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safety evaluation, intelligent-assistant driving, and 
so on.1,2 Today it is widely recognized that studies 
of driving-behavior models (that is, model calibra-
tion and validation) strongly depend on the mea-
sured traffi c data, especially as the fi eld of intelli-
gent transportation systems is evolving to be more 
data-driven.3,4 Hence, in academics as well as 
industry, driving simulators, in-vehicle data re-
corders, and remote-sensing cameras have been ad-
opted to generate a wide variety of traffi c data.5–8

However, as a result of technical and cost con-
straints on those traditional measurement meth-
ods, there is a lack of long-term driving behavior 
data from natural traffi c scenes, and this has been 
hindering the progress of modeling driving behav-
ior and related topics.

In order to measure driving behaviors for the 
long term, in this article we propose a comprehen-
sive approach (called traffi c visual measurement) 
to accurately segment, position, and measure road 
vehicles from live video. As a new concept in com-
puter vision applications, visual measurement is 
regarded as a highly accurate form of quantitative 
visual detection. The core principles of visual mea-
surement are using optical sensors to detect the 3D 
coordinates of interesting objects and then mea-
suring a variety of object parameters such as sizes, 
shapes, and motion states.9

Visual measurement has already been ap-
plied to product inspection, reverse engineer-
ing, robot navigation, and many other fields. 

Using high-defi nition (HD) camera networks, we 
are investigating a visual measurement approach 
that could perform well in complex traffi c scenes 
while trying to measure driving behaviors in a 
cost-effective manner.

From Visual Detection 
to Visual Measurement
With the rapid development of computer vision 
techniques, visual detection has become increas-
ingly popular in the transportation fi eld.10 Some 
representative applications include traffi c param-
eter extraction (determining fl ow, density, mean 
speed, and so on), traffi c incident detection, li-
cense plate recognition, and trajectory analysis for 
scene understanding. The fi rst three applications 
are getting mature and being widely promoted 
in the commercial world, but there remain some 
problems; in particular, object detection and 
tracking should be more accurate in complex traf-
fi c scenes. Trajectory analysis for scene under-
standing has attracted many research efforts in re-
cent years11, but there is still a lot of work to do 
before it’s ready for large-scale applications.

Unlike those applications, driving behavior 
measurement demands that the small-scale data 
for each vehicle (including position, size, veloc-
ity, and acceleration) be accurately measured at 
any moment. Some work has used remote sens-
ing methods for this purpose, with limited success. 
Researchers at the University of Arizona’s Ad-
vanced Traffi c and Logistics Algorithms and Sys-
tems (ATLAS) Center used a helicopter to capture 
traffi c videos and then measured driving behav-
iors by analyzing the aerial imagery.8 One obvious 
drawback of airborne remote sensing, however, 
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is that its implementation cost is too 
high, making long-term operations 
almost impossible. In the Next Gen-
eration Simulation (NGSIM) project 
organized by the US Federal Highway  
Administration, researchers installed 
multiple cameras on the roof of a 
36-story building to capture road-
way video. Then they detected and 
tracked vehicles from the video in a 
semiautomatic manner (manual revi-
sions are needed when the automatic 
manner fails) and built the NGSIM 
dataset, which is available on the 
Web (see http://ngsim-community. 
org). However, data quality assess-
ment shows that NGSIM data has a 
certain amount of jerkiness and in-
consistency, which would produce 
negative effects on research into traffic 
models.12 Moreover, both ATLAS and 
NGSIM lack data obtained under  
adverse weather conditions, which 
prevents a complete understanding of 
driving behaviors.

As more researchers study traffic 
visual detection and it finds an in-
creasing number of applications, there 
is a call for more advanced cameras 
and better visual algorithms to make 
visual detection more accurate. On 
one hand, the trend towards higher-
resolution cameras will continue 
in the video surveillance market— 
one analysis has forecast that by 
2015, megapixel cameras will ac-
count for more than 70 percent of  
network security cameras shipped.13 
Objects’ edge details are clearer in HD 
images, making it easier to segment 
and position objects. On the other 
hand, studies of trajectory analy-
sis, driving behavior measurement, 
and other topics are still far from  
mature; vehicle detection and tracking  

algorithms in particular need im-
provement. The demand for accurate 
quantification of traffic visual detec-
tion is growing ever greater, and thus 
we can say, in some sense, traffic vi-
sual detection is about to enter a 
new stage of development, namely 
traffic visual measurement.

Traffic Visual  
Measurement Procedure
Figure 1 shows our procedure for 
traffic visual measurement. Traffic 
video images easily deteriorate dur-
ing collection, transformation, and 
transmission; some adverse factors 
affecting image quality include cam-
era vibration, device noise, and low-
contrast weather conditions. So, the 
first step is to preprocess the input 
images through video stabilization, 
noise reduction, and image enhance-
ment to highlight important infor-
mation. Once we have high-quality  
images, the next step is vehicle  
segmentation—that is, separating out 
every vehicle from the image. Each 
segmented vehicle region should have 
precise boundaries and completely 
enclose the vehicle to make vehicle 
positioning and measurement eas-
ier. Subsequently, with the support 
of camera calibration, we measure a 
variety of vehicle parameters at each 
time step, including key geometric 
(position, size, and so on) and motion 
(velocity, acceleration, and so on) in-
formation. We could measure vehicle 
parameters using monocular vision 
under the restriction of vehicle geo-
metric shapes (in other words, we ap-
proximate the shape of a vehicle with 
a 3D cuboid); however, we could use 
stereo vision to make the measure-
ment more accurate and complete. 

Finally, we perform vehicle track-
ing (or data filtering) to smooth the 
moment-by-moment data and gen-
erate results without jerkiness and  
inconsistency.

Preliminary Algorithms  
and Initial Results
Along a section of urban road in 
Beijing, we have installed multiple 
HD cameras that support up to two  
million–pixels resolution at a real-
time frame rate (30 frames per second). 
Each camera’s field of view covers one 
stretch of the road, and the fields of 
view of any two adjacent cameras 
overlap by about 50 meters. Figure 2  
shows the structure of the HD  
camera network, and we capture HD 
video in real time to record the driv-
ing behavior of every vehicle over a 
long distance.

Image Enhancement
In the image preprocessing step, we 
focus on removing any blur caused 
by adverse weather conditions. To do 
so, we combine spatial domain pro-
cessing and frequency domain pro-
cessing. For spatial domain process-
ing, we use random spray Retinex 
and random spray Automatic Color 
Equalization (ACE) to enhance 
the source image and generate two 
intermediate images, IRetinex and 
IACE. Both random spray Retinex 
and ACE simulate the locality, non-
linearity, and color constancy of the 
human visual system to correct the 
blurred image.14 We then combine 
the intermediate images into one fi-
nal image through frequency do-
main processing. After decomposing  
IRetinex and IACE using a curvelet  
transform, we fuse the coarse- 
scale coefficients with the averaging 
method to get the smooth structure 
and fuse the fine-scale coefficients 
with the taking-large-value method to 
get the detail component. We further  

Figure 1. Flow chart depicting our procedure for traffic visual measurement.
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divide the detail component into 
three subcomponents: noises, fuzzy 
details, and clear edges. We process 
each subcomponent separately to 
suppress noise, highlight fuzzy de-
tails, and protect clear edges from 
distortions.

Vehicle Segmentation
To insure a precise boundary and 
complete enclosure for every vehicle, 
we use foreground segmentation as 
the basis for vehicle segmentation. 
Previous work has shown that the 
chromaticity and texture characteris-
tics of background objects are more 
stable under complex illumination 
conditions than the intensity charac-
teristic, while invasions of foreground 
objects often significantly change the 
chromaticity and texture of the oc-
cupied regions. So, we select chroma-
ticity distortion and texture change 
between the current frame and the 
background image to use for dis-
criminating between foreground and 
background.

We assume that the observed fea-
tures of background pixels conform 
to a negative exponential distribu-
tion, while those of foreground pixels 
conform to a uniform distribution. 
That lets us estimate the probability 
that any pixel belongs to the fore-
ground. To eliminate the uncertainty 
and ambiguity in foreground segmen-
tation, we optimize the foreground 
and background labeling based on 
Markov random fields (MRF).15  
We use spatial-temporal context in-
formation within the observed fea-
tures and labeling results to construct 
the Gibbs energy function. Currently, 
we are studying an unsupervised 
method to adaptively tune the MRF 
parameters.

If a particular vehicle is isolated 
from others and not occluded, the 
foreground region is exactly that ve-
hicle; otherwise, we need to segment 

the joint foreground region into mul-
tiple vehicles. During vehicle track-
ing, we learn the appearance feature 
of every vehicle automatically. We 
can divide each vehicle region into 
numerous local blocks of 8-by-8 pixels  
as the basic unit for feature rep-
resentation. The appearance fea-
ture comprises every local block’s  
texture (permutation of 64 pixels) 
and position (relative to the object  
center), and we record appearance 
features from multiple continuous 
frames to eliminate the randomness 
of local-block division. Afterwards, 
we segment each occluded joint 
foreground region via local-block  
classification.

Aside from the appearance fea-
ture, we regard the motion speed of 
every local block as another impor-
tant cue in isolating vehicles, con-
sidering that different vehicles of-
ten have different speeds. We match 
multiple cues (texture, position, and 
speed) for each local block in the 
joint foreground region with all oc-
cluded vehicles, and use the k-nearest 
neighbor algorithm to estimate the 
probability that a local block belongs 
to any specific vehicle. We regard 
vehicle segmentation as an image-
labeling problem in this approach, 
and use spatial context informa-
tion within the observed features 
and labeling results under the MRF 
framework to improve segmentation  
performance.

Vehicle Parameter Measurement
Once we have segmented all vehicles 
from the image, we can apply mon-
ocular and stereo vision alternately 
to measure vehicle parameters. To 
make the problem tractable, we use a 
generic model of a 3D cuboid to rep-
resent different types of vehicles. It is 
known that a vehicle region in high-
resolution images usually contains a 
large number of edge details, while 
the tangents of most edges are consis-
tent with the vehicle orientation. By 
computing the histogram of oriented 
gradients for every segmented vehi-
cle, we pick up the most frequent di-
rection as the estimate of vehicle ori-
entation. Then, with the support of 
camera calibration, we represent each 
vehicle using an encircling cuboid. 
For every occluded foreground re-
gion, we infer the occlusion layer by 
analyzing the depth order of vehicle 
cuboids, and then we acquire the visi-
ble corners of each cuboid to estimate 
each vehicle’s length, width, and 
height. We define vehicle position as 
the 3D world coordinate of the bot-
tom center of the vehicle head, which 
helps us not only locate partially oc-
cluded vehicles but also measure driv-
ing behavior data such as space head-
way and time headway. Moreover, 
multicamera images contain redun-
dant and complementary information 
due to adjacent cameras’ overlapping 
fields of view, and we can use ste-
reo vision to make the measurement  

Figure 2. Structure of the HD camera network. The overlap between adjacent 
cameras’ fields of view covers about 50 meters.
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more accurate. Finally, we use the ex-
tended Kalman filter to estimate the 
vehicle state parameters recursively 
and generate driving behavior data 
without jerkiness and inconsistency.

Figure 3 summarizes all the prelimi-
nary algorithms, and Figure 4 shows 
some representative experimental re-
sults we have attained. In Figure 4(a), 
foreground vehicles are segmented  

while their shadows are suppressed; 
Figure 4(b) shows 3D cuboids matched 
with different types of vehicles to lo-
cate the vehicles and measure their 
lengths, widths, and heights; and 
Figure 4(c) shows the collection and 
analysis of several vehicle motion tra-
jectories. These initial results appear 
promising, and we are devoting our-
selves to more accurate segmentation, 

positioning, and measurement of road 
vehicles in natural traffic scenes.

Comparisons between  
the Proposed Method  
and Traditional Methods
Table 1 shows the results of qualita-
tive comparisons between the pro-
posed method and three traditional 
measurement methods. Compared 
with driving simulators5 and in- 
vehicle data recorders,6,7 the proposed 
method applies to actual traffic  
situations and studies the driving be-
haviors of all the vehicles. Compared 
with remote-sensing cameras,8 the 
proposed method relies on HD cam-
eras that are mounted much lower, 
and is therefore easier to implement. 
In summary, the biggest advantage 
of the proposed method is that it can 
cost-effectively measure driving be-
haviors from live video.

Figure 3. Schematic diagram of the preliminary algorithms. This figure expands on Figure 1, adding details for each step.
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Figure 4. Representative experimental results: (a) Segmented foreground vehicles 
with their shadows suppressed; (b) 3D cuboids representing several vehicles of 
different types; and (c) extracted vehicle motion trajectories.
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Thanks to high-definition cam-
eras and advanced visual measure-
ment methods, traditional traffic vi-
sual detection is entering a new stage 
of traffic visual measurement. We 
are working towards highly accurate 
segmentation, positioning, and mea-
surement of road vehicles from com-
plex traffic scenes, so as to make this 
novel (driving behavior) measure-
ment method online (that is, from live 
video), accurate, and smart. In par-
ticular, our current studies focus on 
image enhancement and vehicle seg-
mentation, because we believe that 
obtaining highly accurate vehicle re-
gions are very critical for measuring 
driving behaviors. The current find-
ings and future prospects will greatly 
benefit cognition in driving behavior 
models.
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