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This paper presents a binary tree search algorithm for the three dimensional container loading problem
(3D-CLP). The 3D-CLP is about how to load a subset of a given set of rectangular boxes into a rectangular
container, such that the packing volume is maximized. In this algorithm, all the boxes are grouped into
strips and layers while three constraints, i.e., full support constraint, orientation constraint and guillotine
cutting constraint are satisfied. A binary tree is created where each tree node denotes a container loading
plan. For a non-root each node, the layer set of its left (or right) child is obtained by inserting a directed
layer into its layer set. A directed layer is parallel (or perpendicular) to the left side of the container. Each
leaf node denotes a complete container loading plan. The solution is the layer set whose total volume of
the boxes is the greatest among all tree nodes. The proposed algorithm achieves good results for the
well-known 3D-CLP instances suggested by Bischoff and Ratcliff with reasonable computing time.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Cutting and packing problems (Dyckhoff & Finke, 1992) are
classic problems focusing on the optimal use of resources. Cutting
problems concern the best utilization of materials such as wood,
steel and cloth, while packing problems concern the best capacity
use of a given packing space. The effective use of material and
transport capacities is of great economic importance in production
and distribution processes. It also contributes to the economical
utilization of natural resources and to relieving the traffic
congestion.

This paper focuses on one of the packing problems, i.e., the
three-dimensional container loading problem (3D-CLP). According
to a recent typology proposed by Wäscher, Haußner, and
Schumann (2007), this problem is in the broader category of the
single knapsack problems (SKP) which is also called orthogonal
packing problems (OPP). The problem is defined as follows: A
container which is a large cuboid and a set of boxes which are
small cuboids are given; usually the total volume of the boxes
exceeds the container’s volume. We assume that the profit of a
box is proportional to its volume. A feasible arrangement of a
sub-set of the given boxes is to be identified in such a way that:
(1) the packed volume of the container is maximized, and (2)
where applicable, additional constraints are met. A box arrange-
ment is considered to be feasible if:

— Each box is placed completely in the container, with no two
boxes overlapping in space; and

— The sides of each box are parallel to the container’s boundary
surfaces.

A box type is defined by the three side dimensions of a box and
its placement constraints. A box type may contain one or more
boxes of the same dimensions and placement constraints. A box
set is characterized as homogeneous if it only contains one box type.
A box set is considered as a weakly heterogeneous one if it only
contains a few box types, and each box type includes a relatively
large number of boxes. On the other hand, a box set is regarded
as strongly heterogeneous if it includes many box types, and each
box type only contains a few boxes.

In many practical applications, 3D-CLP is often subject to a large
variety of constraints. A comprehensive and detailed survey about
the constraints in container loading problems can be found in
Zhang, Peng, and Leung (2012) and Zhang, Peng, and Zhang
(2012). Three well-known constraints that are discussed e.g., by
Bortfeldt and Wäscher (2013), Fanslau and Bortfeldt (2010),
Zhang, Peng, and Leung (2012) and Zhang, Peng, and Zhang (2012):

(C1) Orientation constraint. There are up to 6 box orientations
possible, but only 3 vertical box orientations. For certain box
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types, up to 2 of the maximal 3 possible vertical orientations are
prohibited.
(C2) Support constraint. The bottom of each box which is not
placed on the floor of the container must be supported
completely (i.e., 100%) by other boxes underneath.
(C3) Guillotine cutting constraint. All boxes in a packing plan can
be reproduced by a series of guillotine cuts. The cutting area of a
guillotine cut lies parallel to a boundary surface of the con-
tainer, and the cut piece is always completely separated in
two smaller parts.

The constraints (C1) and (C2) appear frequently in practical
packing situations (Bischoff & Ratcliff, 1995). Both the constraints
(C1) and (C3) are relevant in 3D cutting because automated cutting
machines sometimes can only perform guillotine cuts, whereas an
orientation constraint is presented frequently if the items to be cut
are decorated or corrugated. Sometimes when a forklift is
employed to load (unload) some cargoes into (from) a container,
the constraints (C3) should be fulfilled so as to improve its
efficiency.

This paper presents a binary tree search method for 3D-CLP
where the constraints (C1), (C2) and (C3) are all fulfilled. The rest
of the paper is organized as follows. In Section 2, we provide a
literature review of 3D-CLP. In Section 3, we present the basic con-
cepts for 3D-CLP and for the proposed method. In Section 4, we
analyze the results of the proposed method on BR1–BR15, and
compare the proposed method with other methods. Finally in Sec-
tion 5, we summarize the paper and present some perspectives for
future research.

2. Literature review

The three-dimensional container loading problem is a typical
NP-hard problem (Bischoff & Marriott, 1990), and therefore it
cannot be solved by polynomial-time optimal algorithms. Exact
algorithms for container loading (Hadjiconstantinou &
Christofides, 1995; Martello & Vigo, 1998; Fekete, Schepers, &
van der Veen, 2007) are efficient for small and medium instances.
However they are usually confronted with the situation called
combinatorial space explosion when the number of box types
increases. As a result, heuristic methods prove to be a more realis-
tic alternative of dealing with the three-dimensional container
loading problem. Heuristic methods may get a suboptimal solution
but they can produce good enough solutions in a reasonable time-
frame. Many researchers provided various heuristic methods for
solving the 3D-CLP.

Heuristic methods for the 3D-CLP can be divided into two
groups according to the method utilized:

(1) Tree search methods. Tree search or graph search methods
were successfully utilized in the 3D-CLP. Several tree search
methods were provided e.g., by Terno, Scheithauer,
Sommerweiß, and Rieme (2000), Hifi (2002), Eley (2002)
and Pisinger (2002). An And/Or graph search method is
suggested by Morabito and Arenales (1994). A caving degree
based flake arrangement approach for the container loading
problem is presented by He and Huang (2010).

(2) Non tree search methods. Non tree search methods include
classic heuristic methods and intelligent heuristic methods.
The former for solving the 3D-CLP were presented by
Bischoff, Janetz, and Ratcliff (1995), Bischoff and Ratcliff
(1995), and Lim, Rodrigues, and Wang (2003), while the lat-
ter are the most used method types for the 3D-CLP in recent
years. Genetic algorithms (GAs) were utilized by Hemminki
(1994), Gehring and Bortfeldt (1997), Gehring and Bortfeldt
(2002), and Bortfeldt and Gehring (2001). Simulated
annealing methods (SAs) were provided by Sixt (1996) and
Mack, Bortfeldt, and Gehring (2004). Tabu search algorithms
(TSs) were suggested by Sixt (1996), Bortfeldt and Gehring
(1998), Bortfeldt, Gehring, and Mack (2003). Local search
methods were suggested by Faroe, Pisinger, and
Zachariasen (2003) and Mack et al. (2004). Moura and
Oliveira (2005) as well as Parreno, Alvarez-Valdes, Oliveira,
and Tamarit (2007) introduce a greedy randomized adaptive
search procedure (GRASP). Egeblad and Pisinger (2009) sug-
gest a new heuristic algorithm based on sequence triple.

According to the packing approaches, Pisinger (2002) grouped
these methods into five classes which are named wall building
approach (suggested e.g., by Bortfeldt & Gehring, 2001; George &
Robinson, 1980; Pisinger, 2002), block building approach (repre-
sentatives of the approach are the TS method from Bortfeldt
et al. (2003), Eley (2002), Fanslau and Bortfeldt (2010), Zhang,
Peng, and Leung (2012), Zhang, Peng, and Zhang (2012, and the
SA/TS hybrid method from Mack et al. (2004), horizontal layer
building approach (realized e.g., by Bischoff et al., 1995; Terno
et al., 2000), stack building approach (presented e.g., by Bischoff
& Ratcliff, 1995; Gehring & Bortfeldt, 1997) and guillotine cutting
approach(mixed with graph search method by Morabito &
Arenales, 1994). Otherwise, heuristic algorithms based on the idea
of caving degree were proposed by Huang and He (2009), He and
Huang (2010), 2011). As far as we know, a tree search algorithm
based on block building approach by Zhang, Peng, and Leung
(2012) achieved the best solutions on the classic data set from
Bischoff and Ratcliff (1995) and Davies and Bischoff (1998).

The great majority of the methods mentioned above obey the
orientation constraint (C1) and the support constraint (C2) as well.
Some methods also include further constraints from the packing
context in the problem, e.g., a weight constraint for the freight
(seen in Terno et al., 2000 and Bortfeldt & Gehring, 2001). A heuris-
tic algorithm for container loading of furniture by Egeblad,
Garavelli, Lisi, and Pisinger (2010) is remarkable where a large
variety of irregular items are considered and many practical
constraints are satisfied.
3. The binary tree search algorithm

In this paper we refer to our binary tree search method as HBTS
(Heuristic Binary Tree Search Algorithm). HBTS and the algorithm
by Pisinger (2002) are both tree search algorithms based on wall
building. The diagrams of the container loading plans obtained
by HBTS and the algorithm by Pisinger (2002) are shown in
Fig. 1. The number on each layer indicates its loading order in
the corresponding plan. It is obvious that HBTS differs from the
algorithm by Pisinger (2002), in terms of that, each layer can be
separated from the layer set according to its loading order by a
guillotine cutting.

3.1. Basic concepts

First some basic concepts are presented and terminological
agreements are made.

As shown in Fig. 2, a container is placed in the first octant of a
3D coordinates system (3D-CS). The terms such as ‘‘left’’, ‘‘top’’
are illustrated. Let

C ¼ ðlen;wid; heiÞ ð1Þ

denote a container. Symbols len, wid and hei denote the container
length, width and height, respectively.



Fig. 1. The diagrams of two container loading plans.
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Fig. 2. Container in 3D coordinates system.
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Let

B ¼ fb1; b2; . . . ; bmg ð2:1Þ

be the box set which contains m box types. bi is the ith box type in
the set that is defined as

bi ¼ ðli;wi; hi;di;ai;bi; ciÞ ð2:2Þ

where the symbols li, wi and hi are the length, width and height of bi,
respectively. The symbol di is the number of the boxes of bi. Fig. 3
displays the dimensions and the lying orientation of bi. The values
of the symbols ai, bi and ci and their corresponding implications
are listed:

ai ¼
1 ðif the orientations shown in Fig: 3ðbÞ are allowedÞ
0 ðif the orientations shown in Fig: 3ðbÞ are prohibitedÞ

�
;

bi¼
1 ðif the orientations shown in Fig: 3ðcÞ are allowedÞ
0 ðif the orientations shown in Fig: 3ðcÞ are prohibitedÞ

�
and;
(a)
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Fig. 3. An box and its lying orientat
ci ¼
1 ðif the orientations shown in Fig: 3ðdÞ are allowedÞ
0 ðif the orientations shown in Fig: 3ðdÞ are prohibitedÞ

�
:

Therefore the solution of container loading can be obtained by
solving the following integer programming (IP) problem:

max vP ¼
Xm

i¼1

liwihiqijQ is a feasible solution;qi is an integer;06qi6di;i¼1;2; . . . ;m

( )
;

where qi is the frequency of type-i boxes (i = 1,2, . . ., m) in the con-
tainer and is therefore the decision variable. Q = {q1, q2, . . ., qm} is
the set of qi (i = 1,2, . . ., m).

A cuboid (box, envelope cuboid of a strip and layer, empty space
in the container) is referred to as oriented if it may no longer be
turned around the 3D-CS. An oriented cuboid lies ‘‘somewhere’’
in the first octant of the 3D-CS and parallel to its axes. We assume
that the corner nearest to the origin of the 3D-CS is the reference
corner of an oriented cuboid. The mx, my, and mz denote the three
dimensions of an oriented cuboid in the coordinate directions,
respectively.

A residual space is an oriented cuboid space in the container
given by its three side dimensions and its reference corner. The
mz of each residual space in the presented method always equals
the mz of the container. An example for a residual space with
two placed layers is shown in Fig. 4.

A residual space is denoted as

R ¼ ðlr;wr;heiÞ ð3Þ

where lr, wr and hei are its mx, my and mz, respectively. If a residual
space is not completely rectangular, we consider the mx, my and mz
of the maximum cuboid inside it as its mx, my and mz, respectively.
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As shown in Fig. 5, the boxes in each strip (called s) are arranged
along a straight line which is parallel to the z axis in the 3D-CS. The
surfaces of each box must be parallel to one of the three planes: xy,
xz and yz in Fig. 5. The boxes should also be arranged such that s is
no longer in height than the container and the volume of the enve-
lope cuboid (see Fig. 5(a)) of s is minimized. Let ls and ws be the
length and width (Generally the length is not shorter than the
width) of the envelope cuboid. The filling rate of s is defined as:

frs ¼
Xm

i¼1

liwihipi=ðls
�ws�heiÞ ð4Þ

where pi is the frequency of bi in s.
Let

S ¼ fs1; s2; � � � ; sng ð5Þ

be a strip set which contains n strips.
As shown in Fig 5(b), the strips in each layer (called l) are

arranged along a straight line parallel to either x or y axis in the
3D-CS. The surfaces of the envelope cuboid of each strip should
be parallel to xy plane, xz plane or yz plane. The strips in l should
also be arranged such that the volume of the envelope cuboid
(see Fig. 5(b)) is minimized. The envelope cuboid must be no
longer in length than mx (or my) of the corresponding residual
Envelope 
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Fig. 5. Strip, layer and the
space if l is placed parallel to x (or y) axis. Let ll and thickl be the
length and width of the envelope cuboid of the layer, respectively.
ll is appointed to equal mx (or my) if l is placed parallel to x (or y)
axis. The filling rate of l is defined as:

frll ¼

Xn

j¼1

Xm

i¼1

liwihipij=ðmx�thickl�heiÞ ðif l lies parallel to x axisÞ

Xn

j¼1

Xm

i¼1

liwihipij=ðmy�thickl�heiÞ ðif l lies parallel to y axisÞ

8>>>><
>>>>:

ð6Þ

where pij is the frequency of bi in sj (i = 1,2, . . . ,m; j = 1,2, . . . ,n).
As illustrated in Fig. 5, all the strips in a layer can be separated

from the layer by a set of parallel guillotine cuttings. Similarly, all
the boxes in a strip also can be separated from the strip by a set of
parallel guillotine cuttings.

The computational time of HBTS mainly consists of the time to
solve knapsack problems. Therefore we try to use the branch-and-
bound algorithm to reduce the number of times the knapsack
problems are solved. We should record the parameters with that
each strip is created. Thus we can create a strip by copying a
similar record instead of by solving a knapsack problem. Let

KnapRecStrip ¼ ðh c; l c;w c; INPUT;OUTPUTÞ ð7Þ

be the strip creating record where h_c, l_c, w_c, INPUT, and OUTPUT
denote the height, the length, the width of the envelope cuboid of
the strip, the candidate box set, and the subset that is chosen to
form the strip, respectively. According to the Branch & Bound
theory (Lawler & Wood, 1966; Narendra & Fukunaga, 1977), we
can confirm that OUTPUT must be upper bound of the knapsack
problem whose input (denoted as INPUT1) is a subset of INPUT. If
OUTPUT is a subset of INPUT1, OUTPUT must be the output of solving
the knapsack problem whose input is INPUT1.

After a strip is created by solving a knapsack problem, we apply
Formula (7) to recording the inputs and outputs of the knapsack
problem. Through this recording, when we try to create a strip,
we can create it by referring to these records instead of solving a
knapsack problem. As a result, the total time to compute a
container loading plan will be reduced significantly.

3.2. The overall algorithm

The binary tree for searching a good three dimensional con-
tainer loading plan is shown in Fig. 6. Each tree node is the top
view of a container loading plan in the 3D-CS. Each leaf node must
be a complete container loading plan. A container loading plan is
Envelope 
cuboid 

of a layer

ll
thickl

(b)

ir envelope cuboids.
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considered as complete if the residual space of the container cannot
accommodate any remaining boxes.

The length and width of a strip are determined before the strip
is created. The length ls and width ws are always equal to two
dimensions of the length, width and height of one box in the box
set B, respectively. We create strips one by one from B by a greedy
strategy. To explain this strategy, firstly we introduce some
definitions.

Haðbi; ls;wsÞ ¼
hi ifðmaxfli;wig6 ls; minfli;wig6ws; ai ¼ 1Þ
þ1 otherwise

�
ð8:1Þ

(8.1) means the height of the envelope cuboid of bi in a strip with
the length ls and width ws if the height of bi are parallel to z axis.

Hbðbi; ls;wsÞ ¼
li ifðmaxfwi;hig6 ls; minfwi;hig6ws; bi ¼ 1Þ
þ1 otherwise

�
ð8:2Þ

(8.2) means the height of the envelope cuboid of bi in the strip if the
length of bi are parallel to z axis.

Hcðbi; ls;wsÞ ¼
wi ifðmaxfli;hig 6 ls; minfli; hig 6 ws; ci ¼ 1Þ
þ1 otherwise

�
ð8:3Þ

(8.3) means the height of the envelope cuboid of bi in the strip if the
width of bi are parallel to z axis. The value +1 in Formula (8.1),
(8.2), (8.3) means the corresponding orientations are prohibited or
the box exceeds the boundary of the envelope cuboid of the strip.

Therefore it is obvious that

Hðbi; ls;wsÞ ¼minfHaðbi; ls;wsÞ;Hbðbi; ls;wsÞ;Hcðbi; ls;wsÞg ð9Þ

is the height of the envelope cuboid of bi in a strip with the length ls
and width ws.
Fig. 6. The binary tree for searching
Let

KSstripðhei; ls;wsÞ ¼max
Xm

i¼1

liwihiqi

hei�ls�ws

Q ¼fq1;q2; . . . ;qmg
is a feasible solution;

qi 6 di;
Xm

i¼1

q�i Hðbi; ls;wsÞ6hei;

i¼1;2; . . . ;m

������������

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
ð10Þ

denote a one dimensional knapsack model to generate a strip with
the length ls and width ws where qi is the frequency of bi in the
strip.

When we group a box set into a strip set, we utilize two of the
three sizes (length, width and height) of each box as the length and
width to create a strip. Then we select a strip from the obtained
strips and insert it into the strip set. If we select the strip with fill-
ing rate closest to a given value (usually in [0.9, 1]), we can usually
get a better container loading plan than selecting the strip with the
highest filling rate. Therefore we define a function

closest
attp

fMg ð11Þ

that returns the number that is closest to attp in the numeric set M.
Herein attp is called attraction point. Usually attp is in [0.9, 1].

The mathematical model

stripaðhei; lr;wr;attpÞ¼ closest
attp

KSstripðhei; li;wiÞ
maxfli;wig6maxflr;wrg;
minfli;wig6minflr;wrg;
ai ¼1; i¼1;2; . . . ;m

�������
8><
>:

9>=
>;

ð12:1Þ

is to get a strip whose length and width equal the length and width
of one of the boxes in B.

Similarly, the model

stripbðhei;lr;wr;attpÞ¼closest
attp

KSstripðhei;wi;hiÞ
maxfwi;hig6maxflr;wrg;
minfwi;hig6minflr;wrg;
bi¼1; i¼1;2;...;m

�������
8><
>:

9>=
>;

ð12:2Þ
a good container loading plan.



Fig. 7. Example solution for weakly heterogeneous instance.
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is to get a strip whose length and width equal the width and height
of one of the boxes in B. And

stripcðhei; lr;wr;attpÞ ¼ closest
attp

KSstripðhei; li;hiÞ

maxfli;hig6maxflr;wrg;

minfli;hig6minflr;wrg;

ci ¼ 1; i¼ 1;2; . . . ;m

��������

8>><
>>:

9>>=
>>;

ð12:3Þ

is to get a strip whose length and width equal the length and height
of one of the boxes in B.

In Formulas (12.1), (12.2), (12.3), attp is an attraction point in
[0.9, 1]. lr, wr and hei are the length and width of the current resid-
ual space and the height of the container, respectively.

Then we define

stripðhei; lr;wr; attpÞ ¼ closest
attp

stripaðhei; lr;wr; attpÞ;

stripbðhei; lr;wr; attpÞ;

stripcðhei; lr;wr; attpÞ

8>><
>>:

9>>=
>>; ð13Þ

as the mathematical model to generate a strip according to the
given box set and residual space. We repeatedly solve the mathe-
matical model in Formula (13) until all the boxes are converted into
strips. Then we get a strip set S = {s1, s2, . . ., sn}.

If we create a layer from a strip set S, the thickness of a layer is
always equal to the length or width of one strip in S. We also create
a layer from S by a greedy strategy. Firstly some definitions are
presented.

Lðsi; thicklÞ ¼

lsi ifðlsi > thickl & wsi 6 thicklÞ

wsi ifðlsi 6 thickl & wsi 6 thicklÞ

þ1 otherwise

8>><
>>: ð14Þ

(14) means the length of the envelope cuboid of the strip si in a
layer with the thickness thickl. The strip must be placed such that
it does not exceed the boundary of the layer. The value +1 means
si cannot be placed in a layer with the thickness thickl.

Let

KSlayerðhei; ll;thicklÞ¼max
Pn

i¼1Vi

hei�ll�thickl

P¼fp1;p2; . . . ;png is a feasible solution;

pi 2f0;1g;
Xn

i¼1

p�i Lðsi;thicklÞ6 ll;

i¼1;2; . . . ;n

���������

8>>><
>>>:

9>>>=
>>>;

ð15Þ

denote a one-dimensional knapsack model to generate a layer with
the length ll and thickness thickl. Herein Vi is the total volume of the
boxes in the strip si. And pi indicates whether si is included in the
layer or not (0 not included; 1 included).

The mathematical model

layerxðlrÞ ¼ max

KSlayerðlr; lsiÞji ¼ 1;2; . . . ; n

[

KSlayerðlr;wsiÞji ¼ 1;2; . . . ; n

8>><
>>:

9>>=
>>; ð16Þ

is to get a layer whose length equals the length of the current resid-
ual space. lr is the length of the current residual space.

The mathematical model

layeryðwrÞ ¼ max

KSlayerðwr; lsiÞji ¼ 1;2; . . . ; n

[

KSlayerðwr;wsiÞji ¼ 1;2; . . . ;n

8>><
>>:

9>>=
>>; ð17Þ

is to get a layer whose length equals the width of the current resid-
ual space. wr is the width of the current residual space.
A container loading plan may be denoted as a layer set. In the
set, some layers are parallel to the left side of the container while
others are perpendicular to it.

In the presented binary tree, each tree node denotes a unique
layer set. The root node denotes an empty layer set that includes
no layers. For each non-root node, we can get the layer set of its left
child by solving Formula (16). Similarly, we can get the layer set of
its right child by solving Formula (17). Obviously, the solution is
the layer set in which the total volume of the boxes is greater than
the others among the tree.

The overall algorithm of HBTS is described in Algorithm 1. In
Algorithm 1, C, B and attp represent the container, the box set
and the attraction point (defined in Formula (11)), respectively.
The layer set Lleft denotes the best container loading plan in
the left child tree while Lright denotes the best container loading
plan in the right child tree. Lleft is obtained by solving the algo-
rithm CreateLeftChildTree (described in Algorithm 2) while Lright

is obtained by solving the algorithm CreateRightChildTree
(described in Algorithm 3). Algorithm 1 returns Lleft if the total
volume of the boxes in Lleft is higher than the one in Lright. Other-
wise, it returns Lright.

Algorithm 1

HeuristicBinary TreeSearch (C, B, attp)
Lleft: =CreateLeftChildTree (B, len, wid, hei, attp)
Lright: =CreateRightChildTree (B, len, wid, hei, attp)
if(the total volume of the boxes in Lleft P the total volume of

the boxes in Lright) return Lleft

else return Lright

As shown in Algorithm 2, CreateLeftChildTree is invoked
recursively to create the left child tree of a tree node in the bin-
ary tree (shown in Fig. 7). If the residual space (lr �wr � hei)
cannot accommodate any box left in the box set B, Algorithm
2 returns an empty layer set. Otherwise, B is grouped into a
strip set S. Then a layer l is obtained by solving Formula (16).
Notice that l is parallel to the left side of the container. And
then the boxes that are included in l are removed from B. Cre-
ateLeftChildTree is invoked again to create the left child tree of
the current tree node while CreateRightChildTree (described in



26 S. Liu et al. / Computers & Industrial Engineering 75 (2014) 20–30
Algorithm 3) is invoked to create the right child tree. In the end,
Algorithm 2 returns the layer set where the total volume of the
boxes is the highest in the left child tree of the current tree
node.

Algorithm 2

CreateLeftChildTree (B, lr, wr, hei, attp)
if(B contains boxes that can be accommodated by the

residual space (lr � wr � hei))
S: =CreateStripSet (B, lr, wr, hei, attp) //create a strip set

from the box set B
l: =solve Formula (16) with the strip set S and the layer

length lr
remove the boxes which are included in l from B
Lleft: =l + CreateLeftChildTree(B, lr, wr � l.thickl, hei, attp)
Lright: =l + CreateRightChildTree(B,lr,wr � l.thickl,hei,attp)

if(the total volume of the boxes in Lleft P the total
volume of the boxes in Lright) return Lleft

else return Lright

else return £

CreateRightChildTree (see Algorithm 3) is invoked recursively to
create the right child tree of a tree node in the binary tree (shown
in Fig. 7). If the residual space (lr �wr � hei) cannot accommodate
any box in the box set B, Algorithm 3 returns an empty layer set.
Otherwise, B is firstly grouped into a strip set S. Then a layer l is
obtained by solving Formula (17). Notice that l is perpendicular to
the left side of the container. And then the boxes that are included
in l are removed from B. CreateRightChildTree is invoked again to
create the right child tree of the current tree node while CreateLeft-
ChildTree (described in Algorithm 2) is invoked to create the left
child tree. At last Algorithm 3 returns the layer set where the total
volume of the boxes is the highest in the right child tree of the cur-
rent tree node.

Algorithm 3

CreateRightChildTree (B, lr, wr, hei, attp)
if(B contains boxes that can be accommodated by the

residual space (lr � wr � hei))
S: =CreateStripSet (B, lr, wr, hei, attp) //create a strip set

from the box set B
l: =solve Formula (17) with the strip set S and the layer

length wr
remove the boxes which are included in l from B
Lleft: =l + CreateLeftChildTree(B, lr � l.thickl, wr, hei, attp)
Lright: =l + CreateRightChildTree(B, lr � l.thickl, wr, hei, attp)
if(the total volume of the boxes in Lleft P the total volume

of the boxes in Lleft) return Lright

else return Lright

else return £

Algorithm 4 describes how to create a strip set from a box set B.
Firstly an empty strip set S is created. Then we judge whether B con-
tains boxes that can be accommodated by the residual space
(lr � wr � hei). If B contains such boxes, a strip s will be created
from B by referring to a similar record or solving Formula (13). Then
the boxes which are included in s will be removed from B. After that,
s will be inserted into S. We repeat creating strips until B contains
no boxes that can be accommodated by the residual space.
Algorithm 4
CreateStripSet (B, lr, wr, hei, attp)
S: =£

while(B contains boxes that can be accommodated by the
residual space (lr � wr � hei))

B_1: =GetSimilarKnapsackRecord (hei, lr, wr, B)
if(B_1 = �)

s: =solve Formula (13) with B
store hei, lr, wr, B and the set of boxes in s as a strip
creating record in the memory

else
s: =create a strip with B_1

remove the boxes which are included in s from B
S: =S + s

return S

Algorithm 5 seeks a similar strip creating record from the strip cre-
ation history. The similar record describes input and output of solv-
ing one knapsack problem which are defined as INPUT and OUTPUT
in Formula (7) and (8), respectively. We will create a strip from the
box set IN. If the height, length and width of a strip that was created
before are equal to hei, l and w, respectively, and IN is a subset of the
corresponding input INPUT, we get the upper bound—the
corresponding output OUTPUT. If OUTPUT is a subset of IN, we get
a feasible solution—OUTPUT. It is obvious OUTPUT is the best
solution.

Algorithm 5

GetSimilarKnapsackRecord (hei, l, w, IN)
for each record(formatted as KnapRecStrip) r in the memory

if r:h c ¼ hei and r:l c ¼ l and r:w c ¼ w and
r:INPUT � IN and r:OUTPUT # IN

� �
return r.OUTPUT

return £
4. Computational experiments and results

The proposed HBTS algorithm is implemented in C#, and run on
a server with Intel Core2 Duo Q8300@2.5 GHz and Microsoft Win-
dows XP Professional. The compiling environment is Microsoft
Visual Studio 2005. By computational experiments, we find that
we can get a good balance between the solution quality and the
computation time if we use ATTP ¼ fattpi ¼ 0:9þ 0:003i;
i ¼ 1;2; . . . ;33g as the attraction point set in the proposed algo-
rithm. Algorithm 1 is invoked 33 times with attpi (i = 1, 2, . . ., 33)
as the corresponding parameter. For each instance, the solution
is the best result among the 33 tested groups. Solving the knapsack
problems in Algorithm 4 consumes most of the computational
times. Thus a strip creating record set is generated to store the
input and output data of the knapsack functions. The frequency
of solving the knapsack problems is greatly reduced by creating
strip according to the historic data. When the computational time
of Algorithm 1 exceeds 600 s, Algorithm 1 will terminate and
return the best found solution.

The test data that comes from Bischoff and Ratcliff (1995) and
Davies and Bischoff (1998) include 16 cases from BR0 to BR15.
Each case includes 100 instances. These instances can be down-
loaded from OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/thpackinfo.html


Fig. 8. Example solution for strongly heterogeneous instance.

Table 1
Platforms for testing HBTS and other algorithms.

Algorithm Platform

H_BR (Bischoff & Ratcliff, 1995) –
GA_GB (Gehring & Bortfeldt, 1997) Pentium 130
PTSA (Bortfeldt et al., 2003) Pentium 2 GHz
GRASP (Moura & Oliveira, 2005) –
MSA (Parreno et al., 2007) Pentium Mobile 1500 MHz, 512 MB

Ram, C++
HSA (Zhang et al., 2009) Core 2 Duo 2.0 GHz, C++
A2 (Huang & He, 2009) 1.7 GHz, Windows, Java
VNS (Parreno et al., 2010) Pentium Mobile 1500 MHz, 512 MB

Ram, C++
CLTRS (Fanslau & Bortfeldt, 2010) Set A: 2.6 GHz; set B: 800 MHz
FDA (He & Huang, 2011) Xeon 2.33 GHz, Java, J2SE V1.5.0_14
MLHS (Zhang, Peng, & Leung, 2012;

Zhang, Peng, & Zhang, 2012)
Xeon X5460@3.16 GHz, Debian
Linux, C++, gcc 4.3.2

HBMLS (Zhang, Peng, & Leung, 2012;
Zhang, Peng, & Zhang, 2012)

Xeon X5460@3.16 GHz, Debian
Linux, C++, gcc 4.3.2

HBTS Core2 Q8300@2.5 GHz, Windows
XP, C#, visual studio 2005
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orlib/thpackinfo.html). The numbers of box types in the 16 cases
are 1, 3, 5, 8, 10, 12, 15, 20, 30, 40, 50, 60, 70, 80, 90, and 100,
respectively. The box sets in from BR0 to BR15 vary from homoge-
neous through weakly heterogeneous to strongly heterogeneous.
Table 2
Results of HBTS and other methods for BR1–BR7.

Algorithm Constraint Filling rate (%)

BR1 BR2 B

H_BR C1&C2 85.40 86.25 8
GA_GB C1&C2 85.80 87.26 8
PTSA C1&C2 93.52 93.77 9
GRASP C1 93.52 93.77 9
MSA C1 93.85 94.22 9
HSA C1&C2 93.81 93.94 9
A2 C1 – –
VNS C1 94.93 95.19 9
CLTRS C1 95.05 95.39 9

C1&C2 94.50 94.67 9
FDA C1 92.92 93.93 9
MLHS C1 94.92 95.48 9

C1&C2 94.49 94.89 9
HBMLS C1 94.92 95.48 9

C1&C2 94.43 94.87 9
HBTS C1,C2&C3 90.57 91.46 9
Usually the instances from BR1 to BR7 are considered as weakly
heterogeneous loading problems, while the instances from BR8
to BR15 are considered as strongly ones.

The instances from BR1 to BR7 were tested in H_BR (by Bischoff
& Ratcliff, 1995), GA_GB (by Gehring & Bortfeldt, 1997), PTSA (by
Bortfeldt et al., 2003), GRASP (by Moura & Oliveira, 2005), MFB
(by Lim, Rodrigues, & Yang, 2005), RHA (by Juraitis, Stonys,
Starinskas, Jankauskas, & Rubliauskas, 2006), H_B (by Bischoff,
2006) and SPBBL-CC4 (by Bortfeldt & Mack, 2007) which are
devoted into the weakly heterogeneous loading problem.

MSA (by Parreno et al., 2007), HSA (by Zhang, Peng, Zhu, & Chen,
2009), VNS (by Parreno, Alvarez-Valdes, Oliveira, & Tamarit, 2010),
CLTRS (by Fanslau & Bortfeldt, 2010), FDA (by He & Huang, 2011),
MLHS (by Zhang, Peng, & Zhang, 2012), and HBMLS (by Zhang,
Peng, & Leung, 2012) tested all the instances from BR1 to BR15
while A2 (by Huang & He, 2009) tested the ones from BR8 to BR15.

All the above algorithms fulfilled the orientation constraint
(C1). Some of them fulfilled both the support constraint (C2) and
the orientation constraint (C1). The computational results listed
later come from aforementioned literatures. All the instances from
BR1 to BR15 are tested by HBTS. Both the orientation constraint
(C1) and the support constraint (C2) are fulfilled in HBTS. In partic-
ular, the guillotine cutting constraint (C3) is also fulfilled in HBTS
(See Figs. 1, 4 and 5). The example solutions for heterogeneous
instances are illustrated in Figs. 7 and 8, respectively.
4.1. Comparison with other algorithms

Table 1 reports the platforms for testing HBTS and other
algorithms. The data regarding other algorithms are from litera-
tures cited at the beginning of this section. Some algorithms also
described the platforms they used in details, while others did not
reveal this information.

Table 2 reports the computational results of HBTS and other
algorithms for the instances from BR1 to BR7. All the data in Table 2
denote the average filling rate (%) for one case. HBTS is worse than
HBMLS (by Zhang, Peng, & Leung, 2012) which achieved the best
solutions when C1 and C2 are considered. Also, HBTS is worse than
CLTRS (by Fanslau & Bortfeldt, 2010) and MLHS (by Zhang, Peng, &
Zhang, 2012). The results indicate block-building approaches
achieve higher volume utilization than wall-building approaches
for weakly heterogeneous instances up to now.

Table 3 reports the computational results of HBTS and other
algorithms for BR8-BR15. All the data in Table 3 denote the average
filling rate (%) for one case. For BR8–BR11, HBTS is worse than
R3 BR4 BR5 BR6 BR7

5.86 85.08 85.21 83.84 82.95
8.10 88.04 87.86 87.85 87.68
3.58 93.05 92.34 91.72 90.55
3.58 93.05 92.34 91.72 90.55
4.25 94.09 93.87 93.52 92.94
3.86 93.57 93.22 92.72 91.99
– – – – –
4.99 94.71 94.33 94.04 93.53
5.45 95.18 94.96 94.80 94.26
4.74 94.41 94.05 93.83 93.15
3.71 93.68 93.73 93.63 93.14
5.69 95.53 95.44 95.38 94.95
5.20 94.94 94.78 94.55 93.95
5.69 95.53 95.44 95.38 95.00
5.06 94.89 94.68 94.53 93.96
2.39 92.33 92.42 92.35 92.11

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/thpackinfo.html


Table 3
Results of HBTS and other methods for BR8–BR15.

Algorithm Constraint Filling rate (%)

BR8 BR9 BR10 BR11 BR12 BR13 BR14 BR15

H_BR C1&C2 – – – – – – – –
GA_GB C1&C2 – – – – – – – –
PTSA C1&C2 – – – – – – – –
GRASP C1 – – – – – – – –
MSA C1 91.02 90.46 89.87 89.36 89.03 88.56 88.46 88.36
HSA C1&C2 90.56 89.7 89.06 88.18 87.73 86.97 86.16 85.44
A2 C1 88.41 88.14 87.9 87.88 87.92 87.92 87.82 87.73
VNS C1 92.78 92.19 91.92 91.46 91.2 91.11 90.64 90.38
CLTRS C1 93.70 93.44 93.09 92.81 92.73 92.46 92.40 92.40

C1&C2 92.26 91.48 90.86 90.11 89.51 88.98 88.26 87.57
FDA C1 92.92 92.49 92.24 91.91 91.83 91.56 91.3 91.02
MLHS C1 94.54 94.14 93.95 93.61 93.38 93.14 93.06 92.90

C1&C2 93.12 92.48 91.83 91.23 90.59 89.99 89.34 88.54
HBMLS C1 94.66 94.30 94.11 93.87 93.67 93.45 93.34 93.14

C1&C2 93.27 92.60 92.05 91.46 90.91 90.43 89.80 89.24
HBTS C1, C2&C3 91.93 91.61 91.39 91.13 90.96 90.59 90.25 89.79

The filling rates marked in ’bold’ are higher than all the ones that are obtained by algorithms in existing literature.

Fig. 9. The trends of filling rates of CLTRS, MLHS, HBMLS and HBTS for BR1–BR15.

Table 4
Computation times of HBTS and other methods for BR1–BR7.

Algorithm Constraint Computation time (s)

BR1 BR2 BR3 BR4 BR5 BR6 BR7 Mean

H_BR C1&C2 – – – – – – –
GA_GB C1&C2 – – – – – – –
PTSA C1&C2 36 48 97 138 179 150 198
GRASP C1 – – – – – – –
MSA C1 1.27 2.32 4.62 6.52 8.58 12.23 19.25
HSA C1&C2 20.33 35.68 59.00 75.05 80.63 88.89 101.52
A2 C1 – – – – – – –
VNS C1 2.98 5.60 11.09 15.12 22.62 31.71 58.00
CLTRS C1 – – – – – – – 52

C1&C2 – – – – – – – 320
FDA C1 1.16 2.54 5.14 7.66 10.38 16.66 29.54
MLHS C1 – – – – – – – 197.33 (BR1–BR15)

C1&C2 – – – – – – – 187.26 (BR1–BR15)
HBMLS C1 14.1 34.18 79.43 115.59 155.1 217.57 327.88

C1&C2 14.71 36.43 80.33 116.13 153.38 204.15 295.69
HBTS C1,C2&C3 61.13 64.37 64.40 63.34 59.52 73.63 86.80 67.60
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Table 5
Computation times of HBTS and other methods for BR8–BR15.

Algorithm Constraint Computation time (s)

BR8 BR9 BR10 BR11 BR12 BR13 BR14 BR15 Mean

H_BR C1&C2 – – – – – – – – –
GA_GB C1&C2 – – – – – – – – –
PTSA C1&C2 – – – – – – – – –
GRASP C1 – – – – – – – – –
MSA C1 38.20 63.10 97.08 136.50 183.21 239.80 307.62 394.66 –
HSA C1&C2 261.87 276.12 288.90 287.25 306.36 307.68 305.82 301.26 –
A2 C1 – – – – – – – – –
VNS C1 122.05 141.84 218.05 309.12 375.65 502.25 640.32 788.24 –
CLTRS C1 – – – – – – – – 54 (BR1–BR15)

C1&C2 – – – – – – – – 320 (BR1–BR15)
FDA C1 82.94 160.77 298.95 497.79 861.37 1775.79 2218.17 3531.71 –
MLHS C1 – – – – – – – – 197.33 (BR1–BR15)

C1&C2 – – – – – – – – 187.26 (BR1–BR15)
HBMLS C1 537.41 730.33 874.59 1050.7 1161.61 1145.13 1256.03 1255.71 –

C1&C2 454.76 603.94 722.46 842.52 956.2 1019.06 1129.06 1152.71 –
HBTS C1, C2&C3 125.43 157.17 201.24 236.33 289.22 336.52 355.08 403.08 263.01
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HBMLS (by Zhang, Peng, & Leung, 2012). Compared to HBMLS (by
Zhang, Peng, & Leung, 2012), HBTS improves performance by
0.05%, 0.16%, 0.45% and 0.55% for BR12–BR15, respectively.
Compared to CLTRS (by Fanslau & Bortfeldt, 2010), HBTS obtains
the improvement of 0.13%, 0.53%, 1.02%, 1.45%, 1.61%, 1.99% and
2.22% for BR9–BR15.

The average filling rates of CLTRS, MLHS, HBMLS and HBTS for
BR1–BR15 are 91.89%, 92.66%, 92.81%, and 91.42%, respectively.
Obviously HBTS is weaker than CLTRS, MLHS and HBMLS in most
case. From Fig. 9 we can find that the filling rate of HBTS falls
slower than the ones of other three algorithms when the instances
become more heterogeneous. It proves that HBTS is more suitable
for strongly heterogeneous instances than for weakly heteroge-
neous instances. And HBTS obeys the guillotine cutting constraint.
Thus it can be used in the context in which the guillotine cutting
constraint is mandatory. Certainly CLTRS, MLHS and HBMLS can
be adapted to meet the guillotine cutting constraint. But until
now we have not found any publications that present experimental
results with this constraint met.

Table 4 and Table 5 report the computation times of HBTS and
other algorithms for BR1–BR7 and BR8–BR15, respectively. From
the two tables, we can find the computation times of HBTS for
BR1–BR15 are reasonable. Despite the fact that HBMLS (by
Zhang, Peng, & Leung, 2012) is tested on a platform with a faster
CPU, HBTS obtains shorter average computation time for
BR1–BR15 than HBMLS (by Zhang, Peng, & Leung, 2012).

As the container loading problems are greatly valuable in prac-
tice, many researchers have devoted themselves to dealing with
them. The obtained volume utilizations are more and more close
to the optimum such that it is increasingly difficult to improve
them. HBTS still outperforms all the compared algorithms when
the numbers of box types are more than 70, when C1 and C2 are
considered.
5. Conclusions

This paper presents a heuristic binary tree search method HBTS
for the three-dimensional container loading problem. The algo-
rithm guarantees full support constraint, orientation constraint
and guillotine cutting constraint. The algorithm includes several
steps. Firstly all the boxes are grouped into strips, and then the
strips are further grouped into layers. After this grouping, a binary
tree is created. Each of its tree nodes represents a container loading
plan which is described as a layer set. In the set some layers are
perpendicular to left side of the container while others are to par-
allel it. For each node, the layer set of its left (or right) child is
obtained by inserting a directed layer into its layer set. The
directed layer is parallel (or perpendicular) to the left side of the
container. Each leaf node denotes a complete container loading
plan. A container loading plan is considered as complete if the
residual space of the container cannot accommodate any remain-
ing boxes. The solution is the layer set whose total volume of the
boxes is the greatest in the tree. The proposed algorithm achieves
good results for the well-known 3D-CLP instances suggested by
Bischoff and Ratcliff with reasonable computing time.

Besides its obvious advantage in solving strongly heterogeneous
problems, HBTS can be further improved to solve weakly heteroge-
neous ones more effectively. The computational time relies on the
searching depth of the binary tree, and the searching depth
depends on the number of the layers placed in the container. When
the volume of each box decreases, the number of the placed layers
will increase. As a result, the computational time of HBTS is rela-
tively long when the boxes are small in size. In addition, since
we don’t know how to create a strip set that can lead to a good
solution, we create multiple strip sets by utilizing the attraction
points (defined in Formula (11)). In future work we plan to find a
method to generate the strip set more efficiently and effectively.
At last, each box is supported by only a box and each box also sup-
ports only a box in the proposed algorithm. This situation results in
a considerable waste of space. In future research, small boxes will
be combined into temporary big boxes before being grouped into
strips to achieve a better space utilization.
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