k) is the average speed, qi(k)
is the traffic flow leaving section i and entering section i + 1,
ri(k) is the metering rate, si(k) is the off-ramp volume, and
Ve[ρi(k)] is the equilibrium mean speed modeled by

Ve [ρi(k)] = vf exp
(
− 1

am

[
ρi(k)
ρc

]am
)

(4)

where ρc is the critical traffic density. vf and am are constants
to be identified for real traffic flow.

The off-ramp volumes si(k) are related to the traffic volumes
qi−1(k) through the relationship si(k) = εiqi−1(k) [43], where
0 < εi < 1. Substituting this relationship and (2) into (1) yields

ρi(k + 1)

= ρi(k) +
T

Li
[α(1 − εi)ρi−1(k)vi−1(k)

+ (1 − 2α + εiα − εi)ρi(k)vi(k)

− (1 − α)ρi+1(k)vi+1(k) + ri(k)] . (5)
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Fig. 3. Freeway stretch.

To complete the model, the dynamics of the queue li on the
on-ramp of section i can be described as

li(k + 1) = li(k) + T [di(k) − ri(k)] (6)

where di(k) is the corresponding traffic demand.
The control variables ri(k) are subject to the following

constraint:

ri·min ·k ≤ ri(k) ≤ ri·max ·k (7)

where

ri·min ·k = max
{

0, di(k) − 1
T

[li·max − li(k)]
}

ri·max ·k = min
{

ri·max, di(k) +
1
T

li(k)
}

where li·max is the maximal queue length on the on-ramp of
section i, and ri·max is the maximum metering rates and fixed
parameters that are dependent on road characteristics.

Finally, we assume the following boundary conditions [32]
for the entrance and the exit:

ρ0(k) =
q0(k)/v1(k) − (1 − α)ρ1(k)

α
(8)

v0(k) = v1(k) (9)

ρN+1(k) = ρN (k) (10)

vN+1(k) = vN (k) (11)

where q0(k) is the traffic demand on the freeway.
Based on the traffic model previously formulated, various

optimization criterions can be specified and achieved by prop-
erly regulating the on-ramp metering rates. In Section IV,
a hypothetical freeway consisting of ten sections with four on-
ramps and four off-ramps, as shown in Fig. 3, is investigated.

III. DUAL HEUERISTIC PROGRAMMING

COORDINATED ALGORITHM

Consider the following discrete-time nonlinear (time-
varying) dynamical system:

x(k + 1) = F [x(k), u(k), k] , k = 0, 1, 2, . . . (12)

where x ∈ Rn represents the state vector, u ∈ Rm denotes the
control action, and F (·) is a general nonlinear function. The

Fig. 4. Adaptation in DHP. The solid lines represent signal flow, whereas
the dashed lines represent pathways of backpropagation. Components of the
vector λ(k + 1) are propagated back from outputs x(k + 1) of the model to
its inputs x(k) and u(k), yielding the third terms of (16) and the term of (21),
respectively. The latter is propagated back from outputs u(k) of the action
network to its inputs x(k), thus getting the fourth term of (16). Backpropagation
of the vector ∂U(k)/∂u(k) through the action network yields a vector with
components consisting of the second term of (16). Following (15) and (20), the
summators produce error vectors Ec(k) and Ea(k) that are used to adapt the
critic and action networks, respectively.

performance index (or cost-to-go function) associated with this
system is

J(k) =
∞∑

i=k

γi−kU(i) = U(k) + γJ(k + 1) (13)

where U(k) is called the primary cost function, and γ is the
discount factor with 0 < γ ≤ 1.

The curse of dimensionality often makes it untenable to run
true DP. Fortunately, ADPs provide us with feasible ways for
approximate optimal solutions by including a critic network
that approximates the cost function or its derivatives. HDP is the
simplest design of ADP. The critic network in HDP estimates
the function J in the Bellman equation of DP. However, it
has been criticized for its limitations when handling complex
problems [19]. DHP is one of the more complex forms of ADP.
The critic network in DHP estimates the derivatives of J with
respect to the state vector. Derivatives of the cost function are
more effective for the given sizes of the network and training
data. The output of DHP is a vector instead of a scalar, as in
the case of HDP. The derivatives provide additional information
indicating which action to change [19].

The schematic for DHP is described in Fig. 4. Clearly, there
exist three modules: 1) the model; 2) the action network; and
3) the critic network (two critic networks are the same when
shown in two consecutive moments in time). The model module
functions as a differentiable form of the controlled plant. It
can directly represent the analytical formulation of the plant
if such a formulation exists, or it can indirectly represent a
differentiable neural network trained to approximate the plant
if such a formulation does not exist. The model network can
be trained beforehand offline or trained parallel to the critic and
action networks. This module connects with two other modules,
expediting both the forward signal path and the backward error
signal path.
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A. Critic Network

The critic network is expected to output derivatives of the
cost function with respect to system states. For this purpose,
we try to minimize the following errors over time:

‖Ec‖ =
∑

k

ET
c (k)Ec(k) (14)

where

Ec(k) Δ= col {λs(k) − λo
s(k), s = 1, . . . , n} (15)

where λs(k) is the sth output of the critic network, which
approximates the derivative of the cost function with respect to
the state xs(k) (also called the co-state), and λo

s(k) is its desired
value. Applying (13), we get

λo
s(k) =

∂J(k)
∂xs(k)

=
∂

∂xs(k)
[U(k) + γJ(k + 1)]

=
∂U(k)
∂xs(k)

+
m∑

j=1

∂U(k)
∂uj(k)

∂uj(k)
∂xs(k)

+ γ
n∑

i=1

λi(k + 1)
∂xi(k + 1)

∂xs(k)

+ γ

n∑
i=1

m∑
j=1

λi(k + 1)
∂xi(k + 1)

∂uj(k)
∂uj(k)
∂xs(k)

(16)

where ∂U(k)/∂xs(k) and ∂U(k)/∂uj(k) are directly cal-
culated according to the specified primary cost function
U(k). ∂xi(k + 1)/∂xs(k) and ∂xi(k + 1)/∂uj(k) are de-
termined from the system model, and the partial derivative
∂uj(k)/∂xs(k) is calculated by backpropagation through the
action network. The word “dual” is used to describe a situation
where the desired derivatives are calculated using dual sub-
routines (states and co-states) to backpropagate the estimated
derivatives through the model and the action network, as shown
in Fig. 4, e.g.,

wc(k + 1) =wc(k) + Δwc(k) (17)

Δwc(k) = lc

[
− ∂Ec(k)

∂wc(k)

]
(18)

where lc is the learning rate with critic network. For the weights
updating in the critic network, the least mean square (LMS)
training algorithm can be applied.

B. Action Network

The action network is adapted in Fig. 4 by propagating
λ(k + 1) back through the model down to the action, and it
tries to minimize the following errors over time:

‖Ea‖ =
∑

k

ET
a (k)Ea(k) (19)

where

Ea(k) Δ= col

{
∂U(k)
∂uj(k)

+ γ
∂J(k + 1)

∂uj(k)
, j = 1, . . . ,m

}

(20)

where

∂J(k + 1)
∂uj(k)

=
n∑

i=1

λi(k + 1)
∂xi(k + 1)

∂uj(k)
(21)

wa(k + 1) =wa(k) + Δwa(k) (22)

Δwa(k) = la

[
− ∂Ea(k)

∂wa(k)

]
(23)

where la is the learning rate with the action network. For
the weights updating in the action network, the LMS training
algorithm can be applied.

There are many methods suggested for the training of critic
and action networks [19], [20]. One way is to split the process
into two separate training cycles: one cycle for the action and
one cycle for the critic. For example, we can train the critic
network while keeping the action network fixed, and then,
we train the action network while keeping the critic network
fixed. Such an alternating training process is repeated until an
acceptable level of system performance is achieved. Another
way is to conduct the training of the two networks concurrently
at each control step. We adopt the latter in this paper, and this
training procedure is described as follows:

Concurrent training of the action and critic networks:
1) k = 1. Randomly initialize traffic densities, average

speeds, and traffic demands according to the model pre-
viously described.

2) Shift and scale x(k), and apply it to the action network,
obtaining u(k).

3) Scale u(k), and apply it to the plant, obtaining x(k + 1).
4) If the traffic densities ρi(k + 1) lie outside of the speci-

fied range, e.g., [10, 180], or the queue lengths li(k + 1)
are beyond the specified range of [0, li·max], or the meter-
ing rates ri(k) are beyond the specified range defined by
(7), then go to 1 to start a new training epoch.

5) Shift and scale x(k + 1), and apply it to the critic net-
work, obtaining λ(k + 1).

6) Shift and scale x(k), and apply it to the critic network,
obtaining λ(k).

7) Calculate and execute weights updating for the action
network.

8) Calculate and execute weights updating for the critic
network.

9) If k < epoch, then increment k and go to 2).
10) Output the trained parameters.

Finally, we note that the critic and action networks do not
require exclusively neural network implementations, and any
differentiable structure (such as fuzzy model) suffices as the
building block.

IV. SIMULATION

Using the foregoing traffic model, we will demonstrate the
use of DHP for the coordinated control of ramp metering in
recurrent and nonrecurrent congestions. Recurrent congestion
reflects the day-to-day buildup of traffic on urban freeway and
arterials, which are, notably, during the morning and afternoon
commuter peak periods. Nonrecurrent congestion reflects the
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delays caused by accidents, truck spills, inclement weather,
etc. [46].

The simulation parameters of the traffic model are chosen
from the literature [45] for comparison. The segment length
is 500 m. We assume that the free flow speed will be smaller
than 120 km/h. The simulation step T is equal to 10 s. Then,
for traffic models, relative parameters are specified as fol-
lows: T = 10 s, Li = 0.5 km, α = 0.9, εi = 0.15, Δt = 18 s,
μ = 21.6 km2/h, κ = 40 veh/km, vf = 110 km/h, ρjam =
180 veh/km, ρc = 35 veh/km, and am = 1.636. For the sake
of convenience, each ramp metering rate is confined within the
range of [0, 1000] veh/h. The capacity of the simulated freeway
stretch is 8000 veh/h for four lanes.

A. ALINEA

ALINEA [5], [44] is a linearized feedback control algo-
rithm that adjusts the metering rate to keep the occupancy
downstream of on-ramps at a desired level, which is adopted
here for comparison. ALINEA maintains the desired level of
occupancy by using feedback regulation. A popular measure to
solve the queuing problem is to place a detector at the on-ramp
and release ramp metering when the occupancy exceeds the
maximal allowed queue length. Therefore, the ALINEA closed-
loop ramp metering strategy considering queue length is

{
r(k) = r(k − 1) − Y [ρ(k) − ρd] , if l ≤ lmax

r(k) = d(k), if l > lmax
(24)

where Y is a positive parameter (specified as 50 km/h), and ρd

is the desired traffic density (specified as 34 veh/km, which is a
little lower than the critical density).

B. DHP for Nonrecurrent Congestion

1) DHP Training: We first intend to resolve the nonrecur-
rent traffic congestion with queuing consideration with DHP
controller. It has been argued that the control method, such
as ALINEA and the proposed control algorithm, may result in
long queues on metered ramps because these control methods
only consider the mainstream traffic on the freeway. One way
to resolve this problem is to increase the control value with
a higher metering rate until ramp queues are reduced below
certain thresholds. A better way is to consider queuing with
more explicit terms in control algorithms. Therefore, we define
the primary cost function in system performance (13) as

U(k) = c1

10∑
i=1

Tρi(k)L + c2

4∑
j=1

l2j (k) (25)

where c1 and c2 are positive weighting parameters set as
c1/c2 = 36 000. The first term in (25) is used to minimize the
total time spent (TTS) on freeways, and the second term is
used to diminish queues down to comparable length. With the
queuing consideration, the queue at an on-ramp cannot grow
larger than the physically available space, which is added as a
hard constraint to the optimization by limiting the queue lengths
at the on-ramps to li·max = 200 vehicles or less.

Fig. 5. Typical scheme of freeway demand for the training.

According to the primary cost function (25), the system state

vector is chosen as x(k) Δ= col{ρi(k), lj(k), i = 1, . . . , 10, j =
1, 2, 3, 4}. Corresponding to each system state vector, the critic
network is structured as ten input neurons, 15 hidden neurons
(determined experimentally) with logsig(·) activation func-
tions, and ten output neurons with linear activation functions.
As for the action network, its inputs are the same as those of
the critic network, and its outputs (properly scaled) end up as
ramp metering rates. Thus, the action network consists of ten
input neurons, 15 hidden neurons (determined experimentally)
with logsig(·) activation functions, and four output neurons
with logsig(·) activation functions. The critic and action net-
works are trained with learning rates lc = 0.1 and la = 0.2,
respectively.

We consider one epoch to be 3600 control (or training) steps.
During each training epoch, we set the freeway traffic demand
q0(k) in uniform random from the interval [5500, 6000] veh/h,
and each value lasts for 50 time steps. A typical scheme of traf-
fic demand for training epochs is shown in Fig. 5, which seems
as a superimposed standard deviation noise. Such a scheme is
motivated by the desire to have excitations across a range of
possible system states. Moreover, the stochastic variation of
traffic demands appears to have an annealing effect, reducing
the likelihood of getting stuck in some local optimum. Of
course, these benefits mean that more training effort is needed.
We uniformly initialize the queue length using values within
the range of [20, 60] veh and using traffic densities within the
range of [20, 30] veh/km. For traffic demands on on-ramps
presented in sections 2, 4, 6, and 8, we use constant values
of 500 veh/h during training for each on-ramp, respectively.
The total flows of the mainstream, on-ramps, and off-ramps
are below the capacity. We use the aforementioned concurrent
strategy to train critic and action networks. We expect that the
learned feedback mechanism of our proposed neural controller
is capable of handling changes in traffic demand.

2) DHP Testing: After training 3600 epochs, we obtain the
neural controller for testing. Then, we start to test the capability
of the DHP controller in combating congestions on the freeway.
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TABLE I
INITIAL VALUES USED FOR THE SECOND TEST

Fig. 6. Freeway demand for the testing.

Fig. 7. Traffic density of ALINEA in nonrecurrent congestion.

Given a jam situation as in sections 8 and 9. The initial
congestion is specified as shown in Table I, and the initial
queues are 30 vehicles in length. The traffic demands for each
on-ramp are 850, 650, 350, and 550 veh/h, respectively. The
traffic demand in the mainstream is shown in Fig. 6.

Due to the high traffic density on the freeway and the high on-
ramp demands, the traffic density grows rapidly. It can clearly
be seen from Fig. 7 that the ALINEA method leads to the
jammed traffic. Because the densities are far more than the
critical density, only the first 20 steps are shown in Fig. 7.
The traffic breakdown is due to the limitation of the ALINEA
ramp metering algorithm in regulating the traffic flow and the
severe nonrecurrent congestion.

However, since the use of a more effective learning mecha-
nism and a reasonable performance index function, the DHP
controller handles this congestion quite efficiently by imple-

Fig. 8. Traffic density of DHP in nonrecurrent congestion.

Fig. 9. Queue length under DHP control in nonrecurrent congestion.

menting coordinated ramp metering, as shown in Fig. 8. At the
beginning, the congestion starts to spread to the upper sections
in this freeway, and the queue length starts to increase. By
diverting the traffic flow in the congested section and limiting
the inflow of vehicles onto the freeway, after a couple of time
steps, the density gradually decreases to desired density, and the
queue length gradually approaches to zero. The congestion that
occurs in sections 8 and 9 under ALINEA does not appear again
under the DHP controller. Fig. 9 depicts the queue evolution
profile. It is clear that the congestion is successfully resolved
and the queues length are efficiently regulated under DHP
control.

C. DHP for Recurrent Congestion

Next, we intend to test the performance of resolving the
recurrent traffic congestion with the previously obtained DHP
controller.

A simulation is conducted with the traffic model in the
morning rush hour. The rush hour ranges from 5 A.M. to 10 A.M.
As a result, there are Nsim = 1800 simulation steps. The initial
states are specified as shown in Table II. The evolution of traffic
flow at the entrance of the freeway is presented in Fig. 10. The
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TABLE II
INITIAL VALUES IN THE MORNING RUSH-HOUR

RECURRENT CONGESTION

Fig. 10. Traffic flow during the morning rush-hour recurrent congestion.

traffic demands are constant at 850, 650, 350, and 550 veh/h for
each on-ramp, respectively.

First, the model is simulated without any control to have a
reference value of the performance measure, which can sub-
sequently be compared with the performance values resulting
from simulations with ALINEA and DHP control. Fig. 11
shows the simulation results of the traffic density evolution
under no control. The traffic density in the first section varies
with the input traffic demand. It indicates the occurrence of
congestion in the first section of the freeway. For example,
in section 1, the traffic density grows larger than the critical
density during rush hour. Then, the recurrent congestion sets
in. We apply ALINEA and DHP methods to resolve such
problems. The simulation results in Figs. 12 and 13 show that
both ALINEA and DHP can efficiently alleviate the congestion.
Note that their vertical axis limits are different from the no
control case. However, Figs. 14 and 15 show that ALINEA-
based control results in large queue length. The coordinated
ramp metering method developed with DHP can handle both
the congestion and queue length well.

The TTS by all the vehicles is also defined for explicit
comparison as

TTS =
Nsim−1∑

k=0

⎡
⎣ 10∑

i=1

ρi(k)L +
4∑

j=1

lj(k)

⎤
⎦ T (26)

where Nsim is the number of simulation steps in the simulated
period. TTS consists of the TTS by all the vehicles on the
freeway sections [the first term in (26)] plus the TTS by the
vehicles in the queues at the on-ramps [the second term in (26)].

The TTS of each ramp metering method is summarized
in Table III. The lower the TTS during the simulated 5-h

Fig. 11. Traffic density without control during the morning rush-hour recur-
rent congestion.

Fig. 12. Traffic density under ALINEA control during the morning rush-hour
recurrent congestion.

Fig. 13. Traffic density profile under DHP control during the morning rush-
hour recurrent congestion.

period, the higher the performance of the freeway system. The
performance improves by 7.4% and 12.3% with ALINEA and
DHP method, respectively, compared with the no-control case.
It can be seen that the DHP method manages to comply with
the queue constraints imposed and at the same time regulate
the TTS on the freeway. The coordination of the metering
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Fig. 14. Queue length under ALINEA control during the morning rush-hour
recurrent congestion.

Fig. 15. Queue length profile under DHP control during the morning rush-
hour recurrent congestion.

TABLE III
OVERVIEW OF THE TTS ON THE FREEWAY FOR DIFFERENT RAMP

METERING METHODS IN THE MORNING RUSH-HOUR

RECURRENT CONGESTION

rates of the different on-ramps assures that the control actions
taken at different locations in the network reinforce rather than
counteract each other.

D. Real-Time Implementation Issues

The simulation computer is with Pentium-4 2.4-GHz CPU
and 1-GB memory. The average learning time is 50 s. We use
offline training in this paper. If the freeway size increases, then
the input to the neural network increases, which may result in
larger computational burden. However, it is still acceptable for
offline training process.

For control systems with shorter time constants, the com-
putation time could be problematic for a neural network with
many weight requirements for continual online adaptation. In
addition, frequent online training can also lead to instability.
Therefore, we adopt the offline training mechanism in this
paper. The convergence guarantee of the critic and the action
networks during offline training is described in [35], [36], and
[40]–[42].

During real-time implementation, our approach can be de-
ployed according to the local simple and remote complex
(LSRC) design principle [37]. For example, the offline training
is originally conducted in the remote traffic control center.
Once trained, the neural controller is sent back into the local
field for metering control with fixed weight parameters. With
the information collected during online control, the neural
controller may then be retrained in the control center. Using this
mechanism, we can avoid the risk of instability and guarantee
real-time demands. We note that the use of approximate models
during DHP design makes the LSRC design principle more
practical.

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we have proposed a design of DHP to solve
the traffic congestion problems. Using a hypothetical free-
way stretch, we resolve the nonrecurrent and recurrent traf-
fic congestions with queuing consideration. Simulation results
indicate that the DHP controllers are effective against traffic
congestions on the freeway.

Although DHP has proved effective in combating congestion
problems, there are still many other problems to be solved,
which may be taken as future research directions, as follows:

1) further evaluation of the DHP metering controllers using
microscopic traffic simulators (such as TSIS, Paramics,
etc.);

2) further investigation of the effectiveness of DHP by
including other traffic control measures (such as speed
limits, route guidance, reversible lanes, dynamic lane
assignment, etc.) for wider traffic networks;

3) real-time implementation of the DHP controller on a real
freeway stretch according to the LSRC principle.
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