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Sponsored search advertising (SSA), the primary revenue source of Web search engine companies, has
become the dominant form of online advertising. Search engine companies, such as Google and Baidu,
are naturally interested in SSA mechanism design with the aim to improve the overall effectiveness
and profitability of SSA ecosystems. Due to model intractability, however, traditional game theory and
mechanism design frameworks provide only limited help as to the design and evaluation of practical
SSA mechanisms. In this paper, we propose a niche-based co-evolutionary simulation approach, aiming
at computationally evaluating SSA auction mechanisms based on advertisers’ equilibrium bidding behav-
ior generated through co-evolution of their bidding strategies. Using this approach, we evaluate and com-
pare key performance measures of several practical SSA auction mechanisms, including the generalized
first and second price auction, the Vickrey–Clarke–Groves mechanism, and a novel hybrid mechanism
adopted by sogou.com, a major search engine in China.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

In sponsored search advertising (SSA), online advertisers bid for
keyword-specific advertisements to appear alongside the organic
search results on Web search result pages. With the promise of
precise and in-context customer targeting, SSA provides an effec-
tive way of monetizing Web search queries. Within a decade, it
has evolved into the dominant form of online advertising and be-
comes an industry on its own. In 2010, SSA constituted the largest
category share (46%) of the $26 billion online advertisement
spending in the U.S. markets, far exceeding the share of display
advertisement, the second largest category, 24%.1 SSA is also the
primary revenue source of Web search engine companies. In recent
years, it accounted for more than 96% and 99.9% of Google and
Baidu’s international revenues, respectively.2

The basic economic institution behind most SSA platforms, such
as Google’s AdWords and Baidu’s Phoenix Nest, is keyword-based
position auction. In this type of auction, advertisers selling similar
products or services bid for the same keywords on an SSA platform.
Once a relevant search query arrives, an auction will be conducted
ll rights reserved.
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to determine the rank position and the associated payment of
winning advertisements. When a user clicks on an advertisement,
she will be sent to the landing page on the website of the corre-
sponding advertiser, who in turn pays the search engine.

From search engine companies’ point of view, SSA auction
mechanism design, i.e., the choice of auction mechanism or format
with the ranking and pricing schemes at its core, is of paramount
importance. Different auction mechanisms induce different types
of advertiser bidding behavior, which in turn determine advertis-
ers’ revenues and search engine companies’ profitability. In the
long run, the stability and sustainability of the SSA ecosystem, to
a large degree, hinges on SSA auction mechanism design as well.

A variety of auction mechanisms have emerged during the evo-
lution of SSA since its appearance in 1998. The pioneer of SSA,
GoTo.com (then Overture, now part of Yahoo!), used the general-
ized first-price (GFP) auction, in which advertisers were ranked
by and pay their own bids. In 2002, Google started to use the gen-
eralized second-price (GSP) auction, which ranks advertisers by
their bids but charges them, if their advertisements are clicked
by Web users, by the next highest bids. Currently, most major
search engines around the world have adopted a variant of the
GSP mechanism, in which advertisers are ranked by the product
of their own bids and search engine-assigned quality scores. In
the meanwhile, other auction formats have been experimented
and used as well. A prominent example is a hybrid auction format
adopted by sogou.com, China’s third largest search engine. In this
auction, advertisers are ranked by their bids but allowed to select
to pay following either the first or second pricing scheme. In this
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paper, we refer to this auction format as the First–Second-Price
(FSP) auction.

In the literature, the Vickrey–Clarke–Groves (VCG) and laddered
auctions have also been studied (Aggarwal et al. 2006). These auc-
tion formats offer nice properties such as incentive compatibility,
typically aimed at optimizing the profitability of search engines,
and at reducing the possibility of advertisers trying to ‘‘game the
system.’’ As a result, market efficiency can be achieved, i.e., adver-
tisers with higher per-click values are more likely to win better
advertisement slots.

Due to its practical significance, SSA auction mechanism design
has attracted a lot of attention from the research community in re-
cent years. Most existing work evaluates auction mechanisms
using frameworks and tools from game theory and, in particular,
mechanism design theory. As SSA platforms evolve and associated
auction rules undergo changes in dynamic online business settings,
formal mathematical analysis based on mechanism design theory
quickly becomes inadequate in dealing with design and evaluation
of practical SSA auction mechanisms. It has become a major chal-
lenge for search engines to understand advertisers’ bidding behav-
ior and assess the outcome of complex SSA auctions. As a result,
these companies can only rely on ad hoc anecdotal evidence or lim-
ited scenario-based comparisons to make major decisions concern-
ing auction rules, increasing the risk and hindering innovation in
the SSA space.

From a research perspective, with the end goal of helping the
SSA ecosystem maintain its overall effectiveness, profitability,
and stability, there is a critical need to develop new research meth-
odologies for SSA mechanism design. However, to the best of our
knowledge, research in this area is severely lacking. Our research
is targeted at filling in this important gap. We propose a niche-
based co-evolutionary approach, aiming at automatically searching
for equilibrium bidding behavior of rational advertisers in SSA auc-
tions, and in turn evaluating and designing alternative SSA auction
mechanisms. Niche plays a central role in evolutionary divergence
during the ecological speciation process, and can be used in co-
evolutionary simulations to construct the equilibrium continuum
of SSA auctions by forming and maintaining stable sub-popula-
tions, each converging at a single equilibrium. Compared with
the analytical mechanism design approach, co-evolutionary simu-
lation offers the following advantages. First, it evaluates the macro-
scope properties of SSA auctions by simulating long-term co-evolu-
tion and co-adaptation of advertisers’ micro-scope bidding behav-
ior. As such, the simulation process is robust to input mechanisms,
and can be adapted to assess various kinds of SSA mechanisms
with only minor modifications. Second, co-evolutionary simulation
can be used to optimize advertisers’ bidding strategies via search-
ing through the entire strategy space. This can help search engines
better understand advertisers’ behavior in a specific SSA
mechanism.

This paper makes the following contributions. Methodologi-
cally, the reported work is the first attempt to apply the co-evolu-
tionary simulation approach to auction mechanism design in SSA
contexts. We also propose a novel niche-based co-evolutionary
algorithm to help design and evaluate SSA auction mechanisms.
Practically, our research can help Web search engines better
understand advertisers’ complex bidding dynamics in SSA auc-
tions, and computationally evaluate SSA auctions’ performance.
From the perspective of competing advertisers, our research and
algorithm can help them discover all kinds of possible equilibrium
bidding strategies, and analyze their marketing effectiveness. As a
result, a variety of observed bidding behavior to ‘‘game the system’’
(Zhou and Lukose 2006), as well as irrational or even malicious bid-
ding behavior (Iyengar et al. 2007), may be recognized and reduced
in SSA practice.
The remainder of this paper is organized as follows. Section 2 pro-
vides a brief review of the SSA auction mechanism design literature.
In Section 3, we discuss performance measures concerning SSA auc-
tion mechanisms and the rationale behind co-evolutionary auction
simulation. We then present in detail our proposed niche-based
co-evolutionary mechanism design. Several typical SSA auction
mechanisms are evaluated through co-evolutionary simulations in
Section 4. In Section 5, we summarize our research findings and
discuss future research possibilities.

2. Literature review

Mechanism design has long been an active topic in auction re-
search. Here we are mainly concerned with the mechanism design
work in the SSA context. Two research streams, analytical and
computational mechanism design, have been developed in the lit-
erature. Below we present a brief survey of these two lines of
thoughts.

2.1. Analytical mechanism design

The classical mechanism design framework has been used to
formally characterize the key properties of various SSA auction
mechanisms. For instance, the early GFP mechanism has been
proved to be unstable with price cycles in bids (Zhang and Feng
2005). In contrast, the prevailing GSP mechanism has a symmetric
Nash equilibrium (SNE) continuum, and the bids of revenue-max-
imizing advertisers will converge to the lowest-price Nash equilib-
rium (LPNE) in SNE (Edelman et al. 2007). However, GSP is not a
truthful mechanism, and its Nash equilibria (NE) beyond the SNE
continuum is not yet fully explored. For theoretical analysis,
researchers have investigated truthful SSA mechanisms such as
the VCG and laddered auctions (Aggarwal et al. 2006), in which
advertisers are motivated to truthfully bid their private per-click
values. Moreover, an optimal mechanism has been proposed to
maximize search engines’ expected revenue while achieving
Bayesian incentive compatibility and individual rationality of
advertisers (Garg and Narahari 2009).

Recent analytical research focuses mainly on mechanism design
for emerging SSA formats. For instance, an execution-contingent
VCG mechanism was proposed for SSA platforms operating on fed-
erated search engines (Ceppi et al. 2011). Multi-slot SSA auctions
have been studied, in which an advertiser can bid for multiple
advertisement slots simultaneously (Deng et al. 2010). Several ex-
tended forms of advertisers’ utility functions, e.g., a linear form
with identical slopes and a single discontinuity, a piece-wise linear
form with non-identical slopes and multi-discontinuities, have also
been developed to improve the expressiveness of SSA mechanisms
(Aggarwal et al. 2009, Duting et al. 2011).

In general, analytical mechanism design has the following lim-
itations. First, due to inherent analytical complexity, it is difficult to
mathematically evaluate complex SSA mechanisms in dynamic on-
line environments. Second, the analytical approach is usually
highly sensitive to auction mechanisms. Even a minor modification
to the mechanism can lead to totally different analyses and solu-
tions. For instance, if advertisers aim to maximize their revenues
and the rivals’ payments in competitive SSA markets, their bids
in a GSP auction will converge to the highest-price equilibrium
in the SNE continuum, instead of the LPNE (Yuan et al. 2011). Third,
the standard game-theoretic analysis cannot reveal such dynamic
properties as stability and robustness of equilibrium bidding strat-
egies, and thus sheds limited light on which kind of equilibrium
outcome is more likely to be observed in SSA auctions with a spe-
cific mechanism over the long run. These limitations have moti-
vated research in computational mechanism design.
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2.2. Computational mechanism design

Various kinds of computation-intensive techniques, such as
experimental simulation, machine learning, data mining and evo-
lutionary search, have been used in computational mechanism de-
sign research to better understand advertisers’ bidding behavior in
SSA auctions.

In the literature, Feng et al. (2007) compared the steady-state
performance of four alternative SSA mechanisms, including the
rank-by-bid, rank-by-revenue, rank-by-click through rate (CTR),
and posted-price mechanisms, with systematic computational
simulations. Balcan et al. (2005) proposed to formulate the prob-
lem of design of revenue-maximizing incentive-compatible SSA
mechanisms as an algorithmic pricing problem with sample-com-
plexity techniques from machine learning theory. Data mining
techniques have been applied to inform empirical mechanism de-
sign. For instance, Ciaramita et al. (2008) presented a framework
for learning and evaluating the SSA ranking systems based exclu-
sively on click-data. Pardoe et al. (2010) proposed a data-driven
adaptive methodology for SSA mechanism design, which incorpo-
rates prior general knowledge of bidding behavior to improve the
effectiveness of mechanism design in dynamic and uncertain envi-
ronment. Munsey et al. (2010) is the first to use evolutionary
search in the SSA context, aiming to optimize advertisers’ bids with
historical data based genetic algorithms.

In this paper, we propose to apply the co-evolutionary simula-
tion techniques in SSA mechanism design. This approach offers
two advantages. First, as an explicit dynamic process, co-evolution-
ary simulation can automatically locate the equilibrium continuum
of SSA auctions, and characterize the long-term dynamics and sta-
bility of specific behavior, strategies and mechanisms evolving
over time. Second, the co-evolution process is largely independent
of the auction mechanisms being evaluated, and can evolve the
equilibrium outcomes adaptively.

Co-evolutionary mechanism design is not new in computational
economics, and has been used successfully to design pricing rules
for double auctions in a wholesale electricity marketplace (Phelps
et al. 2002). In this paper, we make the first attempt to design and
evaluate SSA mechanisms by co-evolutionary simulations. We also
contribute to the methodology by introducing the ‘‘niche’’ tech-
nique, which can effectively prevent the co-evolution process from
converging at a single equilibrium.
3. Co-evolutionary mechanism design for SSA auctions

In this section, we present the detailed methodology and re-
lated algorithms of our niche-based co-evolutionary mechanism
design approach for SSA auctions. Auction mechanism design is
concerned with designing auction mechanisms to meet specific
performance requirements against self-interested bidders. Prop-
erly defining performance measures is a prerequisite for evaluating
alternative mechanisms. We begin by presenting a simple SSA
model and defining these performance measures in Section 3.1.
We proceed in Section 3.2 by discussing the rationale behind
co-evolutionary simulation, which serves as the base for SSA mech-
anism evaluation. In Section 3.3, we present the details of our pro-
posed niche-based co-evolutionary mechanism design approach
and the related simulation algorithm. We conclude this section
by analyzing the computational complexity of this algorithm in
Section 3.4.

3.1. An SSA model and performance measures

We consider a general SSA model with N revenue-maximizing
advertisers competing for K slots on a specific keyword. The CTR
of the kth highest slot is denoted by xk. We assume higher-placed
slots have higher probabilities of being clicked, and thus x1 P
x2 P � � �. Each advertiser in slot k 2 [1,N] assigns a click with a
private value vk representing her maximum willingness to pay.
Without loss of generality, we assume v1 P v2 P � � �. The bids and
payments of all advertisers are denoted as b = {b1,b2, . . .} and p =
{p1,p2, . . .}, respectively.

Based on this model, we define the following measures used to
evaluate the performance of SSA auction mechanisms.

3.1.1. Market efficiency (social welfare)
This measure equals in value to the aggregated revenue of the

SSA market participants, including the search engine and advertis-
ers (Vijay and Perry 1997). In SSA auctions, an advertiser winning
the kth highest slot assigns a click with value vk and pays pk to the
search engine when her advertisement is clicked. Advertisers win-
ning no slots receive no clicks and thus do not pay. As such, an
advertiser in slot k can expect to make a revenue of (vk � pk)xk,
and the total revenue of all advertisers is

PK
k¼1ðvk � pkÞxk. Analo-

gously, the revenue received by the search engine equals the
aggregated payments of all advertisers, i.e.,

PK
k¼1pkxk. Conse-

quently, market efficiency is given by

ME ¼
XK

k¼1

ðvk � pkÞxk þ
XK

k¼1

pkxk ¼
XK

k¼1

vkxk

Market efficiency will be maximized (minimized) when adver-
tisers are ranked in decreasing (increasing) order by their per-click
values. However, a particular SSA auction may not be able to reach
the maximum or minimum market efficiency. Using the niche-
based co-evolutionary simulation framework, we can discover a
large number of equilibria in the joint strategy space of advertisers
engaging in SSA auctions. Assume we have found H equilibria, and
the market efficiency realized in each equilibrium is denoted as
ME(i), i 2 [1,H]. Then we can define MEmax, MEmin, and MEavg as
the maximum, minimum and average market efficiency in the
resulting equilibrium continuum, or formally

MEmax ¼maxfMEðiÞg; MEmin ¼minfMEðiÞg; and MEavg

¼

XH

i¼1

MEðiÞ

H
; where i 2 ½1;H�
3.1.2. Revenue ratio
In SSA auctions, the search engine plays a non-cooperative

game with advertisers to compete for auction surplus, or social
welfare, equivalently. In order to characterize the revenue proper-
ties of SSA mechanisms, we define RRmax, RRmin and RRavg as the
maximum, minimum and average proportion of advertisers’ aggre-
gated revenues in the total auction surplus among all equilibria,
where

RR ¼
PK

k¼1ðvk � pkÞxkPK
k¼1vkxk

RRmax, RRmin, and RRavg can be defined analogously to market
efficiency. Obviously, search engines prefer SSA auction mecha-
nisms with smaller revenue ratio, while advertisers prefer mecha-
nisms with larger one.

3.1.3. Incentive compatibility
An SSA auction is said to be incentive compatible if all advertis-

ers maximize their revenue when they truthfully bid their private
per-click values (Dash et al. 2003). In co-evolutionary simulation,
we consider an SSA mechanism to be incentive compatible if
advertisers’ bids always converge to their per-click values.
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3.1.4. Output truthfulness
A ranking of advertisers is output truthful if it satisfies vt > vk for

t < k, t,k 2 [1,K] (Bu et al. 2010). We define OT as the proportion of
the output-truthful equilibria among all equilibria found by co-
evolutionary simulations.

3.1.5. Evolutionary stability
An SSA auction mechanism is evolutionarily stable if co-evolu-

tionary simulations always converge stably to a unique equilib-
rium (Weibull 1995). Note that evolutionarily stable mechanisms
will result in predictable bidding behavior and auction outcomes.
We use static population variance and evolutionary mobile vari-
ance to characterize the co-evolutionary bidding dynamics and sta-
bility. The detailed definition of these two measures will be given
in Section 3.3.

3.2. Co-evolutionary auction simulation

Inspired by co-adaptation and co-evolution of biological popu-
lations in natural ecosystems, co-evolutionary simulation simulta-
neously evolves multiple populations with coupled fitness. This
approach has been successfully applied to strategy learning and
optimization in games involving self-interested agents. Co-evolu-
tionary simulation is particularly useful in SSA mechanism design
for the following reasons. First, understanding equilibrium bidding
strategies by advertisers plays an essential role in the evaluation of
auction mechanisms. Co-evolutionary simulation has the potential
to identify these stable and equilibrium strategies adaptively
through the genetic search in advertisers’ joint strategy space. The-
oretically, it has been proved that in strategic environments,
including SSA auctions, the co-evolutionary simulation process
will converge at a globally optimal equilibrium with evolutionary
stability and dynamic attainability (Apaloo et al. 2005). Second,
co-evolutionary simulation has been applied in various kinds of
auction mechanism design contexts with success. For instance,
Cliff (2003) used co-evolutionary genetic algorithm to optimize
parameter values for trading agents in online auction e-market-
places. Phelps et al. (2002) applied co-evolutionary genetic pro-
gramming and developed an auction pricing rule for double
auctions in a wholesale electricity marketplace. These works pro-
vide useful modeling insights to tackle SSA mechanism design
challenges. Third, the co-evolutionary simulation approach is lar-
gely insensitive to the auction mechanisms being evaluated. Inves-
tigating different kinds of SSA mechanisms only incurs relatively
minor changes in the co-evolutionary simulation algorithm.
Fourth, co-evolutionary simulation can serve as a foundation of a
computable and implementable framework for SSA mechanism
design. This famework may be used as a practical mechanism de-
sign and evaluation tool for Web search engines. These advantages
have motivated us to apply co-evolutionary simulation to generate
advertisers’ equilibrium bidding behavior and in turn evaluate di-
verse SSA mechanisms.

Due to the non-cooperative nature of SSA auctions, we use the
competitive co-evolutionary algorithm with host-parasite inter-
populational relationship (Frank et al. 1993). In competitive co-
evolution, advertisers’ bidding strategies are optimized through
arm races resulting from interactions and competitions among
populations. Typically, co-evolutionary simulation consists of the
following three major steps: evolutionary encoding, fitness evalu-
ation, and genetic operations.

3.2.1. Evolutionary encoding
Encoding an SSA mechanism involves strategy encoding and

mechanism encoding. We employ the real-coding scheme to en-
code the pure strategy space of each advertiser into a strategy pop-
ulation with a finite number of individual strategies. The initial
strategy populations are generated by uniform sampling in adver-
tisers’ strategy spaces. An individual strategy is encoded as a chro-
mosome with a finite number of gene locuses. The gene on each
gene locus represents a component of an individual strategy, and
all possible values for a gene are encoded as alleles. For instance,
an individual strategy of the FSP auctions consists of two gene
locuses, one containing the bid value and the other containing
the choice to pay by first or second price scheme.

An SSA auction mechanism consists of the auction protocol and
multiple dialogue rules. The former determines the sequence of
advertisers’ moves, and the latter the rules governing the auctions.
These rules in most cases cover bid ranking and payment schemes.
In co-evolutionary simulation, the auction protocol is encoded as
the interaction protocol among strategy populations, while the
dialogue rules are used to evaluate the fitness of individual
strategies.

3.2.2. Fitness evaluation
The strategy populations of competing advertisers co-evolve

with host-parasite relationships (Frank et al. 1993). Each strategy
population takes turns to be a host and others are parasites in
the fitness evaluation step. When evaluating the fitness of a host
strategy, one individual strategy chosen from every other popula-
tion will be selected as a parasite and matched with the host strat-
egy to play an SSA auction game, as is shown in Fig. 1. The
cumulative revenue earned by the host strategy in all possible
host-parasite encounters can be considered as its fitness measure.

3.2.3. Genetic operations
Each advertiser’s strategy population evolves through genetic

operations. We use fitness proportionate selection, stochastic
crossover, and mutation operators to evolve individual strategies.
More specifically, selection is performed using the elitist roulette
wheel scheme, which first migrates the fittest individuals in parent
populations directly to offspring populations, and then performs
the roulette wheel selections repeatedly until the offspring popula-
tions are generated. Moreover, each individual strategy stochasti-
cally crossovers with other strategies, and will be replaced by
another strategy with a certain mutation rate.

3.3. Niche-based co-evolutionary mechanism design

Generally speaking, due to the genetic drift effect, the standard
co-evolutionary algorithm will converge uniformly at one equilib-
rium (which possesses evolutionary stability and dynamic attain-
ability properties) but miss all other alternative equilibria. Most
SSA auction mechanisms, however, are associated with an infinite
equilibrium continuum. To address this problem, we have devel-
oped a new co-evolutionary algorithm that incorporates the
isolated niche technique. Using this approach, stable sub-popula-
tions are formed and maintained, and multiple equilibria evolve
simultaneously.

Inspired by observed geographical isolation of species in nature,
the isolated niche technique separates a population into several
independently evolving niches, among which gene communica-
tions are not allowed (Rundle and Nosil 2005). As such, the effect
of genetic drift is confined within each niche and global conver-
gence will be avoided. Isolated niches can effectively maintain
population diversity and increase the search efficiency for multiple
solutions. This technique has been successfully used to solve the
multi-modal function optimization and multi-issue bilateral nego-
tiation problems (Li and Kang 2003, Yuan and Liang 2007).

The basic idea of the niche-based co-evolutionary SSA mecha-
nism design is as follows. We search for all possible equilibrium



Fig. 1. Fitness evaluation in co-evolutionary simulation.

Table 1
Parameters setting the co-evolutionary simulation.

Auction parameters Algorithm parameters

Parameter Value Parameter Value

Advertiser number N = 5(3) Maximum generation MaxG = 500
Slot number K = 3(2) Population Size S = 20
Per-click values {0.9,0.7,0.5,0.3,0.1} Niche number c = 1(50)

({0.9,0.6,0.3}) Crossover rate crs = 0.6
CTRs {0.8,0.6,0.4} Mutation rate mut = 0.02

({0.8,0.5}) Maximum encounters Maxtest = 20
Population variance hSPV = 0.05
Mobile variance hEMV = 0.001
Maximum niche score hmax = 20
Minimum niche score hmin = 1
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bidding behavior in advertisers’ joint strategy space, which typi-
cally can be represented by an N-dimensional bid space RN. For
simulation simplicity, we normalize an advertiser’s bid range to
be within 0 and 1. The joint strategy space is then reduced to
[0,1]N 2 RN. In order to form niches in advertisers’ populations,
we define a search precision parameter c P 1, and divide the strat-
egy space of each advertiser into c intervals. Under this partition-
ing scheme, advertisers’ joint strategy space is divided into cN

subspaces, each representing a niche in the co-evolving popula-
tions.3 We generate N co-evolving sub-populations, each belonging
to an advertiser’s strategy population, to search for the optimal strat-
egy profile within a niche. There are S individual strategies in each
sub-population, and each individual strategy is a bid. Standard ge-
netic operators are used to search the un-explored strategy space in-
side a niche, and no genetic communication (e.g., gene migration) is
allowed among niches.

To determine evolutionary stability inside a niche within each
generation, we propose two new measures, the static population
3 Obviously, if we set c = 1, the niche-based co-evolution falls back to the standard
co-evolution, which searches advertisers’ joint strategy space for a globally optimal
equilibrium.
variance (SPV) and the evolutionary mobile variance (EMV). More
specifically, SPV is the variance of all individual strategies in a spe-
cific population, while EMV is the variance of the average bids dur-
ing a number of generations in co-evolution. A strategy population
will stably converge if these two indicators converge to zero. Com-
putationally, in case when these two indicators drop below the
preset thresholds, hspv and hemv, respectively, for all populations
in a niche, we will consider the resulting populations as in an equi-
librium state. The simulation bookkeeping module then saves
advertisers’ equilibrium bids and increments the score of this niche
by one. The score of the niche is defined as the number of times an
equilibrium is reached within this niche so far in the simulation
runs.

The niches will be dynamically merged and divided to acceler-
ate the co-evolution process. We define two scoring thresholds,
hmax and hmin. If the score of a niche exceeds hmax, we divide it into
two sub-niches, and generate sub-populations for the new niches.
In case when the score of a niche is below hmin, we merge this niche
with neighboring niches, and generate new sub-populations for the
merged niche. These operations help increase the adaptability and
speed of the co-evolution process.

The detailed co-evolutionary simulation algorithm following
the ideas discussed above is as follows.
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Algorithm 1. Niche-based co-evolutionary simulation for SSA
mechanism design.

Input: An SSA auction mechanism.
Output: The equilibrium continuum of the input auction

mechanism.
1 Parameters initialization;
2 Set Evolutionary generation T = 0;
3 For each advertiser i 2 [1,N] do//niche formation
4 Split the strategy space of advertiser i into c intervals
5 Create a sub-population with S individual strategies for

advertiser i in
each interval

6 End for//resulting in cN niches in the joint strategy space
7 Repeat
8 For each niche, do
9 For each population Popi 2 Pop of advertiser i do//

fitness evaluation
10 For each individual strategy Sj 2 Popi do//Host

strategy
11 For Test = 1 to MaxTest do// Generate MaxTest

encounters
12 For each population Popk 2 Pop such that k – i

do
13 Choose a strategy individual in Popk//

parasite strategy
14 End for
15 Match the host and parasite strategies, and

play SSA auctions
16 Calculate the revenue of the host strategy in

the auction
17 End for
18 Fitness of Sj= discounted sum of revenues over

MaxTest
encounters

19 End for
20 End for
21 End for
22 For each niche n 2 [1,cN], do
23 If SPVn < hSPV and EMVn < hEMV do
24 Save the average bids in all populations of the

niche as an
equilibrium

25 scrn = scrn + 1;//Increase the score of the niche by
1;

26 End if
27 If T > MaxG/2 do//merge and divide niches
28 If scrn < hmin do: merge the niche with neighboring

niche.
29 If scrn > hmax do: divide the niche into two new

niches.
30 End if
31 End for
32 For each population Popi 2 Pop do//genetic operations
33 Select individuals with elitist tournament scheme

based on fitness
34 Apply crossovers and mutations with probabilities

crs and mut
35 Produce offspring population
36 End for
37 Set evolutionary generation T = T + 1
38 Until (T > MaxG)
39 Output all the saved equilibria.
Note that the auction mechanism (as input) in Algorithm 1 is
processed only in the SSA auction simulation step (Line 15). Typi-
cally, an SSA auction mechanism consists of an auction protocol
and two dialogue rules, i.e., a ranking rule and a payment rule.
The protocol and dialogue rules can be flexibly configured and eas-
ily integrated into our algorithm. For instance, switching from the
GFP to GSP mechanism can be easily implemented by simply
adjusting each advertiser’s payment from her own bid to the bid
of the next highest advertiser. In this sense, our algorithm is largely
insensitive to the auction mechanisms under investigation.
3.4. Computational complexity analysis

In this section, we present a computational complexity analysis
of the niche-based co-evolutionary simulation algorithm devel-
oped in the previous section. We decompose this algorithm into
four parts to analyze its computational complexity. First, let’s con-
sider niche formation and initial population generation (Lines 3–6).
In this part, we need to complete c ⁄ S random sampling operations
to create a sub-population for each niche in an advertiser’s popula-
tion, and in total N ⁄ c ⁄ S operations for N advertisers. The time
complexity is O(Nc) since S is an constant in the algorithm. Second,
we focus on fitness evaluation (Lines 8–21). There are altogether
MaxG ⁄ cN ⁄ N ⁄ S ⁄Maxtest encounters for fitness evaluation dur-
ing co-evolution. In each encounter, we select N � 1 parasite strat-
egies (O(N)), and simulate the SSA auction by ranking advertisers
by their bids (O(NlogN)), and finally determine their revenue
(O(N)). Therefore, the time complexity of fitness evaluation is
O(MaxG ⁄ cN ⁄ N ⁄ S ⁄Maxtest ⁄ N ⁄ logN), or O(cNN2logN). Third,
consider niche operations (Lines 22–31). In each niche, calculating
SPV and EMV, as well as merging or dividing niches, need O(NS)
time. Thus, the time complexity in this part is O(MaxG ⁄ cN ⁄ NS),
or O(cNN), equivalently. Fourth, we concentrate on genetic opera-
tions (Lines 32–36). The time complexity for genetic operations
is O(MaxG ⁄ N ⁄ S) or O(N), equivalently. To summarize, the overall
computational complexity of our algorithm is O(cNN2logN).

At the first glance, the computing time increases exponentially
with the number of advertisers, which is to be expected of search-
ing for equilibria in the high-dimensional joint strategy spaces of
advertisers. However, in evaluating SSA mechanisms, this expo-
nential complexity can be significantly reduced for the following
reasons. First and most importantly, the performance of an SSA
mechanism is an inherent property and do not vary with respect
to the number of advertisers and niches. For instance, as predicted
by theoretical models, the VCG mechanism is incentive compatible
regardless how many advertisers are involved in auctions (Jansen
and Mullen 2008). In this case, we can simply evaluate an SSA
mechanism by running our algorithm for only one time with a ran-
domly selected N and c. As a result, the computational complexity
will be reduced to O(cN) with N as a constant. As such, the algo-
rithm complexity depends only on the search precision of SSA
equilibrium, controlled by c. Second, as a mechanism evaluation
tool, our algorithm does not necessarily need to run in an online
and real-time environment. Meanwhile, the nature of simulta-
neous searches on niches makes parallel implementation possible
through mechanisms such as map-reduce. Third, dynamic merging
of non-equilibrium niches in our algorithm can significantly accel-
erate the co-evolution process.

4. Analyzing SSA mechanisms

In this section, we analyze four SSA auction mechanisms includ-
ing GFP, GSP, VCG, and FSP, with co-evolutionary simulations.
These mechanisms with the exception of FSP have been intensively



Fig. 2. Co-evolutionary dynamics of advertisers’ bids.

4 The reason why the top advertiser’s bids do not converge precisely at the LPNE
bid is that her bid values have no influence on all advertisers’ revenues.
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studied in the literature. All mechanisms with the exception of
VCG have been used in practice. Nevertheless, the equilibrium con-
tinuum of advertisers’ bidding behavior and the performance of
these mechanisms are not yet fully explored. Our research goal is
to investigate the globally stable equilibria and the entire equilib-
rium continuum in SSA auctions with each of these four mecha-
nisms, and then provide a qualitative and quantitative evaluation
and comparison of the key properties of these mechanisms.

We proceed in two steps. First, we investigate the globally sta-
ble equilibria in each mechanism using the standard co-evolution-
ary algorithm. In standard co-evolution, advertisers’ strategy
populations uniformly converge at an optimal and stable equilib-
rium in advertisers’ joint strategy spaces, and this equilibrium
can be considered as the long-term outcome of SSA markets with
revenue-maximizing advertisers. Second, we derive the equilib-
rium continuum using the niche-based co-evolutionary algorithm,
and evaluate the performance of these auction mechanisms based
on the derived equilibrium continuum. In niche-based co-evolu-
tion, local search will be performed within each niche, and result
in all possible equilibria in SSA auctions.

4.1. Bidding behavior analysis based on standard co-evolutionary
algorithm

We use the standard co-evolutionary algorithm (by setting c = 1
in Algorithm 1) to search the global strategy space of each SSA mech-
anism for the evolutionarily stable equilibrium. Obviously, search
engine companies prefer SSA mechanisms possessing evolutionary
stability since auction outcomes can be easily and precisely pre-
dicted with advertisers’ bids converging at a specific equilibrium.

The detailed setting of experimental parameters, including auc-
tion parameters and algorithm control parameters, are presented
in Table 1. We ran co-evolutionary simulations for all four auction
mechanisms. The detailed experimental results, including the evo-
lutionary dynamics and convergence of advertisers’ bids and fit-
ness, are shown in Figs. 2–4.

We summarize the findings from Fig. 2 concerning bidding
behavior.

(1) Advertisers’ bids in GFP auctions do not converge. Further-
more, even their ranks change frequently during the co-evo-
lution (Fig. 2a).
(2) The bids in GSP auctions stably converge to the LPNE
(Fig. 2b), which indicates that LPNE is a globally optimal
equilibrium in GSP auctions.4 As such, SSA markets with a
GSP auction mechanism will stabilize at an outcome in which
all advertisers submit LPNE bids and obtain the maximum
revenue in SNE.

(3) VCG auctions will result in a truthful-bidding equilibrium,
since advertisers’ bids converge to their private values-per-
click (Fig. 2c).

(4) Interestingly, we observe that in FSP auctions, advertisers
choosing to pay by the first-price scheme become (approxi-
mately) extinct during co-evolution (Fig. 2e). This indicates
that the FSP mechanism will finally evolve to, and in fact is
strategically equivalent to, the GSP mechanism. As a long-
run stable outcome of FSP auctions, rational advertisers will
learn to pay by second-price scheme and their bids will con-
verge to the LPNE (Fig. 2d).

Fig. 3 indicates that GFP is not evolutionarily stable with the
indicators EMV far exceeding the predefined thresholds. In con-
trast, other mechanisms possess evolutionary stability.

Finally, we observe from Fig. 4 that advertisers participating in
GFP auctions cannot obtain stable revenue, while advertisers in
GSP and FSP auctions will get the LPNE revenue and those in
VCG auctions will get the truth-telling VCG revenue. Moreover,
we observe from the simulation that the LPNE revenue equals
the truth-telling VCG revenue.

4.2. Mechanism evaluation based on niched co-evolutionary algorithm

We now investigate the equilibrium continuum using the
niche-based co-evolutionary algorithm. For illustration purposes,
we consider an SSA auction scenario with three advertisers with
values {0.9,0.6,0.3} competing for two slots with CTRs {0.8,0.5}.
The niche parameter c is set to 50. Other parameters are the same
with those in Table 1. As can be seen from experimental results, the
unstable GFP mechanism has an empty equilibrium continuum.
Meanwhile, the strategically equivalent GSP and FSP mechanisms



Fig. 3. Co-evolutionary stability of advertisers’ bids.

Fig. 4. Advertisers’ fitness in co-evolution.
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have similar equilibrium continuums. Therefore, we present in
Fig. 5 only the equilibrium continuums of the GSP and VCG
mechanisms.

It can be concluded from Fig. 5a that enabled by the niche tech-
nique, we have derived two clusters of equilibria in GSP auctions.
One cluster, to the left, corresponds to non-output-truthful equilib-
ria. The other, to the right, corresponds to output-truthful equilib-
ria. Note that using the standard co-evolution, only a single
optimal equilibrium in the output-truthful cluster can be derived.
From Fig. 5b, we note that advertiser 3 will always be a loser in
all equilibria. Advertiser 2 wins the top slot only in cases when
the competing first advertiser submits a bid less than her private
value (0.6). We can also approximately locate the upper bound
and lower bound of the equilibrium continuum, namely,
{0.9885,0.7068,0.5912} and {0.3125,0.3013,0.0068}, which are
the most preferred equilibria by the search engine company and
advertisers, residing on the rightmost and leftmost sides of the
2-dimensional plane, respectively. These two extreme equilibrium



Fig. 5. Equilibrium continuums for GSP and VCG mechanisms.
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bids help compute the performance measure of revenue ratio of
the GSP mechanism. Analogously, we note from Fig. 5c and d that
VCG is an output truthful auction mechanism with only one equi-
librium continuum, in which advertisers are always ranked in
decreasing order of their bids.

Based on these equilibrium continuums, we can now evaluate
the key properties of SSA mechanisms. It is worth noting that since
no equilibrium exists in GFP auctions, we assume that all bids sat-
isfying individual rationality (i.e., not exceeding advertisers’ pri-
vate values) occur with equal possibility. We use all individually
rational bids to evaluate the GFP auction mechanism.

The performance measures of the SSA mechanisms under inves-
tigation are listed in Table 2. We draw the following conclusions.
First, the FSP mechanism performs equally well to the prevailing
GSP mechanism. Considering the similarity in advertisers’ bidding
behavior, we can conclude that FSP is essentially equivalent to GSP.
In other words, the hybrid FSP mechanism invented by Sogou.com,
is in fact not a fundamentally new mechanism from a mechanism
design perspective.

Second, VCG can maintain the maximum market efficiency in all
equilibria (i.e., 1.02), while GFP might lead to the minimum market
Table 2
Performance measures of SSA auction mechanisms.

Mechanism Number of equilibria Market efficiency Revenue ratio (%)

MEmax MEmin MEavg RR-
max

RRmln RR

GFP 0 1.02 0.54 0.9074 99.98 15.48 62
GSP 394,721 1.02 0.93 1.0012 76.04 15.24 49
VCG 977,598 1.02 1.02 1.02 99.22 15.46 64
FSP 394,835 1.02 0.93 1.0011 76.14 15.5 49
efficiency (i.e., 0.54). GSP and FSP can be considered as a tradeoff
on average market efficiency between the optimal VCG and worst
GFP mechanisms.

Third, all mechanisms have approximately equal minimum rev-
enue ratio, while GFP and VCG may achieve the maximum revenue
rate. On average, advertisers will obtain the largest share of auction
surplus in VCG and a relatively high share in GFP auctions
(although not stable). In contrast, search engines will prefer GSP
and FSP auctions in which advertiser only obtains no more than
half of auction surplus.

Fourth, all VCG equilibria are output truthful, while other mech-
anisms will lead to non-output truthful equilibrium bids.

Finally, as to qualitative measures, we can see that only VCG
possesses incentive compatibility, and all mechanisms other than
GFP are evolutionarily stable and may evolve to one equilibrium.

To summarize, VCG proves to be the best mechanism for both
advertisers and the SSA markets among all the mechanisms stud-
ied. However, we experimentally observe that there is no revenue
guarantee for the search engine in VCG auctions as advertisers may
get all auction surpluses (RRmax ? 1) by strategic collusions. As a
good alternative, search engines in GSP and FSP auctions will have
Output truthfulness (%) Incentive compatibility Evolutionary stability

avg

.54 44.42 No No

.10 79.16 No Yes

.42 100 Yes Yes

.14 79.03 No Yes
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guaranteed revenues in case when advertisers submit the LPNE
bids. We strongly believe that this might be one of the factors be-
hind the huge practical success of GSP.

4.3. Discussion of experimental results

The experimental results readily support the existing theoreti-
cal analyses. For instance, it has been proved by theoretical and
empirical analysis that advertisers bidding in GFP auctions will
not form a equilibrium (Zhang and Feng 2005, Edelman and
Ostrovsky 2007). This prediction has been validated by the co-
evolutionary simulation results shown in Fig. 2a. Edelman et al.
(2007) theoretically proved that in GSP auctions, advertisers’ bids
will stabilize at a ‘‘locally envy free’’ equilibrium, which is equiva-
lent to the LPNE. All players, including search engines and advertis-
ers, will get the same payoff in the LPNE as in auctions with the
VCG mechanism. This has been observed in Fig. 2b that advertisers’
bids stably converge to the LPNE values. Meanwhile, VCG has been
proved to be a incentive compatible mechanism with a truth-tell-
ing equilibrium in dominant strategies (Aggarwal et al. 2006). This
can be verified in Fig. 2c that advertisers’ bids in the VCG mecha-
nism have stably converged to their private values. We can con-
clude that co-evolutionary simulation is effective in analyzing
advertisers’ equilibrium bidding behavior in SSA auctions.

Our simulation also offers novel insights about SSA mechanism
design and evaluation. For instance, we have validated that the FSP
mechanism is strategically equivalent to the prevailing GSP mech-
anism. Through discovering all possible equilibria in SSA auctions,
we have determined the distribution of the equilibrium continuum
in the GSP and VCG mechanism, and investigated the key perfor-
mance measures of these auction mechanisms. As a key result,
we experimentally observe that advertisers can squeeze out all
surplus in SSA auctions with GFP and VCG mechanisms through
strategic bidding, which has not been explored by the existing the-
oretical research and can be considered as one of the major reasons
why search engines do not use these mechanisms. These simula-
tion results can effectively complement and enhance the existing
analytical results, and offer new insights on SSA auctions with
more complex mechanisms.

5. Conclusion and future work

This paper focuses on SSA mechanism design and evaluation. To
address the limitations of the analytical mechanism design frame-
work, we propose a niche-based co-evolutionary simulation ap-
proach for SSA mechanism design, aiming at computationally
analyzing advertisers’ equilibrium bidding behavior, and deriving
the key performance measures of various kinds of SSA auction
mechanisms.

Our approach has the following managerial implications. For
online advertisers, our work can help generate the optimal equilib-
rium bids. For Web search engine companies, it can help better
understand advertisers’ bidding behavior and dynamics through
analyzing the equilibrium continuum of SSA auctions. It can also
be used to evaluate key performance of alternative SSA auction
mechanisms.

Our research has two major limitations. First, the proposed ap-
proach can only be used to evolve advertisers’ equilibrium bidding
behavior in SSA scenarios where advertisers have complete infor-
mation, or reliable estimations about all advertisers’ per-click val-
ues and CTRs for all slots. Second, co-evolutionary simulations for
SSA auctions with a large number of advertisers will impose major
computational overhead.

In the future work, we plan to extend our approach to handle
incomplete information settings through maintaining a hybrid
strategy population for each advertiser according to her Bayesian
beliefs of the competitors’ private per-click values. To deal with
the computational overhead, we are working on parallelizing the
key simulation algorithm. We also plan to conduct formal analysis
of the co-evolutionary simulation framework through replicator
dynamics theory.
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