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Abstract. Ramp metering has been developed as a local traffic management strategy
to alleviate congestion on freeways sections, however, the coordination of multiple ramps
metering still need more attention of effective control strategies on a larger freeway sec-
tion. The object of this paper is to use action-dependent heuristic dynamic programming
based on eligibility traces (ADHDP(λ)) method to implement coordinated ramp metering.
The traffic flow plant is a second order macroscopic traffic flow model. The whole coordi-
nated ramp metering problem is considered as an approximate optimal control problem. A
valid coordination performance index is proposed. ADHDP(λ) method is an effective and
fast learning control method to solve such problems. With the help of eligibility traces,
the learning rate is highly improved. Simulation studies on a hypothetical freeway are
reported to show that the proposed control scheme is efficient.
Keywords: Heuristic dynamic programming, Eligibility traces, Multiple ramps meter-
ing

1. Introduction. Ramp metering is implemented as a traffic signal that is placed at the
on-ramp of a freeway as is represented in Figure 1. Ramp metering means metering the
traffic allowed entering the freeway through the on-ramps, and it has been regarded as
the most efficient means to alleviate the freeway traffic condition. Ramp metering can
maintain uninterrupted, non-congested traffic flow on the freeway, and increase traffic
volume in mainline due to avoidance or reduction of congestion duration. Ramp metering
has been verified efficient both in theoretical and practical aspects [1]. Ramp metering
problems are divided into local ramp metering and multiple ramps metering problems.

The existing various local ramp control algorithms can be generally classified into two
categories: fixed time metering and traffic-responsive metering. The latter is proved to
be more effective in dealing with freeway congestion problems than the former. Typical
algorithms of this kind include occupancy algorithm [3], ALINEA (a linear local feedback
control algorithm) [4], and LQR (linear quadratic regulation) [5]. These metering algo-
rithms only provide linear control laws, so they may not be able to control the ramp system
which is known as a nonlinear model. For example, ALINEA responses concussively to
drastic traffic flow variations, causing unsafe effect on freeway.

Local ramp metering, only considering the local freeway traffic condition, could not
handle multiple ramps metering problems, because of the interacting influence of traffic
condition on the upstream and the downstream. Therefore, the coordinated ramp me-
tering which is based on the system-wide traffic information has attracted many experts’
interest. The multiple ramps metering problem is illustrated in Figure 2. The question
for multiple ramps metering becomes how the ramp metering should be designed taking
into account the interactions among the various ramps.
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Figure 1. A freeway section with both on and off ramps

METALINE [30] was a coordinated feedback control method that can be used to co-
ordinate control of several ramps. FLOW [31] was a heuristic area-wide coordinated
control strategy. Model predictive control (MPC) [32] based ramp metering determined
the appropriate metering rates by optimizing an objective function. Store-and-forward
[27] modeling of traffic networks was first suggested by Gazis and Potts, and widely used
in traffic control. There also existed some valid ideas from previous ramp metering algo-
rithms: the simple Helper [28] and the Bottleneck [31]. Although the above algorithms
achieved great success, they still possess some deficiency, e.g., most of them need prior
knowledge and accurate traffic flow models.

To solve the problems presented above and achieve optimal traffic conditions by ramp
metering, some researchers introduced neural network technique and further present the
adaptive dynamic programming (ADP) theory [7,13-15,24-25]. We applied ADHDP(λ)
theory to solve local ramp metering efficiently in previous studies [20]. In this paper, the
coordinated multiple ramps metering problems are fully investigated by ADHDP(λ).

This paper is organized as follows: Section II presents the traffic flow model of multiple
ramps metering. Section III applies the coordinated control method ADHDP(λ) to im-
plement coordinated ramps metering. In Section IV, numerical simulations are conducted
to demonstrate ADHDP(λ) method is effective to multiple ramps metering. Conclusions
are summarized in Section V.

2. Traffic Model of Coordinated Ramp Metering Control. The traffic model used
in this paper is originally derived by Payne [21] and modified by Cremer and May [22].
For a freeway lane which is subdivided into N sections with length Li(i = 1, ..., N), each
having at most one on-ramp and one off-ramp as shown schematically in Figure 1, the
evolution of the traffic flow is described by

ρi
t+1 = ρi

t +
T

Li
[qi−1

t − qi
t + ui

t − si
t] (1)

Figure 2. Schematic diagram of multiple ramps metering in a freeway section
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Here ρi
t (vehicles/km) is the average density per lane and qi

t (vehicles/h) is the traffic
flow leaving section i to enter section i + 1. ui

t(vehicles/h) is the entry ramp volume (i.e.
the control action) and si

t(vehicles/h) is the off-ramp volume. T (h) is the time increment,
Li(km) is the section length. 0 < α < 1 is the weighting factor, ∆t, µ, and κ are positive
constants. vi

t(km/h) is the average speed. Ve[ρ
i
t] is the mean speed equilibrium modeled

by

V e[ρi
t] = vf{1 − [

ρi
t

ρjam
]a}b (4)

Here vf , ρjam, a and b are constants to be identified for real traffic flow. The off-ramp
volume si

t is related to the traffic volumes qi−1
t through the equation si

t = εiqi−1
t , where

0 < ε < 1. Substituting this equation and (2) into (1) yields
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3. Action-Dependent Heuristic Dynamic Programming based on Eligibility
Traces. A typical structure of Action Dependent Heuristic Dynamic Programming (AD-
HDP) has two components, Critic Network and Action Network. The Action Network
outputs the control signal, and the Critic Network outputs an estimate of function Jt

(cost to go)in the Bellman equation of dynamic programming [10,11]. ADHDP can be
combined with eligibility traces to obtain a more effective learning method ADHDP(λ)
scheme, as is shown in Figure 3, where λ refers to the use of eligibility traces. Eligibility
traces are basic mechanisms of reinforcement learning. Action Network is the controller.
When the state xt inputs to the Action Network, the control signal ut is output. Then
both of the state and control signal are input to the Critic Network, and Jt is output.
Next is to train the Critic Network with the target by rt+Jt and train the Action Network
with the target of minimizing Jt. After ut is input to the plant, xt+1 is obtained.

3.1. The forward and backward view of ADHDP(λ). There are two ways proved
to be equivalent to explain ADHDP(λ). The first way is more theoretical, and the other
way is more mechanistic. In the forward view, the ADHDP(λ) method uses multi-step
future states. Rather than a single future state, n-step backups use a weighted average
of future states as a target for learning. ADHDP(λ) is really a spectrum of algorithms,
controlled by the continuous valued parameter λ. When λ=0, ADHDP(λ) uses the earliest
possible state as the target for learning. While λ=1, ADHDP(λ) uses the latest possible
state as the target. For other values of λ, the target for learning are distributed among
all of the states along the way. In the backward view, to overcome the shortcomings of
using knowledge to happen many steps later, which is involved in the forward view of
ADHDP(λ), we use additional memory variables associated with each state, which are
its eligibility traces. The eligibility traces for state x at time t is denoted et(x) which is
illustrated below. A detailed description can be acquired by referring to [8].
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3.2. The action network. The weights updating equations in the Action Network are
as follows. laction is the learning rate of the Action Network at time t, and waction

t is the
weight vector in the Action Network. The training of the Action Network is the same in
both ADHDP and ADHDP(λ) algorithms.

eaction
t = Jt (6)

Eaction
t =

1

2
(Eaction

t )2 (7)

waction
t+1 = waction

t + ∆waction
t (8)
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t

∂waction
t

] (9)
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t
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∂ut

∂ut
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t
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3.3. The critic network. The Critic Network outputs Jt, while Jt approximates the
discounted total reward-to-go. To be more quantitative, it approximates Rt at time t
given by (11), where Rt is the future accumulative reward-to-go value at time t.

Rt = rt+1 + γrt+2 + γ2rt+3 + ... (11)

We use the Critic Network to generate Jt as an approximate of Rt. Our aim is minimiz-
ing the following error measure over time. lcritic is the learning rate of the Critic Network
at time t, and wcritic

t is the weight vector in the Critic Network.The weight update rule
for the network is given by the following equations. The difference between ADHDP and
ADHDP(λ) is the training of the Critic Network.

ecritic
t = γJt − [Jt−1 − rt] (12)

Ecritic
t =

1

2
(ecritic

t )2 (13)

wcritic
t+1 = wcritic

t + ∆wcritic
t (14)

∆wcritic
t = lcriticet(x)δt (15)

et(x) = γλet−1(x) +
∂Jt

∂wcritic
t

(16)

Figure 3. Schematic diagram for implementations of ADHDP(λ)
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As we all know, the ADHDP structures learn the environment according to the Critic
Network. So the learning efficiency of the Critic Network is critical. The ADHDP(λ)
average n-step backups and then it integrate all the n-step backups’ rewards. With the
introducing of eligibility traces, the learning efficiency of the Critic Network is greatly
improved, so ADHDP(λ) can efficiently handle more complex coordinated ramps metering
problems.

3.4. ADHDP(λ) for coordinated ramps metering. In this section, we use ADHDP(λ)
to solve the multiple ramps metering control problem. As shown in Figure 2, a freeway
is composed of ten interactive sections. The most important control objectives for ramp
metering can be summarized as follows: to maximize the traffic flow of the freeway, maxi-
mize the mean speed of the vehicles, improve the safety of traffic operation on the freeway
and minimize the total time spent (TTS) by all the vehicles in the Network. Papageorgiou
[33] showed that, with the condition that the network inflow is known, to keep the traffic
density consistent with critical density all the time is equivalent to maximize the traffic
flow of the freeway. So in this paper, we define the system performance index as (17),
where ρdesire is the traffic density which is little lower than the critical density. We can
maintain the traffic density ρi

t around ρdesire all the time by minimizing such a system
performance through regulating the ramp metering rate ui

t.

rt = c

10∑
n=1

ζn(ρn
t − ρdesire)2 (17)

Here, c is a positive parameter and ζn(n = 1, · · · , 10) are weighing parameters. The
summation of ζ is 1. These parameters are set to ζn = 1

10
. The difference between local

ramp metering and coordinated multiple ramp metering is that we have to consider the
interactions among different sections in the whole freeway. As shown in Figure 2 , there
are on-ramps and off-ramps in section 2, 4, 6 and 8. When applying ADHDP(λ), we
consider the performances of all sections in (17). Then the coordinated ramp metering of
the whole freeway is achieved.

The coordination of the metering rates of the different on-ramps ensures that the control
actions taken at different locations in the network reinforce rather than cancel each other.
In this way, coordination of ramp metering often leads to better results than the combi-
nation of multiple independently locally controlled ramp metering. As shown in Figure
2, there are four ramp metering controllers in this freeway. With ADHDP(λ) method,
the four controllers have the same parameters. For the training of both the networks, we
define Kmax as the maximal epoch. Figure 4 shows the flowchart of an ADHDP(λ) trial,
where the training details of Critic and Action Networks are given as follows:

The algorithm for the Critic training cycle

1. Initialize traffic densities, average speeds;
2. Normalize xi

t and input it to the Action Network to obtain ui
t;

3. Input ui
t to the Critic Network in addition with xi

t, obtain Jt;
4. Use eligibility traces to train the Critic Network at time t − 1 with the target given

by rt + Jt;
5. Input ui

t to the plant and obtain xi
t+1;

6. If xi
t+1 is out of the specified range, 8;

7. If t < Kmax, increment t and go to 2.;
8. Go to the Action training cycle.

The algorithm for the Action training cycle:



3476 X. BAI, D. ZHAO AND J. YI

1. Normalize xi
t and input it to the training Action Network to obtain new ui

t;
2. Input ui

t to the Critic Network in addition with xi
t, obtain Jt;

3. Train the Action Network with the target of minimizing Jt;
4. Input xi

t to the trained Action Network,obtain new ui
t;

5. Input ui
t to the plant and obtain xi

t+1;
6. If xi

t+1 is out of the specified range, 9;
7. If t < Kmax, increment k and go to 2.;
8. Check the control performance, stop if it is acceptable;
9. Go to the Critic training cycle.

Figure 4. The algorithm flow chart

3.5. ALINEA for multiple ramps metering. ALINEA [4] is a linearized feedback
control algorithm that adjusts the metering rate in order to keep the occupancy down-
stream of on-ramps at a desired level. ALINEA maintains the desired level of occupancy
by using feedback regulation. The ALINEA closed-loop ramp metering strategy is

uALINEA
t = uALINEA

t−1 + KA
[
ρdesire − ρt

]
(18)

where KA is a regular parameter and uALINEA
t is the control signal.

ALINEA is widely adopted for the control of ramp metering around the world, it is
used here as a benchmark to compare the performance of ADHDP(λ).

4. Simulation. The performance of two different types of traffic-responsive ramp meter-
ing strategies ALINEA and ADHDP(λ) are analyzed using simulation. Then the system
performance index selection for ADHDP(λ) is deeply studied.
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4.1. Tests of ADHDP(λ) for multiple ramps metering. In this section, we will
demonstrate the use of ADHDP(λ) for the coordinated control of ramp metering. The
case is studied upon a hypothetical freeway consisting of ten sections with four on-ramp
and four off-ramps, as shown in Figure 2. The Action Network and Critic Network are
both implemented using multilayer feedforward neural Networks. The parameters of the
Action Network and the Critic Network are initialized randomly.

The parameters of the traffic model are given as:
T = 15s, Li = 0.6km, α = 0.9, εi = 0.15, ∆t = 36s, µ = 21.6km2/h, κ = 20veh/km,

vf = 123km/h, ρjam = 150veh/km. The critical density in the freeway is 47 veh/km. So
we set ρdesire = 45veh/km. The ramp metering rate is confined in the range of 0 to 1000.
Parameters are chosen as c=0.5, γ=0.5, KA=50.

In the first test, we study the tracking capability and transient responses of controllers
in resisting stochastic variations of the traffic demand. With system states and traffic
demand as shown in Figure 5, the ALINEA and ADHDP(λ) controllers are employed for
control. It can be seen clearly from Figure 6 and Figure 7 that the ADHDP(λ) controller
results in smaller overshoot than ALINEA do. Test results show that even if the inflow
volumes are large, ALENEA and ADHDP(λ) all work well when freeway inflow volumes
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Figure 6. Traffic flow of ALINEA method in the first test
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Table 1. Initial conditions of sectional density and speed for the second test

Section No 1 2 3 4 5 6 7 8 9 10
ρi

0 45 45 45 45 45 45 45 70 70 45
vi

0 78 78 78 78 78 78 78 40 40 78

vary mildly. The performance of ALENEA relies on the tuning of KA, but ADHDP(λ)
has better self-adaptive capability.

In the second test, we check the ADHDP(λ) controller’s capability of resolving conges-
tions. Specifically, we initialize the system states as those listed in Table 1, which are
calculated according to (1)-(3). With this condition, we find that the ALINEA ramp me-
tering algorithm leads to the traffic breakdown, as shown in Figure 8. When the densities
are far more than the critical density, the traffic model is not fit for this situation, so only
the results in the first 30 steps are shown in Figure 8. However, as we can see from Figure
9, ADHDP(λ) has remarkable improvement in the smoothness and efficiency of keeping
the maximal traffic flow; the ADHDP(λ) controller can handle traffic congestion well, and
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Figure 7. Traffic flow of ADHDP(λ) method in the first test
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COORDINATED MULTIPLE RAMPS METERING USING ADHDP(λ) 3479

traffic density of all the sections are controlled to the desired densities by generating co-
ordinated metering rates. ADHDP(λ) works well in the stochastic, nonlinear and varying
environment, although it is introduced in a deterministic form in the previous section.

5. Conclusions. Ramp-metering control strategy is often implemented during rush hours
in heavily congested areas. In this paper, ADHDP(λ) method is used as an advanced
control technique to determine the appropriate metering rates for coordinated ramp me-
tering. The typical ALINEA feedback control methodology is adopted for comparison.
ADHDP(λ) method provides many attractive features. Simulation results indicate that
ADHDP(λ) method has better control performance compared to the ALINEA ramp me-
tering algorithm. ADHDP(λ) controllers make use of all available mainstream measure-
ments on a freeway stretch to calculate simultaneously the ramp volume values for all
controllable ramps included in the same stretch. This provides potential improvements
because of more comprehensive information provision and coordinated control actions.
ADHDP(λ) method combines eligibility traces and ADHDP, so it can offer significantly
faster learning than traditional ADHDP method. The ADHDP(λ) controller can gener-
ate more smooth control actions under drastically varying traffic inflow, which ensures
more safety and also results in more efficiency in keeping the maximal traffic flow. In this
article, the coordinated control of ramp metering problem is qualified as an instance, and
more complex traffic control problems can be treated as well.
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