
Discrete Event Dyn Syst
DOI 10.1007/s10626-009-0087-2

Quantifying Heuristics in the Ordinal
Optimization Framework

Zhen Shen · Qian-Chuan Zhao · Qing-Shan Jia

Received: 17 March 2008 / Accepted: 26 October 2009
© Springer Science + Business Media, LLC 2009

Abstract Finding the optimal design for a discrete event dynamic system (DEDS)
is in general difficult due to the large search space and the simulation-based perfor-
mance evaluation. Various heuristics have been developed to find good designs. An
important question is how to quantify the goodness of the heuristic designs. Inspired
by the Ordinal Optimization, which has become an important tool for optimizing
DEDS, we provide a method which can quantify the goodness of the design. By
comparing with a set of designs that are uniformly sampled, we measure the ordinal
performances of heuristic designs, i.e., we quantify the ranks of all (or some of) the
heuristic designs among all the designs in the entire search space. The mathematical
tool we use is the Hypothesis Testing, and the probability of making Type II error in
the quantification is controlled to be under a very low level. The method can be used
both when the performances of the designs can be accurately evaluated and when
such performances are estimated by a crude but computationally easy model. The
method can quantify both heuristics that output a single design and that output a set
of designs. The method is demonstrated through numerical examples.

This work was supported by NSFC under Grants (60574067, 60704008, 60721003, 60736027, and
90924001), the Specialized Research Fund for the Doctoral Program of Higher Education
(20070003110), the Program of Introducing Talents of Discipline to Universities (National 111
International Collaboration Project, B06002) and the high-level graduate student scholarship
2007 of China Scholarship Council. Part of the content of the paper was developed by Zhen
Shen when he visited Boston University. Zhen Shen thanks Boston University for the
hospitality. And, the content of this paper has been included in Zhen Shen’s Ph.D. thesis
at Tsinghua University.

Z. Shen (B)
Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
e-mail: zhenshenthu@gmail.com

Z. Shen · Q.-C. Zhao · Q.-S. Jia
Center for Intelligent and Networked Systems (CFINS), Department of Automation, TNLIST,
Tsinghua University, Beijing, 100084, China

Discrete Event Dyn Syst

Keywords Discrete Event Dynamic Systems · Ordinal Optimization ·
Heuristic · Hypothesis Testing

Key notations

Symbol Meaning
� The search space
θ An element of the search space
N Set of designs uniformly sampled from �

θH A heuristic design
θn% The design ranking exactly at top n% of �

θN,i The i-th design in N
J(·) The true performance of a design
Ĵ(·) Observed performance of a design
Ĵ(θN,[t]) The t-th order statistic of Ĵ(θN,i), i = 1, 2, . . . , |N|
β0 Bounding level for the probability of making the Type II error
R�(·) The rank of a design in �

1 Introduction

Nowadays we have many complex man-made systems which are not easily described
by differential equations. Examples of such systems include production and assembly
lines, traffic systems, computer/communication networks, etc. These systems are
called as Discrete Event Dynamic Systems (DEDS’s). The evolution of DEDS
depends on the complex interactions of timing of various discrete events as well
as man-made rules of operation (Ho 1989). These systems are complex because
they usually can be described only by computer simulation models.These systems
are difficult to describe and optimize due to the uncertainty and the curse of
dimensionality. In general, the optimization of DEDS can be modeled as follows,

min
θ∈�

J(θ)=E [L(x(t; θ, ξ))] , (1)

where θ stands for the various system parameters that may subject to design choices,
x(t; θ, ξ) is the sample path obtained in simulation when the parameter is θ and the
randomness in the simulation is ξ , L is the performance function defined on sample
path and � is the search space for the optimization variable θ . Usually � is a very
large but finite set.

Heuristics are usually used to attack such analytically intractable problems.
Heuristic, also called rule of thumb, refers to the method reasonably designed based
on the human knowledge about the problem. Examples of the heuristic methods
include the nearest neighbor method for Traveling Salesman Problem (TSP), Earliest
Due Date first (EDD), Shortest Processing Time first (SPT), Shortest Setup Time
first (SST) for Job Shop Problem (JSP) (Pinedo 2002), just to name a few. We also
regard methods such as Genetic Algorithms (GA) (Holland 1975), Ant Colony Opti-
mization (ACO) (Dorigo and Gambardella 1999; Dorigo et al. 1999), Particle Swarm
Intelligence (PSO) (Kennedy and Eberhart 1995) as heuristics. All heuristic methods
aim at finding good enough solutions. This is the main idea of soft computing. The

Discrete Event Dyn Syst

presence of problem information, expert knowledge, and human experience make
soft computing easily accepted and applied to many practical problems. However,
a common and natural question about all soft computing tools is: are designs found
by the tool good enough? In this paper, we develop a systematic way to quantify
the global ordinal performances of the designs found by the soft computing tools,
including heuristics. In this paper, actually we do not care about the mechanism of
the heuristics. The designs can be obtained using rules, search methods, algorithms,
or the combination of several methods. As long as the problem can be modeled
as Eq. 1, and the method outputs a design θ or a set of designs from the search
space �, in principle we can apply the quantification method in this paper. We
use the word “heuristics” as a representative of the large set of methods that can
output designs from the search space. The basic idea is to compare the uniformly
sampled designs of the search space with the heuristic design(s) in order to obtain
the ordinal performance(s) of the heuristic design(s). This idea is inspired by the
Ordinal Optimization (OO). OO takes out uniform samples from the search space to
compose the sample space N. Then the samples are evaluated by a crude model and
the top |S| ones are selected to compose the selected set S, where |S| represents the
size of the set S. Here by “crude model” we refer to the model that is computationally
easy but can give a performance estimate of a design. For example, we use a short
simulation or a simulation with only a few replications. Different from many other
soft computing tools, OO can guarantee that S contains top n% (say 5%) designs of
the search space with a high probability (say, no less than 95%). So, the goodness
of the results of OO is quantified. In this paper, we quantify the performances of
heuristic designs as follows. We compare the heuristic designs with the designs that
are uniformly sampled. Then we use Hypothesis Testing (HT) method to test how
many of the heuristic designs should be regarded as good enough. The probability of
making the Type II error should be less than a given level (e.g., 0.05).

It should be noted that OO has been used together with other soft computing
methods such as Simulated Annealing (SA) (Yen et al. 2004), Tabu Search (TS)
(Mori and Tani 2003), and Nested Partitions (NP) (Shi and Ólafsson 2000). They do
not provide a method to quantify the performances of heuristic designs in general.
In this paper, we provide a method to quantify this performance in general. Our
work in this paper is also different from OO. OO is an optimization technique.
Given k, OO finds a set S that contains at least k good enough designs with a high
probability. In this paper, for the given heuristic designs, our method quantifies the
ordinal performances of these designs, with a small probability to make mistakes.

The rest of this paper is organized as follows. In Section 2 we briefly review
OO and the hypothesis testing method. In Section 3 we formulate our problem in
a Hypothesis Testing framework. In Section 4 we present the quantification method.
In Section 5 we give two numerical examples. In Section 6 we conclude the paper.

2 Preliminary

2.1 Brief overview of Ordinal Optimization

Since the invention of OO in 1992 (Ho et al. 1992), there have been hundreds of
papers related to OO (Shen et al. 2005). There are two tenets in OO. The first tenet

Discrete Event Dyn Syst

is ordinal comparison. Instead of using the accurate performances which presumably
take a long time to obtain if the simulation model is used, one can use the relative
order of noisy performance estimates as a basis for comparing and choosing designs.
“Order” is easier to ascertain than “value”. The second tenet is goal softening.
Instead of only caring about the single optimal design in the extremely large design
space, which is improbable in the presence of large observation noise, one can pick
a subset in which some “good enough” designs are guaranteed to be contained with
a large probability. In OO, the top n% (e.g., 5%) of the search space � is defined
as the good enough set of �, and denoted as G�. OO is a two-stage optimization
technique. At the first stage, usually OO uniformly samples a given number (say,
1,000) of designs from the search space � to compose a sample space N. The top n%
of N is defined as the good enough set of N and denoted as GN . At the second stage,
OO uses a crude model to estimate the performances of the designs in N and selects
the observed top |S| ones to compose the selected set S. OO has the virtue that it can
guarantee that S contains at least k (called the alignment level in the jargon of OO)
good enough designs of N with a high probability (say, no less than 0.95). In this way,
OO obtains designs with quantifiable performances. In Lin and Ho (2002) and Shen
et al. (2009a), it is justified that S found by OO can contain k∗ (k∗ ≤ k) good enough
designs with a high probability, with k∗ properly chosen. So, the global goodness,
i.e., the goodness of S in the search space is also quantified. OO has two stages, at
the first stage, OO samples from � into N by the uniform sampling. At the second
stage, OO obtains the selected set S from N. The first stage is easy to understand.
Now we introduce how OO does in the second stage. For any design θ of �, the true
performance is denoted by J(θ). By ordering J(θ), a non-decreasing curve can be
obtained. The x-coordinate is the index of θ , and the y-coordinate is J(θ). This curve
is named as Ordered Performance Curve (OPC) and can reflect the internal relative
relations among the designs. The OPC can be sorted into 5 types:

1. lots of good designs, Flat type
2. lots of good and lots of bad designs, but few intermediate ones, U-Shaped type
3. equally distributed good, bad and intermediate designs, Neutral type
4. lots of intermediate designs, but few good and bad designs, Bell type
5. lots of bad designs, Steep type

Categories 1 and 2 “represent problems where a good design will be relatively easy
to find”, and category 5 and to a lesser extent category 4 “have a paucity of good
designs”, as commented in Ho (1999). If the slope in category 5 becomes very sharp,
it becomes the problem of “needle in the haystack”, which generally is difficult for
any optimization technique. In Ho et al. (2007), the authors made comments that,
“despite its (OO’s) many successes, OO is not at all useful for the needle-in-the-
haystack type of problems where nothing but the best will do”. But, there are indeed
many successful stories of OO. Please see Shen et al. (2005) for the references.

If we normalize the OPC into [0, 1] × [0, 1] square, we obtain the standardized
OPC. The standardized OPC can be specified by an incomplete beta function, with
two shape parameters α and β (Lau and Ho 1997). This OPC is the OPC of the whole
search space and is denotes as OPC�. Similarly, we have the OPC of the sample space
N. It is denoted as OPCN .

There are many methods to obtain the selected set S (Ho et al. 2007). Two are
popular. One is Blind Picking (BP), i.e., S is uniformly sampled from N. Another is

Discrete Event Dyn Syst

Horse Racing. It is assumed that there is a crude but computationally easy model
to evaluate the designs and then the computation burden shall be reduced. For
example, we can use a short simulation or a simulation with only a few replications
as a crude model. For design θ , the estimated performance (also called “observed
performance”) is denoted as Ĵ(θ). The difference between Ĵ(θ) and J(θ) is noise(or
error), i.e.,

Ĵ(θ) = J(θ) + W, θ ∈ N. (2)

The noise W in Eq. 2 consists of both model noise and observation noise. Usually
the noise is divided into three levels, i.e., the small noise, the medium noise and the
large noise. The level could be determined by comparing the standard deviation of
the noise with the value range of J(θ). We can order the designs in N according to the
observed performance Ĵ(θ) from small to large. We can select out the best observed
designs and then use them to constitute S. This is what “racing” in “Horse Racing”
means. To measure the goodness of the selected set, the Alignment Probability (AP)
is used,

PA ≡ P{|GN ∩ S| ≥ k}. (3)

PA describes the probability that the number of truly (not estimated or observed)
good enough designs in S is no smaller than k. k is called the alignment level.

The virtue of OO is that given the good enough set GN , the size of sample N
(usually 1,000), the noise level, the type of OPCN , the selection rule, the alignment
level k and the required alignment probability (e.g., > 0.95), we can know how large
a selected set S should be. AP defined in Eq. 3 is also called the Universal Alignment
Probability (UAP), since no specific knowledge about the problem is needed. This
above work was mainly reported in (Lau and Ho 1997). Further, in the paper Lin and
Ho (2002), the following definition is given,

P∗
A ≡ P{|G� ∩ S| ≥ k∗}. (4)

This is the alignment probability between G� and S, and k∗ is the alignment level
between G� and S. What we are actually concerned with is P∗

A, not PA. In Lin and
Ho (2002), it was shown that, when we have properly set N (usually 1,000) and n%
(usually 5%), by properly selecting k∗, which should be equal to or slightly smaller
than k, we can have a P∗

A very close to PA. Thus, the good enough designs of N
are probably the good enough designs of �, i.e., N can represent �. In Shen et al.
(2009a) we provide a new proof to show that N can represent �.

In the standard OO, every design in the sample space N is allocated with the
same computation budget to estimate the performance. In the papers (Chen et al.
2000a, b) the authors give an improving method called Optimal Computing Budget
Allocation (OCBA). Concisely speaking, the improvement from OO to OCBA is
that “instead of equally simulating all designs”, OCBA determines “the best numbers
of simulation samples for each designs” (Chen et al. 2000a). The authors gave one
possible definition of the probability of correct selection, P{CS}, as the probability
that the observed best design is actually the best designs. It is a kind of alignment
probability. And, to compute easily and quickly, the authors give the Approximate
Probability of Correct Selection (APCS), which is a lower bound of P{CS}. Based
on the above concepts, the authors provide the OCBA algorithm to allocate the
computation budgets and show its advantage by numerical tests. And, in Chen et al.

Discrete Event Dyn Syst

(1999) the authors show how to use OCBA to compare different settings for a
heuristic and then select the most promising ones. Different from OCBA which is
based on the approximation APCS, we will use an alternative framework to quantify
heuristic designs and hope new insights can be obtained.

2.2 Brief overview of Hypothesis Testing

Usually we are interested in whether a statement is correct (for example, the selected
set contains at least k good enough designs) based on noised observation. We set
the statement as the null hypothesis H0. And usually, the opposite of H0 is set as
H1 which is called the alternative hypothesis. The test is formed as a statement
D0 constructed based on observation which contains noises. The negation of D0

is defined as D1. Whenever we observe that D0 is true, we make the judgment to
accept H0 (reject H1 at the same time). Whenever we observe D1 is true, we accept
H1 (reject H0 at the same time). Thus, given the observation, four possibilities exist,

(a) H0 is true, and is judged to be true;
(b) H0 is true, but is judged to be false;
(c) H1 is true, but is judged to be false;
(d) H1 is true, and is judged to be true.

(a) and (d) are correct judgments while (b) and (c) are wrong. So, there are two types
of errors,

Type I: H0 is true, but is judged to be false, P{D1|H0}
Type II: H1 is true, but is judged to be false, P{D0|H1}
Type I error means that H0 is true but we make the decision that we accept H1.
P{D1|H0} is a conditional probability meaning that H0 is true but we judge to accept
H1. Type II error means that H1 is true but we make the decision to accept H0. One
minus type II error probability is called the power of the test. As by the hypothesis
testing method usually we cannot limit the probabilities of the two types of errors at
the same time.1

3 Problem formulation

In order to quantify the ordinal quality of heuristics, we introduce a unified frame-
work based on the two stages of OO. Without loss of generality, we view a heuristic
H as a sampling mechanism having two stages. The first stage is to sample a subset
NH from the search space �, the second stage is to select and output a set of designs
SH from NH . SH will also be called the selected set. We can also define the alignment
probability (AP)

P∗
A,H ≡ P{|G� ∩ SH| ≥ k} (5)

for the heuristic H, where k is still called the alignment level. It is clear that the
standard OO can be viewed as a special heuristic where the selected set S is generated

1Sequential Probability Ratio Test (SPRT) can limit the two types of errors at the same time. This
can be a future topic following the work in this paper.

Discrete Event Dyn Syst

by BP or HR from a uniformly sampled subset N of �. The introduction to BP and
HR has been given in Section 2.1. Our description of heuristic is quite general. It
allows the sophisticated process in each of the two stages. For example, the way to
generate NH could be an iterative process. In the Genetic Algorithms, NH can be
the union of populations of all generations. Similarly, the selected set SH could also
be chosen based on a set of complicated rules.

The quantification problem for the alignment probability P∗
A,H defined in Eq. 5

can then be formally stated as the problem to build the test D0 and its negation D1

such that for H0 : |SH ∩ G�| ≥ k and H1 : |SH ∩ G�| < k, the type II error satisfies

P{D0|H1} ≤ β0

where we choose β0 = 0.05. We choose to limit Type II error since it is more severe
than Type I error. When Type I error happens, H0 is true but is judged to be
false, that is, we underestimate the heuristic. However, when Type II error happens,
H1 is true but is judged to be false, i.e., we wrongly accept H0, which overrates
the heuristic. Thus, Type II error is more severe than Type I error. We are more
concerned with the Type II error.

4 Quantifying heuristics by Hypothesis Testing

A heuristic can output one design or multiple designs. This depends on how the
heuristic is designed. When evaluating a design, there may be noise or there may not
be. This depends on the problem and the crude model. Thus we have 2 × 2 = 4 cases
to consider: “No noise, one heuristic design”, “no noise, multiple heuristic designs”,
“noise existing, one heuristic design” and “noise existing, multiple heuristic designs”.
We will analyze them one by one.

4.1 When there is no noise

4.1.1 No noise, one heuristic design

Firstly, we consider the easiest case, that is, there is no noise and the heuristic outputs
only one design. We denote the heuristic design as θH . And its rank in � is denoted
by R�(θH). The good enough set G� of � is defined as the top n% (e.g., 5%) of
�. We want to know whether θH is a good enough design. In this case, we have
NH = SH = {θH}.

Since there is only one output, the alignment level k can only be 0 or 1. When
k = 0, it is trivial. We are concerned with k = 1. We have

P∗
A,H ≡ P{|G� ∩ SH| ≥ 1} = P{R�(θH) < n% × |�|}. (6)

Here we use “<” not “≤” which indicates that we choose top [0, n%) of � as the
definition for the good enough set.

The null hypothesis and the alternative hypothesis are

H0 : R�(θH) < n% × |�|; H1 : R�(θH) ≥ n% × |�|. (7)

Our idea is to compare the single design θH with the set N which is obtained by
uniform sampling from � (as the first stage of OO). We denote the designs in N by

Discrete Event Dyn Syst

θN,1 to θN,|N| according to an arbitrary sequence. We use θN,[i] to denote the i-th best
design of the |N| designs, i.e., the design with the i-th smallest performance. Then
J(θN,[i]) is the i-th order statistic.

Comparing θH with the |N| designs, we obtain the rank of θH in the |N|+1 designs
{θH} ∪ N. We take this rank as the observation, based on which we make judgments.
The test D0 and its negation D1 are defined as

D0 : J(θH) < J(θN,[t]); D1 : J(θH) ≥ J(θN,[t]), (8)

where t is a threshold to be determined based on the requirement on the probability
of making the Type II error,

P{D0|H1} = P
{

J(θH) < J(θN,[t])|R�(θH) ≥ n% × |�|} ≤ β0. (9)

We have

P
{

J(θH)< J(θN,[t])|R�(θH)≥n%×|�|}≤ P
{

J(θH)< J(θN,[t])|R�(θH)=n%×|�|}.
(10)

This is because when R�(θH) = n% × |�|, the Type II error probability reaches the
largest. Intuitively, the design with better rank in � has higher probability to be
observed better when comparing with designs in N. Concretely, for any instance of
N, when R�(θH) = n% × |�|, compared with the case the rank of θH worse than
top n%, θH has better (smaller) or at least the same performance, and then is easier
to be observed better than the t-th best design in N. To control the Type II error
probability no larger than β0, we need and only need to control the largest Type II
error probability no larger than β0. To find t, we express the conditional probability
in Eq. 10 as follows.

P
{

J(θH) < J(θN,[t]) |R�(θH) = n% × |�|}

∼=
∑t−1

i=0

[|N|
j

](
n%|�|

|�|
) j(|�| − n%|�|

|�|
)|N|− j

=
∑t−1

i=0

[|N|
j

]
(n%) j (1 − n%)|N|− j . (11)

Here there is an approximation “∼=”. We will give a detailed explanation about the
approximation. θH ranks at top n% × |�| of the search space. But, there can be
more than one designs having the same performance with θH , we assume that the
designs ranking from n% × |�| − r1 to n% × |�| + r2 (r1, r2 > 0) all have the same
performance as θH . The necessary and sufficient condition for J(θH) < J(θN,[t]) to
hold is that there are at least |N| − t + 1 designs with the ranks in {n%|�| + r2 +
1, n%|�| + r2 + 2, . . . , |�|}, i.e., there are at most t − 1 designs with the ranks in
{1, 2, . . . , n%|�| + r2 − 1, n%|�| + r2}. So, we have

P
{

J(θH) < J(θN,[t]) |R�(θH) = n% × |�|}

=
∑t−1

i=0

[|N|
j

](
n%|�| + r2

|�|
) j(|�| − (n%|�| + r2)

|�|
)|N|− j

.

We can reasonably assume that r2 is very small compared with |�|, so we can use
Eq. 11 as the approximation.

Discrete Event Dyn Syst

Table 1 The relationship between n% and t when no noise, given β0 = 0.05, and |N| = 1000

n% 1% 3% 5% 10% 20% 50%

t 5 21 39 85 179 474

The heuristic design is observed to be better than the t-th best design in N when
and only when there are less than t designs sampled from the designs that are better
than the heuristic design. Since the uniform sampling is used, the probability of
sampling j (j < t) designs from the designs that are better than the heuristic design
obeys the binomial distribution, as is shown in Eq. 11. Based on Eq. 11, for β0 = 0.05,
we obtain t = 39 for n% = 5%, and t = 85 for n% = 10%. We list the relationship
between t and n% in Table 1.

When the heuristic design is observed to be better than the t-th design in the
ordered |N| designs, we should judge the heuristic design to be within the top n%,
i.e., it is in the good enough set G�. In doing so, the probability of making Type II
error is no larger than β0.

4.1.2 No noise, multiple heuristic designs

When the heuristic outputs multiple designs, the expression of P∗
A,H will not be as

simple as for the single output. We assume that we have a set of heuristic designs. The
set is denoted as NH . We should find the selected set SH and check its alignment with
the good enough set G�. We order the designs in NH by their performances from the
best to the worst, and denote the designs as θH,1, θH,2, . . . , θH,|NH |−1, θH,|NH |. There is
no noise and the evaluation is accurate. We will surely choose the top designs in NH

to constitute the selected set SH , which are θH,1, θH,2, . . . , θH,|SH |−1, θH,|SH |. The P∗
A,H

can be expressed as follows, given the alignment level k,

P∗
A,H = P{|SH ∩ G�| ≥ k}. (12)

We denote two events,

E1 = {|SH ∩ G�| ≥ k}, (13)

E2 = {R�(θH,k) < n% × |�|}. (14)

E1 means the intersection of the selected set SH and the good enough set G� is
no smaller than k. E2 means the rank of the k-th design in SH is better than the
n% × |�|-th design, i.e., it means the k-th design in SH is a good enough design. It
can be easily checked that

E1 = E2. (15)

Then we have

P∗
A,H = P{|SH ∩ G�| ≥ k} = P{E1} = P{E2} = P{R�(θH,k) < n% × |�|}. (16)

The null and alternative hypothesizes for this case are

H0 : R�(θH,k) < n% × |�|; H1 : R�(θH,k) ≥ n% × |�|. (17)

Simply speaking, we are concerned with whether the k-th design of NH is a good
enough design. Testing whether the k-th design of NH is a good enough design has

Discrete Event Dyn Syst

no difference from testing whether a singleton heuristic output is a good enough
design. We sample |N| designs by uniform sampling, and compare the k-th heuristic
design with designs in N. We introduce the test

D0 : J(θH,k) < J(θN,[t]); D1 : J(θH,k) ≥ J(θN,[t]), (18)

where t is the threshold to be determined such that the Type II error probability
satisfies

P{D0|H1} = P
{

J(θH,k) < J(θN,[t])|R�(θH,k) ≥ n% × |�|} ≤ β0. (19)

It is sufficient and necessary to have the following hold if we want Eq. 19 to hold,

P
{

J(θH,k) < J(θN,[t])|R�(θH,k) = n% × |�|} ≤ β0. (20)

By comparing Eq. 20 with Eq. 10 in Section 4.1.1, we know that the two expressions
are the same except that we here are concerned with θH,k. Thus the relationship
between t and n% here can also be shown by Eq. 11 and Table 1.

We summarize this section as follows. When the k-th of the ordered heuristic
designs is better than the t-th of the ordered uniformly sampled designs, we should
judge that there are at least k heuristic designs within the top n% of the search
space �, i.e., they are in the good enough set G�. When making this judgment, the
probability of making the Type II error is no larger than β0.

4.2 When there is noise

4.2.1 Noise existing, one heuristic design

When there is no noise, OPC� or OPCN do not affect the threshold t in Section 4.1.1.
When calculating t, we only need to solve Eq. 11, which is the sum of binomial
distribution expressions and this has nothing to do with OPC� or OPCN . When
applying this method to judge whether a design is within the top n% of the search
space �, we only need to compare it with the t-th design of N, no matter what type
OPC� or OPCN is. However, when there is noise, OPC� has impact on quantifying
the heuristic. This makes the problem more complex. We will explain in detail as
follows.

The expression of P∗
A,H and the hypotheses are the same as the case that there is

no noise. We still denote the heuristic design in � as θH .

P∗
A,H = P{|SH ∩ G�| ≥ 1} = P{R�(θH) < n% × |�|}. (21)

H0 : R�(θH) < n% × |�|; H1 : R�(θH) ≥ n% × |�|. (22)

To find a test to limit the Type II error, we still compare the heuristic design θH with
designs in N which are denoted from θN,1 to θN,|N|. We have

Ĵ(θH) = J(θH) + WH,

Ĵ(θN,i) = J(θN,i) + WN,i, i = 1, 2, . . . , |N|, (23)

where WH and WN,i are noises. The noise is assumed to be I.I.D, and actually, J(θN,i)

(i = 1, 2, . . . , |N|) are also I.I.D. So here Ĵ(θN,i) (i = 1, 2, . . . , |N|) are also I.I.D. The

Discrete Event Dyn Syst

i-th order statistic of Ĵ(θN,i) (i = 1, 2, . . . , |N|) is denoted as Ĵ(θN,[i]). We define the
acceptance and rejection regions as below,

D0 : Ĵ(θH) < Ĵ(θN,[t]); D1 : Ĵ(θH) ≥ Ĵ(θN,[t]), (24)

where t is the threshold chosen to limit the Type II error probability,

P{D0|H1} = P{ Ĵ(θH) < Ĵ(θN,[t])|R�(θH) ≥ n% × |�|} ≤ β0. (25)

It is sufficient and necessary to require that

P{D0|H1} = P{ Ĵ(θH) < Ĵ(θN,[t])|R�(θH) = n% × |�|} ≤ β0. (26)

The relationship between Eqs. 25 and 26 is proved in Section A.1 of the Appendix.
To find t, we need to solve Eq. 26. Since we now have noise, expression of the

left item of Eq. 26 is much more complex. To express it, we first give the following
lemma.

Lemma 1 We assume that the observed performance of every design is the true
performance plus a continuous I.I.D noise. The probability density function (p.d.f)
of the noise is denoted as fW(x) and the p.d.f of the observed performance of the
heuristic design is denoted as fH(x). Under these conditions, when quantifying the
heuristic with one singleton output, the expression of the Type II error probability is
as follows,

P{ Ĵ(θH) < Ĵ(θN,[t])|R�(θH) = n% × |�|} =
∫ ∫

x1<x2

fH(x1) ft:|N|(x2)dx1dx2. (27)

ft:|N| is the p.d.f of Ĵ(θN,[t]).

As obtaining the observed performance of the heuristic design is independent
from obtaining the |N| designs by the uniform sampling, the joint p.d.f of Ĵ(θH) and
Ĵ(θN,[t]) is the product of their p.d.f’s.

When there is no noise, we can easily calculate t. But when there is noise, it
is almost impossible to calculate t directly. Solving Eq. 27 involves calculating the
convolution, the distribution of the order statistics and the integration. Although it
seems that we can obtain t by just solving the Eq. 27, it can be very difficult to get the
closed-form expression for Eq. 27. It is not easy to solve Eq. 27 numerically, either.
We try to use Monte-Carlo simulation to obtain t, as is shown below.

There is another problem when solving Eq. 27, that is, we use the OPC� which
is the OPC of the whole design space �. OPC� does not appear directly in Eq. 27.
However, when calculating ft:|N|(x) we need to use the distribution of Ĵ(θN,i), which
is equal to J(θN,i) + WN,i. θN,i is uniformly sampled from the search space and then
the distribution of J(θN,i) is determined by OPC�.

It is almost impossible to obtain the OPC� of a real problem. To circumvent this
difficulty, we can borrow the idea of “Lau and Ho (1997)”, by which they obtain
Universal Alignment Probability (UAP). We may use the sampling information at
the first stage to estimate the type of OPC�. In this way, we can know the type
of OPC�. By taking samples in one type of OPC�, we will obtain different t for
different samples. The most conservative (here the smallest) t will be taken as the
threshold of this type of OPC�. The Monte-Carlo method is easy to implement. The

Discrete Event Dyn Syst

standardized OPC� can be specified by the incomplete beta function, with two shape
parameters α and β (see Lau and Ho 1997). We assume that the noise is uniformly
distributed,

WH, WN,i ∼ U[−L, L], i = 1, 2, . . . , |N|, (28)

where L is a positive number specifying how large the noise is. We set α and β

to typical numbers, e.g., α = 0.40, β = 3.00 specify a “Flat” type OPC�. And then
we take the design at n% as the heuristic design. We uniformly sample out |N|
designs from the search space � = [0, 1]. After adding the noises, we obtain the
observed performances of the uniformly sampled designs. Then we check the rank
of the heuristic design in the uniformly sampled designs by comparing their observed
performances. After enough many replications, we find the t which satisfies Eq. 26
for the given level β0.

In the traditional OO, U[−0.5, 0.5], U[−1.0, 1.0] and U[−2.5, 2.5] are used to
represent small, medium and large noises (Lau and Ho 1997). Even the smallest of
the three levels U[−0.5, 0.5] can result in swapping the good enough designs with the
worst designs with non-zero probability. To investigate more, we do experiments for
more noise levels. We define:

L = Lm = 0.05m. (29)

Thus, U[−0.5, 0.5] = U[−L10, L10], U[−1.0, 1.0] = U[−L20, L20] and U[−2.5, 2.5] =
U[−L50, L50]. We also do experiments for m = 0, 1, 2, 4, 8 and 20,000. In our experi-
ments, n% = 10%, |N| = 1,000 and the Type II error probability level β0 = 0.05, and
for each case, 25,000 replications are used. The results are shown in Table 2 (more
numerical results can be found in Shen et al. 2009b).

Intuitively, the larger the noise is, the more difficult a good design is observed
good, i.e., we should have a smaller t for larger noise. But the results of Table 2
do not coincide with this intuition. We provide the following explanation by firstly
considering the two extreme cases: no noise and infinite noise. As we remember,
when there is no noise, we have obtained from Table 1 that t = 85. We also verified
this by experiments by setting the noise as 0. We perform a thought experiment
for the case with infinite noise. When the noise is infinite, any design has the same
probability to be better than another. The heuristic design has equal probability to
be observed to have any rank. Since we are looking for the t so that the probability
with which the heuristic design is observed to be better than the observed t-th best
design of the set N generated by the uniform sampling is no larger than β0, when the
noise is infinite, we should have

t = β0 × |N| = 0.05 × (1000 + 1) = 50.05. (30)

Table 2 The threshold t, obtained by Monte Carlo simulation

OPC Noise level, Lm means U[−0.05m, 0.05m]

(α, β) Type L0 L1 L2 L4 L8 L10 L20 L50 L20000

(0.40, 3.00) Flat 84 9 11 13 18 19 24 30 51
(0.40, 0.40) U-Shaped 85 16 11 8 8 8 9 13 48
(1.00, 1.00) Neutral 85 53 29 18 12 11 10 12 50
(3.00, 3.00) Bell 85 59 38 22 14 13 12 16 51
(3.00, 0.40) Steep 85 74 61 42 24 21 14 13 52

Discrete Event Dyn Syst

Experimentally, we set the noise as U[−1000, 1000] = U[−L20000, L20000] and our
experiment result verifies this. The observed t is very near to 50.05. Thus, the above
intuition is not correct. When the noise is very large, the heuristic designed has small
opportunity to be observed with a high rank in the set N ∪ {θH}.

Now we explain why t goes smaller and then goes larger as the noise increases.
For the problem here, the threshold t is affected by two factors. One is the noise.
The other is the value difference between the true performances of the designs in
the search space �. It is specified by OPC�. When the noise is small, the value
difference dominates. As the noise goes larger from 0, the disturbance caused by
the noise becomes larger. When the disturbance is still not too large, we can use a
smaller t to compensate, ensuring that the Type II error is not larger than the given
level. But when the noise is too large, the noise dominates. As the noise goes larger,
it is more and more difficult for the heuristic design to be observed within the top
of the uniformly sampled designs, i.e., the Type II error probability goes smaller if t
stays unchanged. It is obvious from Eq. 26 that as long as the noise and OPC� are
given, as t goes larger, the probability of making Type II error goes larger. Since we
only require the Type II error probability no larger than β0, we can have a larger t.
As the noise is infinite, the value difference does not matter at all. The t is the same
with the value 50.05. In this way we explained the results of Table 2.

However, the t value is still affected by the value differences between the designs,
or rather, the OPC�. The U-Shaped, Neutral and Bell types in Table 2 have t going
smaller and then larger from L1 to L50. For Flat type, the good enough designs are
very “near” to each other when measuring their performances. A very small noise
can flood the values. Even for the U[−L1, L1] = U[−0.05, 0.05], we need t to be 9. It
is the least robust to the noise among the examples of the 5 types in Table 2. For the
Steep type, the good enough designs are with quite different values in performances
and are not easily disturbed by the noise. It is the most robust to the noise.

In traditional OO, when we do not know how large the noise is, the largest noise
can always serve as a conservative estimate. But here, since a smaller noise may
correspond to a stricter (smaller) t, the large noise cannot serve as a conservative
estimate. How to fix this is still an open question. This can be left for future research.
Now we can ask a natural question: since we observe that t goes smaller and then
larger as the noise goes larger from 0, does a lower bound of t exist?

The answer is yes. We have the following theorem. This theorem shows how good
a design is in the ordinal sense when it is observed to be better than any of a given
number of uniformly sampled designs obtained from the search space. It can be
expressed as follows:

Theorem 1 Assumptions:

1. The noise in evaluating a design is additive, i.e., the observed performance is the
sum of the true performance and the noise.

2. The noise is I.I.D when we evaluate any design in the search space.
3. The noise has a continuous p.d.f.

Conclusion: We denote � as the search space, and N as the set of uniform samples
from �. Its size is denoted by |N|. If a heuristic design, which is independent of the
uniform samples, is observed to be better than any of the uniformly sampled designs
in N, this heuristic design can be judged to be within the top n% of the search space.

Discrete Event Dyn Syst

When doing so, the probability of making Type II error is no larger than a given level
β0. The value of n% depends on |N| and β0 and can be expressed as follows,

n% = min
0<c<1

1

c × β0

⎧
⎨

⎩
1 − exp

⎧
⎨

⎩

ln
(

(1−c)β0

1−cβ0

)

|N|

⎫
⎬

⎭

⎫
⎬

⎭
. (31)

Because

min
0<c<1

1

c × β0

⎧
⎨

⎩
1 − exp

⎧
⎨

⎩

ln
(

(1−c)β0

1−cβ0

)

|N|

⎫
⎬

⎭

⎫
⎬

⎭
≤ 1

|N| min
0<c<1

1

c × β0
ln

(
(1 − cβ0)

((1 − c)β0)

)
. (32)

We can also judge

n% = 1

|N| min
0<c<1

1

c × β0
ln

(
(1 − cβ0)

((1 − c)β0)

)
. (33)

In Eq. 33, n% is inversely proportional to |N|. And given β0 = 0.05, we can easily

solve it by the numerical method that, min
0<c<1

1
c×β0

ln
(

(1−cβ0)

((1−c)β0)

)
appears at the point very

near to c = 0.826. If we take c = 0.826, from Eq. 33, we obtain

n% = 113.9

|N| , β0 = 0.05. (34)

This serves as a quick formula for β0 = 0.05.
We also provide a closed form for n%. We have

min
0<c<1

1

c × β0

⎧
⎨

⎩
1 − exp

⎧
⎨

⎩

ln
(

(1−c)β0

1−cβ0

)

|N|

⎫
⎬

⎭

⎫
⎬

⎭
≤ 1

β0|N|

(

1 +
√

ln

(
1

β0

))2

. (35)

Thus, we can also judge n% to be

n% = 1

β0|N|

(

1 +
√

ln

(
1

β0

))2

. (36)

The details of the proof are in the Appendix. According to Theorem 1, we can
show the relationship of |N| and n% by a table, such as Table 3. The meaning of
Theorem 1 lies in that no matter what noise it is, as long as the noise is additive, I.I.D
and has a continuous p.d.f., if a heuristic design is observed to be better than a given
number of uniform designs, we can judge this heuristic design to be within the top
n% of the search space with a small probability of making the error of overestimating
the heuristic design.

Table 3 The relation between n% and |N|, given β0 = 0.05, obtained from Eq. 31/Eq. 34

|N| 500 600 700 800 900 1000 1500 2000 2500 3000

n% 23% 19% 17% 15% 13% 12% 8% 6% 5% 4%

Discrete Event Dyn Syst

When using Theorem 1 to quantify heuristics, we can do in a sequential way. When
we want to quantify a heuristic, we can first obtain a design by the heuristic, and
then we sample out designs one by one by the uniform sampling, until one design is
observed to be better than the heuristic design. The number of the uniformly sampled
designs is denoted as |N| before the last uniformly sampled design is sampled out.
Then, the heuristic design can be judged to be within the top n% of the search space
with the probability of making Type II error no larger than β0.

4.2.2 Noise existing, multiple heuristic designs

This is an extension to the case when the heuristic outputs a set of designs and
there is no noise. It is also the most general case. Compared with the case of a set
of designs output and no noise, we now cannot evaluate the designs accurately.
Due to noise, that the observed k-th best design is good enough does not mean
the designs observed better than it are also good enough. This causes difficulty in
setting the hypothesis and finding the proper testing method. We still denote the
selected set of the heuristic designs as SH . These designs are sorted according to
their observed performances from best (smallest) to worst (largest) and denoted as
θH,1, θH,2, . . . , θH,|SH |−1, θH,|SH |.

We assume that the size of the selected set is given. We are concerned with
the P∗

A,H ,

P∗
A,H = P{|SH ∩ G�| ≥ k}. (37)

We now have |SH| designs. Each of them has a true performance. We assume we
order them according to their true performance from best to worst, and denote them
as θTr

H,1, θ
Tr
H,2, . . . , θ

Tr
H,|SH |−1, θ

Tr
H,|SH |. We denote the following two events.

E1 = {|SH ∩ G�| ≥ k}, (38)

E2 = {R�

(
θTr

H,k

)
< n% × |�|}. (39)

E1 means there are at least k designs in SH are good enough designs. If E1 happens,
the true top k designs of SH must be good enough designs. Their ranks are better
than n% × |�|, i.e., E2 happens. If E2 happens, the true top designs of SH are good
enough, there must be at least k designs within SH , i.e., E1 happens. We have

E1 = E2. (40)

We set the hypotheses as follows,

H0 : R�

(
θTr

H,k

)
< n% × |�|; H1 : R�

(
θTr

H,k

) ≥ n% × |�|. (41)

The observed performance of θTr
H,k is Ĵ(θTr

H,k). We have

Ĵ
(
θTr

H,k

) ≤ Ĵ
(
θTr

H,|SH |
)
, (42)

since Ĵ(θTr
H,|SH |) is the worst observed design of SH . When testing the heuristic designs,

we compare it with |N| designs by the uniform sampling. The better rank the heuristic
design has in the uniformly sampled designs, the more confident we are to judge that
there are at least k good enough designs. Thus we can still have

D0 : Ĵ
(
θTr

H,k

)
< Ĵ

(
θN,[t]

); D1 : Ĵ
(
θTr

H,k

) ≥ Ĵ(θN,[t]). (43)

Discrete Event Dyn Syst

Ĵ(θN,[t]) is the t-th order statistic of Ĵ(θN,i), i = 1, 2, . . . , |N|. We want to bound the
probability of making the Type II error,

P{D0|H1} = P
{

Ĵ
(
θTr

H,k

)
< Ĵ(θN,[t])|R�

(
θTr

H,k

) ≥ n% × |�|} ≤ β0. (44)

We have solved Eq. 44 in Section 4.2.1, when we quantify the heuristic with one
design output and there is noise. The result is summarized in Theorem 1.

Thus, if the θTr
H,k is observed to be better than Ĵ(θN,[t]), we should make the

judgment that there are at least k good enough designs within SH . If θTr
H,k is observed

to be with the rank worse than t, we should make the judgment that there are less
than k good designs within SH .

But there is one problem. We do not know the observed performance of θTr
H,k.

We only know Ĵ(θTr
H,k) ≤ Ĵ(θTr

H,|SH |), which is Eq. 42. We cannot solve this problem

directly. However, we can use the following method: if Ĵ(θTr
H,|SH |) < Ĵ(θN,[t]), i.e.,

Ĵ(θTr
H,|SH |) is observed to be better than t-th of the ordered uniformly sampled designs,

we can make the judgment that there are at least k good enough designs within SH ,
since in this situation θTr

H,k must be observed better than the t-th of the ordered designs
in N; if θTr

H,|SH | is observed not to be better than the t-th of the ordered designs in N,
we will not make judgment.

Corollary 1 The selected set of the heuristic designs is denoted as SH. The set of
uniformly sampled designs from the search space � is denoted as N. We evaluate the
heuristic designs and the uniformly sampled designs by the crude model and obtain
their observed performances.
Assumptions:

1. The noise in evaluating a design is additive, i.e., the observed performance is the
sum of the true performance and the noise.

2. The noise is I.I.D when we evaluate any design in the search space.
3. The noise has a continuous p.d.f.

Conclusion: If the observed worst heuristic design in SH still has a better observed
performance than any of the uniform samples, all the designs in SH should be judged
to be within the top n% of search space �. In doing so, the probability of making Type
II error is no larger than the given level β0. The relationship between |N|, n% and β0

is shown as follows,

n% = min
0<c<1

1

c × β0

⎧
⎨

⎩
1 − exp

⎧
⎨

⎩

ln
(

(1−c)β0

1−cβ0

)

|N|

⎫
⎬

⎭

⎫
⎬

⎭
. (45)

This is the same with the formula given by Eq. 31 in Theorem 1. Thus it can also be
expressed by Eq. 34, Eq. 36 or Table 3. The probability of making Type II error is
expressed as

P{D0|H1} = P
{

Ĵ
(
θTr

H,k

)
< Ĵ(θN,[t])|R�

(
θTr

H,k

) ≥ n% × |�|}

= P
{

Ĵ
(
θTr

H,k

)
< Ĵ(θN,[t])||SH ∩ G�| < k

}

≤ β0, (46)

where k = |SH|, θTr
H,k is just θTr

H,|SH |, the truly worst design in SH.

Discrete Event Dyn Syst

As we have made clear how we obtain this conclusion, we will not give a formal
proof here.

5 Examples

In this section, we show two examples, one is the Traveling Salesman Problem (TSP)
and the other is the Flow Shop Problem (FSP). The purpose to show the examples
are not to show how to solve the two problems in general but to verify the theoretical
results of this paper.

Example 1 A 10-city Traveling Salesman Problem (TSP)

We take Traveling Salesman Problem (TSP) as an example. TSP can represent
a large set of optimization problems and we show how to apply the results of this
paper. We take the Hopfield 10-city problem (Hopfield and Tank 1985) as the
example. The coordinates (x, y) of the 10 cities are: {(0.4000, 0.4439); (0.2439, 0.1463);
(0.1707, 0.2293); (0.2293, 0.7610); (0.5171, 0.9414); (0.8732, 0.6536); (0.6878, 0.5219);
(0.8488, 0.3609); (0.6683, 0.2536); (0.6195, 0.2634)}. We number the cities from 1 to
10 according to the above sequence. The best path is [1, 4, 5, 6, 7, 8, 9, 10, 2, 3] or [1,
3, 2, 10, 9, 8, 7, 6, 5, 4]. The two paths in fact specify the same round tour of visiting
the 10 cities. The shortest round tour has the length 2.6907.

Now we use the nearest neighbor method, which starts from the 1st city (0.4000,
0.4439), and every time the nearest un-visited city is chosen as the next city. The
obtained path is NN = [1, 10, 9, 8, 7, 6, 5, 4, 3, 2] with round tour 2.7782.

If when we choose the next city, all the unvisited cities have the same probability
to be chosen, every design of search space has the same probability to be chosen. In
this way, the obtained design is a uniform sample. We uniformly sample 1,000 designs
from the search space, and in one experiment, the performance of the 39th best of the
1,000 uniform samples designs is 3.7990, thus the nearest neighbor design should be
judged to be within the top 5% of the search space.

While keeping that the beginning city is always the 1st city, we now exchange the
places of two cities in the nearest neighbor design. By doing so, we can obtain 36
designs. These 36 designs can be viewed as the designs output by a heuristic. We
name this heuristic as “nearest neighbor method with exchange”, and use “NNE”
for short. We still use the 1,000 uniformly sampled designs above. The 39th design
has performance 3.7990. Since in the ordered 36 heuristic designs, the 21st design has
performance 3.7365 and the 22nd design has performance 3.8711, we should judge 21
of the 36 designs to be within the top 5% of the search space.

In fact, there are (10 − 1)! = 362, 880 designs in the search space. We can
enumerate all of them. The design exactly at top 5% is 362,880 × 5% = 18,144. 18,144
and 18,143 have the same performance due to the symmetry of this TSP. Their paths
are [1, 8, 7, 9, 10, 5, 4, 6, 2, 3] and [1, 3, 2, 6, 4, 5, 10, 9, 7, 8]. The performance of
these two designs is 3.9141. Thus, this is the accurate border for top 5%. In the 36
heuristic designs, the 23rd best design has the performance 3.8858 and the 24th best
has 3.9341. So in the 36 heuristic designs there are in fact 23 good enough designs.

Discrete Event Dyn Syst

And, the nearest neighbor design in fact ranks at 10 of the search space, thus it is top
10/362,880 = 0.0028%.

Now we assume there is U[0, 0.1] noise added to the distance between any two
cities. This is not unreasonable since in the real life, due to the traffic and weather
conditions, the time spent in traveling between two cities can be variable. We still try
to quantify the nearest neighbor design, and the 36 designs obtained by exchanging
two cities of the nearest neighbor designs. We generate 1,000 designs by the uniform
sampling. The best observation of the 1,000 designs has performance 3.4380. And
the nearest neighbor design is observed to have the performance 3.2513, thus from
Table 3, given β0 = 0.05 this nearest neighbor design is judged to be within the top

n% = 12%. (47)

We take the top 4 designs from the 36 designs to constitute the selected set SH . In one
experiment, even the worst observed design of the 4 designs still has an evaluated
performance better than 3.4380. Thus, these 4 designs should also be judged to be
within the top 12% of the search space. In fact, as we have discussed above, these 4
are within top 5%, and then are surely within top 12%.

Example 2 A 10 part Flow Shop Problem (FSP)

This example is taken from the OR library with the name “instance car5”.
Table 4 gives the processing times for the flow shop system. There are 10 parts

and 6 machines. The machines are numbered from M0 to M5. Each row in the table
stands for a job. We index the jobs from 1 to 10.

We assume that all jobs go through the six machines in the same order. This kind
of FSP is called permutation flow shops. And we assume the buffers are all large
enough so that we do not need to consider the blocking. The decision is to decide
the service sequence of the jobs. There are 10 jobs, and then the size of the search
space is 10! = 3,628,800. We use the total completion time as the measurement.
We consider the random searching algorithm. For this algorithm, every design has
the equal probability to be considered. We start from randomly taking a job as the
first one, and then we select other jobs with equal probability, and so on. In one
experiment, we considered 2000 designs, and denoted the best of them, which is
with the service sequence [3 2 5 6 4 1 8 7 10 9], as θH (with total completion time
51960). We can enumerate the search space and find out that, the best sequence is

Table 4 Carlier 10x6 instance M0 M1 M2 M3 M4 M5

Job1 333 991 996 123 145 234
Job2 333 111 663 456 785 532
Job3 252 222 222 789 214 586
Job4 222 204 114 876 752 532
Job5 255 477 123 543 143 142
Job6 555 566 456 210 698 573
Job7 558 899 789 124 532 12
Job8 888 965 876 537 145 14
Job9 889 588 543 854 247 527
Job10 999 889 210 632 451 856

Discrete Event Dyn Syst

θ0 = [4 5 6 3 2 1 10 9 7 8] with total completion time 50545. And θH ranks at 299, by
percentage, it is, 299/10! = 0.0082%. Now we quantify the design θH . We take out
20,000 uniform samples. In one experiment, we find out that the design θH ranks at
the 4-th in N ∪ {θH}. So by the method in Section 4.1, we can judge the design θH to
be within top 0.0184% of the search space.

We assume there is a noise added to the evaluation of each design. The noise
is assumed to obey N(0, 1002). The best performance is 50545, and the worst
performance is 80973 with the corresponding sequence [10 8 7 1 9 4 2 6 3 5]. The
difference between the worst and the best is 30428. Considering this, we know how
large the noise is. In one experiment, we still consider the design θH = [3 2 5 6 4 1 8 7
10 9]. In one observation its performance is 52134. We take the sequential sampling
method, and in one experiment, we did not obtain an observed performance better
than or equal to 52134 until the 7481st design. So we know the size of the N is 7480.
And by Theorem 1, we have, n% = 113.9/7480 × 100% = 1.52%. The judgment is
obviously correct as the true rank of θH is 0.0082%. Considering the noise issue, the
quantification result can be seen as good.

It should be made clear that this example is only for proof of concept purpose. In
practice, one usually does not want to obtain good designs by random samples which
is very inefficient. Problem related knowledge should be used.

6 Conclusions

By the OO idea, we define the top n% (say, 5%) of search space as the good enough
set. In this paper we provide a method to judge whether the heuristic designs are
good enough or not in terms of ranking in the search space. We compare the heuristic
design(s) with uniformly sampled designs and by Hypothesis Testing technique, the
probability of making Type II error when making the judgment can be bounded
under a given level. In principle our method can apply no matter how many designs
the heuristic outputs and no matter whether there is noise or not. For the case there
is noise, if we know the type of the Ordered Performance Curve of the search space
and the noise level, we can improve our method. But how to achieve this is still an
open question and should be investigated. We show by a TSP and an FSP how to
use our method. We aim to provide more practical applications of our method in the
future.

About the computation efficiency of the quantifying method in this paper, gener-
ally, we know that we pay more so that we can obtain more. We do not deny that
we need to pay computation cost in order to obtain a good prediction on how good
heuristic design(s) are. One virtue of our method is that, no matter for the no noise
case or for the noisy case, we can make a budget on the computation, and we will
stop until our computation resource is exhausted or we have obtained a satisfactory
result. Moreover, about the noisy case, we want to emphasize that as we use the
crude model for the evaluation, generally speaking, there will be no heavy burden
for evaluation process.

In this paper, what we quantify is actually heuristic design(s). For a given problem
and given problem instance, every time a heuristic may output different designs, i.e.,
the heuristic contains randomness itself. This is common, as GA, SA, ACO etc. are
all of this kind. We argue that for a heuristic containing randomness itself, we must

Discrete Event Dyn Syst

run it many times, in principle we can quantify its design(s) obtained in any run, and
then we know how good the heuristic is. Without running it many times, we have no
idea about its internal randomness.

The quantified heuristic can improve OO since the heuristic can obtain more good
enough designs from the search space than the uniform sampling does. If we have
some knowledge about �, as we usually do in practice, heuristics may be used to
replace the uniform sampling to generate samples from �. And usually a heuristic
can outperform the uniform sampling, that is, the set of samples obtained by the
heuristic contains more good enough designs. In other words, we should evaluate
the Alignment Probability (AP) under the new setting where the heuristic is used to
generate samples at the first stage of OO. We denote the sample space as NH and
the selected set as SH in the new OO. SH can be obtained from NH based on some
selection rule such as Blind Picking (BP) or Horse Racing (HR). The AP for the new
OO is defined as

P∗
A,H = P{|G� ∩ SH| ≥ k}.

Usually we expect

|SH| ≤ |S|,

which means, by choosing a smaller selected set we still have the same effect, if the
heuristic is used. This is one topic for the future efforts.

The quantification method in this paper could be improved from the following
two aspects. For OO and our method here, there are two kinds of randomness. One
is the sampling randomness from the search space � to the sample space N. The
other is the randomness when evaluating designs with a crude model. We here use
the uniform sampling when sampling from � to N. In OO, the uniform samples can
represent the search space. In quantifying heuristics, the uniform samples provide a
basis to measure heuristics. One concern is whether we can use other better sampling
technique instead of the uniform sampling. For OO, if we can use a better sampling
technique, the intensity of good enough designs in N can be increased, as discussed
above. For quantifying heuristics, a better N can be a “higher” basis to quantify
heuristics. Actually, a well-performing heuristic with randomness can be viewed as an
“enhanced sampling” technique, as it can provide designs from the search space, and
the designs are usually better than the uniform samples. It is interesting and useful
to replace the uniform sampling with the non-uniform sampling. This will be investi-
gated in our following research. Another possible improvement is in evaluating the
designs. In OO and our method of quantifying heuristics, the computation budget is
equally allocated to the designs. Optimal Computation Budget Allocation (OCBA)
makes improvement to OO by allocating more computation budget to the promising
designs. It may be possible to improve our quantification method by introducing
OCBA. This can also be a topic for future research.

Acknowledgement The authors would like to express their sincere thanks to Prof. Yu-Chi Ho of
Harvard University & Tsinghua University. He initializes and guides the research in this paper. But
of course, all remaining possible errors are solely the responsibility of the authors.

Discrete Event Dyn Syst

Appendix A Proof of Theorem 1

Please refer to Section 4.2.1 for the presentation of Theorem 1. We will first prove
the fundamental Eq. 31 of Theorem 1 in Section A.5 based on the results established
in Sections A.1–A.4. Other results in Theorem 1 are all proved in Section A.6.

A.1 Maximum of the probability of making Type II error

In this section we will prove

P
{

Ĵ(θH) < Ĵ(θN,[t])|R�(θH) ≥ n% × |�|}

≤ P
{

Ĵ(θH) < Ĵ(θN,[t])|R�(θH) = n% × |�|}. (48)

We introduce the indicator function:

IE =
{

1, when E happens,
0, otherwise.

(49)

We have the following,

P
{

Ĵ(θH) < Ĵ(θN,[t])
} = EI{ Ĵ(θH)< Ĵ(θN,[t])}. (50)

This holds no matter which design θH is. By the total expectation formula, we have

EI{ Ĵ(θH)< Ĵ(θN,[t])} = E
(

E
(

I{ Ĵ(θH)< Ĵ(θN,[t])}| Ĵ(θN,[t])
))

. (51)

We have

E
(

I{ Ĵ(θH)< Ĵ(θN,[t])}| Ĵ(θN,[t])
)

= E
(

I{ Ĵ(θH)< Ĵ(θN,[t])}| Ĵ(θN,[t]) = x
)

. (52)

Since Ĵ(θH) = J(θH) + WH , from Eq. 52,

E
(
I{ Ĵ(θH)< Ĵ(θN,[t])}| Ĵ(θN,[t]) = x

) = E(I{J(θH)+WH<x}| Ĵ(θN,[t]) = x)

= E(I{WH<x−J(θH)}| Ĵ(θN,[t]) = x).
(53)

Please pay attention to Eq. 53, it is a conditional probability, for a given x, when J(θH)

becomes smaller, x − J(θH) becomes larger, the event WH < x − J(θH) is more likely
to happen.

If we have two designs, θH,1 and θH,2, J(θH,1) ≤ J(θH,2), from Eq. 53 and the above
analysis, we have

E
(
I{ Ĵ(θH,1)<x}| Ĵ(θN,[t]) = x

) = E
(
I{WH,1<x−J(θH,1)}| Ĵ(θN,[t]) = x

)

≥ E
(
I{WH,2<x−J(θH,2)}| Ĵ(θN,[t]) = x

)

= E
(
I{ Ĵ(θH,2)<x}| Ĵ(θN,[t]) = x

)
. (54)

where WH,1 and WH,2 are the noises when evaluating θH,1 and θH,2. They are I.I.D.
Eq. 54 tells us, when J(θH,1) ≤ J(θH,2),

E
(
I{ Ĵ(θH,1)< Ĵ(θN,[t])}| Ĵ(θN,[t]) = x

) ≥ E
(
I{ Ĵ(θH,2)< Ĵ(θN,[t])}| Ĵ(θN,[t]) = x

)
. (55)

Discrete Event Dyn Syst

From Eqs. 50, 51 and 55, we have, when J(θH,1) ≤ J(θH,2),

P
{

Ĵ(θH,1) < Ĵ(θN,[t])
} ≥ P

{
Ĵ(θH,2) < Ĵ(θN,[t])

}
. (56)

Equation 56 tells us that, the smaller the true performance of the heuristic design θH

is, the higher is the probability that it is observed to be better than the t-th best design
in N. Let us denote θn% as the design whose true rank in � is exactly top n% of �.
Thus, we have

P{D0|H1} = P
{

Ĵ(θH) < Ĵ(θN,[t])|R�(θH) ≥ n% × |�|}
≤ P

{
Ĵ(θH) < Ĵ(θN,[t])|R�(θH) = n% × |�|}

= P{ Ĵ(θn%) < Ĵ(θN,[t])}. (57)

This is because, θn% is the best design of the designs with ranks not smaller than n%.
Thus, in order to limit the probability of making Type II error, we need and only

need to consider the case when the probability of making Type II error is the largest.
When t = 1, from Eq. 57,

P{D0|H1} ≤ P{ Ĵ(θn%) < Ĵ(θN,[1])} ≤ β0. (58)

A.2 An upper bound for P{ Ĵ(θn%) < Ĵ(θN,[1])}

We will prove

P{ Ĵ(θn%) < Ĵ(θN,[1])} ≤
∫ ∞

−∞
(1 − n%FW(x))|N| fW(x)dx, (59)

where fW(x) and FW(x) are the p.d.f and the c.d.f of the noise W respectively. We
have Ĵ(θn%) = J(θn%) + W. W is the noise when evaluating this design. We have

P{ Ĵ(θn%) < Ĵ(θN,[1])} = P
{

J(θn%) + W < Ĵ(θN,[1])
}

(60)

Then,

P
{

J(θn%) + W < Ĵ(θN,[1])
} =

∫ ∞

−∞
P
{

J(θn%) + x < Ĵ(θN,[1])
}

fW(x)dx. (61)

If θn% is observed better than Ĵ(θN,[1]), it means that this design is observed better
than any of the designs in N, i.e., it is observed better than Ĵ(θN,i) = J(θN,i) + WN,i,

i = 1, 2, . . . , |N|. Since any θN,i is uniformly sampled from the search space and WN,i

is the I.I.D noise, Ĵ(θN,i) is I.I.D. Thus Eq. 61 is transformed into
∫∞
−∞ P{J(θn%) + x < Ĵ(θN,[1])} fW(x)dx

= ∫∞
−∞ P{J(θn%) + x < Ĵ(θN,1), . . . , J(θn%) + x < Ĵ(θN,|N|)} fW(x)dx

= ∫∞
−∞

|N|∏

i=1
P{J(θn%) + x < Ĵ(θN,i)} fW(x)dx

= ∫∞
−∞ P{J(θn%) + x < Ĵ(θN,i)}|N| fW(x)dx, ∀i.

(62)

The last “=” in Eq. 62 holds because Ĵ(θN,i) is I.I.D. Now let us focus on Eq. 62, for
any i, we have

P{J(θn%) + x < Ĵ(θN,i)} = P{J(θn%) + x < J(θN,i) + WN,i}. (63)

Discrete Event Dyn Syst

By the total probability formula, we have

P{J(θn%) + x < J(θN,i) + WN,i}
= P{J(θn%) + x < J(θN,i) + WN,i|WN,i < x}P{WN,i < x}

+P{J(θn%) + x < J(θN,i) + WN,i|WN,i ≥ x}P{WN,i ≥ x}.
(64)

In Eq. 64, we have,

P{J(θn%) + x < J(θN,i) + WN,i|WN,i < x}
= P{J(θn%) − J(θN,i) < WN,i − x|WN,i < x}
≤ P{J(θn%) − J(θN,i) < 0|WN,i < x}
= P{J(θn%) − J(θN,i) < 0}.

(65)

The last “=” in Eq. 65 holds because the noise is independent from the true
performance of a uniformly sampled design. For Eq. 65, we have

P{J(θn%) − J(θN,i) < 0} ≤ 1 − n%. (66)

It is “≤ 1 − n%” not “= 1 − n%” in Eq. 66 because OPC� may not be strictly
increasing. For a strictly increasing OPC�, in (B30) “≤ 1 − n%” should be replaced
by “= 1 − n%”. This is because for strictly increasing OPC�, every design has
a different performance. The heuristic design with rank at n% is better than a
uniformly sampled design when and only when the uniformly sampled design is
sampled from designs with worse ranks than the heuristic design. For the not strictly
increasing OPC�, the ranks are still from 1 to |�|. Ties are broken arbitrarily and
the designs with ties are given different but sequential ranks. Thus, there can be
some designs having the same performance with θn% but with worse ranks than θn%.
This is the reason why it is “≤ 1 − n%” in Eq. 66.

From Eqs. 65 and 66, we know Eq. 64 can be changed to

P{J(θn%) + x < J(θN,i) + WN,i}
= P{J(θn%) + x < J(θN,i) + WN,i|WN,i < x}P{WN,i < x}

+P{J(θn%) + x < J(θN,i) + WN,i|WN,i ≥ x}P{WN,i ≥ x}
≤ (1 − n%)P{WN,i < x} + P{J(θn%) + x < J(θN,i) + WN,i|WN,i ≥ x}P{WN,i ≥ x}.

(67)

Since any conditional probability cannot be larger than 1, we have

P{J(θn%) + x < J(θN,i) + WN,i|WN,i ≥ x} ≤ 1. (68)

FW(x) is used to stand for the the c.d.f of the I.I.D noise. By Eqs. 67 and 68, we have

P{J(θn%) + x < J(θN,i) + WN,i}
≤ (1 − n%)P{WN,i < x} + P{WN,i ≥ x}
= (1 − n%)FW(x) + 1 − FW(x)

= 1 − n%FW(x).

(69)

From Eqs. 62, 63 and 69, we have
∫∞
−∞ P{J(θn%) + x < Ĵ(θN,[1])} fW(x)dx

= ∫∞
−∞ P{J(θn%) + x < Ĵ(θN,i)}|N| fW(x)dx (due to (62))

= ∫∞
−∞ P{J(θn%) + x < J(θN,i) + WN,i}|N| fW(x)dx (due to (63))

≤ ∫∞
−∞(1 − n%FW(x))|N| fW(x)dx (due to (69)).

(70)

Discrete Event Dyn Syst

As we can see, we have proved

P{ Ĵ(θn%) < Ĵ(θN,[1])} ≤
∫ ∞

−∞
(1 − n%FW(x))|N| fW(x)dx. (71)

A.3 An upper bound of
∫∞
−∞(1 − n%FW(x))|N| fW(x)dx

In this section, we shall prove that the right hand side (RHS) of Eq. 71 is no larger
than min

p∈[0,1]
{p + (1 − n%p)|N|(1 − p)}, that is,

P{ Ĵ(θn%) < Ĵ(θN,[1])} ≤ ∫∞
−∞(1 − n%FW(x))|N| fW(x)dx

≤ min
p∈[0,1]

{p + (1 − n%p)|N|(1 − p)}.

We rewrite Eq. 70 as follows, i.e., the integration is divided into two parts, separating
by x0. x0 can be any real number,

∫∞
−∞ P{J(θn%) + x < Ĵ(θN,[1])} fW(x)dx

≤ ∫∞
−∞(1 − n%FW(x))|N| fW(x)dx

= ∫ x0

−∞(1 − n%FW(x))|N| fW(x)dx + ∫∞
x0

(1 − n%FW(x))|N| fW(x)dx.

(72)

For the first item in the RHS of Eq. 72, we have

FW(x) ≥ 0, x ∈ (−∞, x0). (73)

For the second item in the RHS of Eq. 72, we have

FW(x) ≥ FW(x0), x ∈ [x0, +∞). (74)

From Eqs. 73 and 74, Eq. 72 can be changed to
∫∞
−∞ P{J(θn%) + x < Ĵ(θN,[1])} fW(x)dx

≤ ∫∞
−∞(1 − n%FW(x))|N| fW(x)dx

≤ ∫ x0

−∞ fW(x)dx + ∫∞
x0

(1 − n%FW(x0))
|N| fW(x)dx

= ∫ x0

−∞ fW(x)dx + (1 − n%FW(x0))
|N| ∫∞

x0
fW(x)dx

= FW(x0) + (1 − n%FW(x0))
|N| × (1 − FW(x0)).

(75)

Please recall that we are concerned with

P{ Ĵ(θn%) < Ĵ(θN,[1])} =
∫ ∞

−∞
P{J(θn%) + x < Ĵ(θN,[1])} fW(x)dx. (76)

Thus, from Eqs. 71 and 75, finally Eq. 76 can be bounded by

P{ Ĵ(θn%) < Ĵ(θN,[1])}
≤ FW(x0) + (1 − n%FW(x0))

|N| × (1 − FW(x0)), ∀x0 ∈ (−∞,∞).
(77)

Please notice that, for any x0, Eq. 77 holds. Thus, for any p ∈ [0, 1], we can derive
from (B40) that

P{ Ĵ(θn%) < Ĵ(θN,[1])} ≤ p + (1 − n%p)|N| × (1 − p). (78)

Thus, we have

P{ Ĵ(θn%) < Ĵ(θN,[1])} ≤ min
p∈[0,1]

{p + (1 − n%p)|N|(1 − p)}. (79)

Discrete Event Dyn Syst

Thus, we now change our problem to the problem of optimizing Eq. 79. If we can
find the minimum of the expression shown in Eq. 79, we find the upper bound of the
probability of making Type II error.

A.4 The convexity of the bound in the RHS of Eq. 79

In this section, we shall show p + (1 − n%p)|N|(1 − p) is a convex function of p in
[0,1]. We denote,

h(p) = p + (1 − n%p)|N|(1 − p), p ∈ [0, 1]. (80)

We notice,

h(0) = 1,

h(1) = 1,

h(p) = p + (1 − n%p)|N|(1 − p) < p + 1 × (1 − p), p ∈ (0, 1).

(81)

Thus, there must be a minimum and it appears within (0,1). Next, we prove the
convexity of h(p) over (0, 1).

For |N| ≥ 2, we have

dh(p)

dp
= 1 + (1 − n%p)|N|−1(−|N|n% + |N|n% × p − 1 + n% × p), (82)

d2h(p)

dp2
= (|N| − 1)(1 − n%p)|N|−2(−n%){−|N|n% + |N|n% × p − 1 + n% × p}

+(1 − n%p)|N|−1 × (|N|n% + n%). (83)

For N = 1, we have

dh(p)

dp
= 1 + (−|N|n% + |N|n% × p − 1 + n% × p) = n% × (2p − 1), (84)

d2h(p)

dp2
= 2n% > 0. (85)

Please see Eq. 83. The second item in the RHS is obviously larger than 0. And, in
the “{}”,

−|N|n%+|N|n% × p−1+n%× p = −|N|n% × (1− p)−(1−n% × p)<0. (86)

Thus, the first item in the RHS of Eq. 83 is also larger than 0. Then we have for any
integer |N|,

d2h(p)

dp2
> 0, p ∈ [0, 1]. (87)

We finish proving the convexity of p + (1 − n%p)|N|(1 − p) for p ∈ [0, 1].

Discrete Event Dyn Syst

A.5 Solution to min
p∈[0,1]

{p + (1 − n%p)|N|(1 − p)

In Section A.3, we have proved Eq. 79, which is

P{ Ĵ(θn%) < Ĵ(θN,[1])} ≤ min
p∈[0,1]

{p + (1 − n%p)|N|(1 − p)}.

Thus, if

min
p∈[0,1]

{p + (1 − n%p)|N|(1 − p)} ≤ β0

happens, the following is guaranteed,

P{ Ĵ(θn%) < Ĵ(θN,[1])} ≤ β0.

We know from Section A.4, there is one and only one minimum of h(p), p ∈ [0, 1],
and this minimum appears within (0,1).

We should solve Eq. 82, which is dh(p)

dp = 0 to obtain the p corresponding to the
minimum. But it is difficult to obtain a closed form of p by Eq. 82.

There are at least two methods to address this difficulty. The first method is
numerical calculation. Since we have Eq. 87, which guarantees the convexity, the
gradient method can work very well. The second method is as follows.

What we want is min
p∈[0,1]

{p + (1 − n%p)|N|(1 − p)} ≤ β0. To make it hold, we only

need to find a p ∈ [0, 1] such that the following hold,

p + (1 − n%p)|N|(1 − p) ≤ β0. (88)

For a coefficient c, 0 < c < 1,

p = c × β0. (89)

Since p = c × β0 ∈ (0, 1), we can substitute Eq. 89 into Eq. 88, we have

c × β0 + (1 − n%c × β0)
|N|(1 − c × β0) ≤ β0. (90)

From Eq. 90, we obtain

n% ≥ 1

c × β0

⎧
⎨

⎩
1 − exp

⎧
⎨

⎩

ln
(

(1−c)β0

1−cβ0

)

|N|

⎫
⎬

⎭

⎫
⎬

⎭
, ∀c, 0 < c < 1. (91)

Equation 91 means, if a heuristic design is observed to be better than any
design in N, the heuristic design can be judged be within the top n% =
min

0<c<1

1
c×β0

{
1 − exp

{
ln
(

(1−c)β0
1−cβ0

)

|N|

}}
of the search space �, no matter what kind and how

large the noise is. In doing so, the probability of the Type II error is not larger than
the given level β0. We finish the proof of Eq. 31. Solving Eq. 91 by numerical method,
we obtain Table 3.

Discrete Event Dyn Syst

A.6 The quick formula and the closed form for n%

In this section, we shall prove that,

n% = 113.9

|N| , β0 = 0.05.

This is Eq. 34 in Theorem 1. And we will also prove,

min
0<c<1

1

c × β0

⎧
⎪⎪⎨

⎪⎪⎩
1 − exp

⎧
⎪⎪⎨

⎪⎪⎩

ln

(
(1 − c)β0

1 − cβ0

)

|N|

⎫
⎪⎪⎬

⎪⎪⎭

⎫
⎪⎪⎬

⎪⎪⎭
≤ 1

β0|N|

(

1 +
√

ln

(
1

β0

))2

.

If the above is true, the heuristic design can be judged to be within top n% with the
following expression,

n% = 1

β0|N|

(

1 +
√

ln

(
1

β0

))2

.

This is Eq. 36 in Theorem 1. Before we give the proof, we give a lemma.

Lemma 2 1 − exp(x) ≤ −x for any real x. And by simple transformations, we have,
ln(1 + x) ≤ x, x > −1.

Proof Let f (x) = exp(x) − 1 − x. We have

df (x)

dx
= exp(x) − 1,

d2 f (x)

dx2
= exp(x) > 0.

Thus, f (x) is convex. The only minimum appears at df (x)

dx = exp(x) − 1 = 0, solve this,
we obtain x = 0. Thus, the minimum of f (x) is, f (0) = exp(0) − 1 − 0 = 0. We then
have

f (x) = exp(x) − 1 − x ≥ 0.

Then, exp(x) ≥ 1 + x. Taking logarithm at both sides, we have, ln(1 + x) ≤
x, x > −1. �

Apply Lemma 2 to Eq. 91. For x = ln
(

(1−c)β0
1−cβ0

)

|N| we can easily establish

min
0<c<1

1

c × β0
{1 − exp(x)} ≤ min

0<c<1

1

c × β0
{−x} = min

0<c<1

− ln

(
(1 − c)β0

1 − cβ0

)

c × β0|N| . (92)

So, we can judge n% to be

n% = 1

|N| min
0<c<1

− ln

(
(1 − c)β0

1 − cβ0

)

c × β0
. (93)

Discrete Event Dyn Syst

Given β0, by the numerical method, we can find the c that makes min
0<c<1

− ln
(

(1−c)β0
1−cβ0

)

c×β0

achieve its minimum. We find out that when β0 = 0.05, the c that makes

min
0<c<1

− ln
(

(1−c)β0
1−cβ0

)

c×β0
achieve minimum is very near to c = 0.826. When c = 0.826, from

Eq. 93, we have

n% = 113.9

|N| , β0 = 0.05. (94)

To go further, we pay attention to the numerator of the RHS of Eq. 92,

− ln

(
(1 − c)β0

1 − cβ0

)
= ln

(
1 − cβ0

(1 − c)β0

)
. (95)

We have

0 <
1 − cβ0

(1 − c)β0
≤ 1

(1 − c)β0
. (96)

From Eq. 96, Eq. 95 can be changed to

ln

(
1 − cβ0

(1 − c)β0

)
≤ ln

(
1

(1 − c)β0

)

= ln

(
1

β0

)
+ ln

(
1

1 − c

)
= ln

(
1

β0

)
+ ln

(
1 + c

1 − c

)
. (97)

By Lemma 2, ln(1 + x) ≤ x, x > −1, we have for the second item of the RHS of
Eq. 97

ln

(
1 + c

1 − c

)
≤ c

1 − c
. (98)

From Eqs. 92, 95, 97 and 98, we have

min
0<c<1

1

c × β0

⎧
⎪⎪⎨

⎪⎪⎩
1−exp

⎧
⎪⎪⎨

⎪⎪⎩

ln

(
(1−c)β0

1−cβ0

)

|N|

⎫
⎪⎪⎬

⎪⎪⎭

⎫
⎪⎪⎬

⎪⎪⎭
≤ min

0<c<1

1

c × β0|N|
(

ln

(
1

β0

)
+ c

1−c

)

= min
0<c<1

1

β0|N|

⎛

⎜⎜
⎝

ln

(
1

β0

)

c
+ 1

1−c

⎞

⎟⎟
⎠ . (99)

We denote

f (c) =
ln

(
1

β0

)

c
+ 1

1 − c
. (100)

Discrete Event Dyn Syst

We want to find the minimum of this function. We have

df (c)
dc

=
− ln

(
1

β0

)

c2
+ 1

(1 − c)2
, (101)

d2 f (c)
dc2

=
2 ln

(
1

β0

)

c3
+ 2

(1 − c)3
> 0. (102)

Thus, f (c) is convex for 0 < c < 1. This is one and only one minimum for 0 < c < 1.
The minimum appears when

df (c)
dc

= 0. (103)

Solve it, we obtain

c =

√

ln

(
1

β0

)

1 +
√

ln

(
1

β0

) . (104)

Substitute this c into f (c), we obtain

min
0<c<1

f (c) =
(

1 +
√

ln

(
1

β0

))2

, (105)

based on which Eq. 36 can be easily derived.

References

Chen CH, Wu SD, Dai L (1999) Ordinal comparison of heuristic algorithms using stochastic opti-
mization. IEEE Trans Robot Autom 15(1):44–56

Chen CH, Lin J, Yücesan E, Chick SE (2000a) Simulation budget allocation for further enhancing
the efficiency of ordinal optimization. Discret Event Dyn Syst Theor Appl 10:251–270

Chen HC, Chen CH, Yücesan E (2000b) Computing efforts allocation for ordinal optimization and
discrete event simulation. IEEE Trans Automat Contr 45(5):960–964

Dorigo M, Gambardella LM (1999) Ant colony system: a cooperative learning approach to the
traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66

Dorigo M, Di Caro G, Gambardella LM (1999) Ant algorithms for discrete optimization. Artif Life
5(2):137–172

Ho YC (1989) Introduction to special issue on dynamics of dynamics of discrete event systems. Proc
IEEE 77(1):3–6

Ho YC (1999) An explanation of ordinal optimization: soft computing for hard problems. Inf Sci
113:169–192

Ho YC, Sreenivas R, Vakili P (1992) Ordinal optimization of discrete event dynamic systems.
J DEDS 2(2):61–88

Ho YC, Zhao QC, Jia QS (2007) Ordinal optimization: soft optimization for hard problems. Springer,
New York

Holland JH (1975) Adaptation in natural and artificial systems. University Michigan Press, Ann
Arbor

Discrete Event Dyn Syst

Hopfield JJ, Tank DW (1985) “Neural” computation of decisions in optimization problems. Biol
Cybern 52:141–152

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE int. conf. on neural networks,
1942–1948, Perth, Australia

Lau TWE, Ho YC (1997) Universal alignment probabilities and subset selection for ordinal opti-
mization. J Optim Theory Appl 93(3):455–489

Lin SY, Ho YC (2002) Universal alignment probability revisited. J Optim Theory Appl 113(2):399–
407

Mori H, Tani H (2003) A hybrid method of PTS and ordinal optimization for distribution system
service restoration. In: IEEE international conference on systems, man and cybernetics, vol 4,
pp 3476–3483

Pinedo M (2002) Scheduling theory, algorithms, and systems, 2nd edn. Prentice-Hall, Englewood
Cliffs

Shen Z, Bai H-X, Zhao YJ (2005) Ordinal optimization references list. http://cfins.au.tsinghua.edu.
cn/en/resource/index.php

Shen Z, Zhao QC, Jia QS, Sun J (2009a) Universal alignment probability revisited. J Optim Theory
Appl 141:371–376

Shen Z, Zhao QC, Jia QS (2009b) Quantifying heuristics in the ordinal optimization frame-
work. Technique report, Center for Intelligent and Networked Systems. http://www.cfins.au.
tsinghua.edu.cn/files/paper/Quantify_JDEDS09_full.pdf

Shi LY, Chen CH (2000) A new algorithm for stochastic discrete resource allocation optimization.
Discret Event Dyn Syst Theor Appl 10:271–294

Shi LY, Ólafsson S (2000) Nested partitions method for global optimization. Oper Res 48(3):390–407
Yen CH, Shan D, Wong H, Jang SS (2004) Solution of trim-loss problem by an integrated simulated

annealing and ordinal optimization approach. J Intell Manuf 15:701–709

Zhen Shen received the B.E. degree and the Ph.D. degree in 2004 and 2009 respectively from
Department of Automation, Tsinghua University, Beijing, China. Currently, he is an assistant
professor at Institute of Automation, Chinese Academy of Sciences. He was a visiting scholar at
Department of Manufacturing Engineering and Center for Information and Systems Engineering,
Boston University, MA, USA, from Oct. 2007 to Apr. 2008. He specializes in the area of the discrete
event dynamic systems (DEDS) theory and applications, and the optimization of complex systems.

http://cfins.au.tsinghua.edu.cn/en/resource/index.php
http://cfins.au.tsinghua.edu.cn/en/resource/index.php
http://www.cfins.au.tsinghua.edu.cn/files/paper/Quantify_JDEDS09_full.pdf
http://www.cfins.au.tsinghua.edu.cn/files/paper/Quantify_JDEDS09_full.pdf

Discrete Event Dyn Syst

Qian-Chuan Zhao received the B.E. degree in automatic control in July 1992, the B.S. degree in
applied mathematics in July 1992, and the Ph.D. degree in control theory and its applications in
July 1996, all from Tsinghua University, Beijing, China. He is currently a Professor and Associate
Director of the Center for Intelligent and Networked Systems (CFINS), Department of Automation,
Tsinghua University. He was a Visiting Scholar at Carnegie Mellon University, Pittsburgh, PA, and
Harvard University, Cambridge, MA, in 2000 and 2002, respectively. He was a Visiting Professor
at Cornell University, Ithaca, NY, in 2006. His research interests include modeling, control and
optimization for networked systems and applications. Dr. Zhao is an associate editor for the
Journal of Optimization Theory and Applications and an associate editor for IEEE Transactions
on Automation Science and Engineering. He is a Senior Member of IEEE.

Qing-Shan Jia received the B.E. degree in automation in July 2002 and the Ph.D. degree in
control science and engineering in July 2006, both from Tsinghua University, Beijing, China. He
has been a lecturer in CFINS, Department of Automation, Tsinghua University, since August
2006. He was a visiting scholar in the Division of Engineering and Applied Sciences, Harvard
University, Cambridge, MA, USA, from August 2006 to February 2007. His research interests
include performance evaluation and optimization of complex systems and stochastic optimization.
He is a member of IEEE.

	Quantifying Heuristics in the Ordinal Optimization Framework
	Abstract
	Key notations
	Introduction
	Preliminary
	Brief overview of Ordinal Optimization
	Brief overview of Hypothesis Testing

	Problem formulation
	Quantifying heuristics by Hypothesis Testing
	When there is no noise
	No noise, one heuristic design
	No noise, multiple heuristic designs

	When there is noise
	Noise existing, one heuristic design
	Noise existing, multiple heuristic designs

	Examples
	Conclusions
	Appendix A Proof of Theorem 1
	A.1 Maximum of the probability of making Type II error
	A.2 An upper bound for P{(n%)<(N,[1])}
	A.3 An upper bound of -(1-n%FW(x))|N|fW(x)dx
	A.4 The convexity of the bound in the RHS of Eq. 79
	A.5 Solution to minp[0,1]{p+(1-n%p)|N|(1-p)
	A.6 The quick formula and the closed form for n%

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

