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Abstract—In this paper, the infinite horizon optimal robust
guaranteed cost control of continuous-time uncertain nonlin-
ear systems is investigated using neural-network-based online
solution of Hamilton–Jacobi–Bellman (HJB) equation. By estab-
lishing an appropriate bounded function and defining a modified
cost function, the optimal robust guaranteed cost control prob-
lem is transformed into an optimal control problem. It can be
observed that the optimal cost function of the nominal system is
nothing but the optimal guaranteed cost of the original uncer-
tain system. A critic neural network is constructed to facilitate
the solution of the modified HJB equation corresponding to
the nominal system. More importantly, an additional stabiliz-
ing term is introduced for helping to verify the stability, which
reinforces the updating process of the weight vector and reduces
the requirement of an initial stabilizing control. The uniform
ultimate boundedness of the closed-loop system is analyzed by
using the Lyapunov approach as well. Two simulation examples
are provided to verify the effectiveness of the present control
approach.

Index Terms—Adaptive critic designs, adaptive/approximate
dynamic programming (ADP), Hamilton–Jacobi–Bellman (HJB)
equation, neural networks, optimal robust guaranteed cost
control, uncertain nonlinear systems.

I. INTRODUCTION

THE adaptive or approximate dynamic program-
ming (ADP) algorithm was first proposed by Werbos [1]

as an effective method to solve optimization and optimal
control problems. In general, it is implemented by solving the
Hamilton–Jacobi–Bellman (HJB) equation based on function
approximators, such as neural networks. It is one of the key
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directions for future researches in intelligent control and
understanding brain intelligence [2], [3]. As a result, the ADP
and related research have gained much attention from scholars
across many disciplines (see [4]–[14] and the numerous refer-
ences therein). Significantly, the ADP method has been often
used in feedback control applications, both for discrete-time
systems [15]–[36] and for continuous-time systems [37]–[54].
Besides, various traditional control problems, like robust
control [55], [56], decentralized control [57], networked con-
trol [58], power system control [59], are studied under the new
framework, which greatly extends the application scope of
ADP methods.

Unavoidable discrepancies between system models and
real-world dynamics may result in degradation of system
performance including instability [60]–[62]. In this sense,
the feedback control should be designed to be robust with
respect to system uncertainties. The importance of robust
control has been recognized by control scientists for sev-
eral decades and various approaches have been proposed.
In [63], it was shown that the robust control problem can be
solved by studying the corresponding optimal control prob-
lem, hence the optimal control method can be employed to
design robust controllers. However, the results are restricted to
a class of systems with special form of uncertainties. Though
Adhyaru et al. [55], [56] proposed an HJB equation-based
optimal control algorithm to deal with the nonlinear robust
control problem, the algorithm was constructed using the least
square method and performed offline, not to mention the stabil-
ity analysis of the closed-loop optimal control system was not
conducted. On the other hand, when controlling a real plant,
it is desirable to design a controller, which not only makes the
closed-loop system asymptotically stable but also guarantees
an adequate level of performance. The so-called guaranteed
cost control approach [64] has the advantage of providing
an upper bound on a given cost and thus the system perfor-
mance degradation incurred by the model parameter uncer-
tainties is guaranteed to be less than this bound [65], [66].
The optimal robust guaranteed cost control problem arises
when discussing optimality of the guaranteed cost func-
tion. To the best of our knowledge, however, there are no
results on optimal robust guaranteed cost control of uncertain
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nonlinear systems using online ADP strategy. These motivate
our research.

From a structural perspective, in many ADP-related litera-
ture, the main control strategy is implemented based on the
actor-critic architecture, where two neural networks referred to
as critic network and action network are taken to approximate
the optimal cost function and the optimal control, respectively.
In addition, from an algorithmic point of view, the value iter-
ation and policy iteration are two important algorithms when
designing the ADP-based optimal feedback control. It should
be pointed out that the initial admissible control is necessary
when employing the policy iteration algorithm. However, in
many situations, finding the initial admissible control is not
an easy task. Therefore, how to simplify the structure of ADP
and relax the need for an initial stabilizing control are of great
significance.

In this paper, we investigate the optimal robust guaranteed
cost control of continuous-time uncertain nonlinear systems
using neural-network-based online solution of HJB equation.
The optimal robust guaranteed cost control problem is trans-
formed into an optimal control problem by introducing an
appropriate cost function. It can be proved that the optimal
cost function of the nominal system is the optimal guaranteed
cost of the controlled uncertain system. Then, a critic network
is constructed for facilitating the solution of modified HJB
equation. Moreover, inspired by the work of [45] and [46], an
additional stabilizing term is introduced to verify the stabil-
ity, which relaxes the need for an initial stabilizing control.
The uniform ultimate boundedness (UUB) of the closed-loop
system is also proved by using the well-known Lyapunov
approach. The approximate control input can converge to the
optimal control within a small bound.

In summary, the main contributions of this paper are as
follows.

1) It is the first time that the infinite horizon optimal robust
guaranteed cost control of uncertain nonlinear systems is
investigated using the neural-network-based online HJB
solution. The bounded function is introduced and the
proper cost function is defined, then the optimal cost
function of the nominal system is related to the optimal
guaranteed cost of the original system.

2) Since the system uncertainties are not always con-
sidered in ADP-related literature, the control strategy
established in this paper is significant to design robust
controllers for uncertain nonlinear systems. In this sense,
the conducted research extends the application scope of
ADP method.

The rest of this paper is organized as follows. In Section II,
the optimal robust guaranteed cost control problem of uncer-
tain nonlinear systems is stated. In Section III, the studied
problem is transformed into an optimal control problem with
a modified cost function. In Section IV, a neural network
is constructed to solve the modified HJB equation approxi-
mately. Then, the stability of the overall closed-loop system
is proved. In Section V, two numerical examples are given to
demonstrate the effectiveness of the established approach. In
Section VI, concluding remarks and the discussion of future
work are presented.

II. PROBLEM STATEMENT

In this paper, we study a class of continuous-time uncertain
nonlinear systems given by

ẋ(t) = F(x(t), u(t))

= f (x(t)) + g(x(t))u(t) + �f (x(t)) (1)

where x(t) ∈ R
n is the state vector and u(t) ∈ R

m is the control
input. The known functions f (·) and g(·) are differentiable in
their arguments with f (0) = 0, and �f (x(t)) is the nonlinear
perturbation of the corresponding nominal system

ẋ(t) = F(x(t), u(t)) = f (x(t)) + g(x(t))u(t). (2)

Here, we let x(0) = x0 be the initial state. In addition, as
in many other literature, we assume that f + gu is Lipschitz
continuous on a set � in R

n containing the origin and that the
system (2) is controllable.

Before proceeding, we assign an explicit structure to the
system uncertainty. The following assumption is given, which
has been used in [61] and [62].

Assumption 1: Assume that the uncertainty �f (x) has the
form

�f (x) = G(x)d(ϕ(x)) (3)

where

dT(ϕ(x))d(ϕ(x)) ≤ hT(ϕ(x))h(ϕ(x)). (4)

In (3) and (4), G(·) ∈ R
n×r and ϕ(·) satisfying ϕ(0) = 0

are known functions denoting the structure of the uncertainty,
d(·) ∈ R

r is an uncertain function with d(0) = 0, and h(·)∈ R
r

is a given function with h(0) = 0.
Consider system (1) with infinite horizon cost function

J(x0, u) =
∫ ∞

0
U(x(τ ), u(τ ))dτ (5)

where U(x, u) = Q(x) + uTRu, Q(x) ≥ 0, and R = RT > 0 is
a constant matrix.

In this paper, the aim of solving the robust guaranteed
cost control problem is to find a feedback control function
u(x) and determine a finite upper bound function �(u), i.e.,
�(u) < +∞, such that the closed-loop system is robustly
stable and the cost function (5) satisfies J ≤ �. Here, the
upper bound function �(u) is termed as a robust guaranteed
cost function. Only when �(u) is minimized, it is named
as the optimal robust guaranteed cost and is denoted as �∗,
i.e., �∗ = minu �(u). Additionally, the corresponding con-
trol function ū∗ is called the optimal robust guaranteed cost
control, i.e., ū∗ = arg minu �(u).

In this paper, we will prove that the optimal robust guar-
anteed cost control problem of system (1) can be transformed
into the optimal control problem of nominal system (2). The
ADP technique can be employed to deal with the optimal
control problem of system (2). Note that in this paper, the
feedback control u(x) is often written as u for simplicity.
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III. OPTIMAL ROBUST GUARANTEED COST CONTROL

OF UNCERTAIN NONLINEAR SYSTEMS

VIA HJB SOLUTION

In this section, we show that the guaranteed cost of the
uncertain nonlinear system is closely related to the modified
cost function of the nominal system. The next theorem is
derived by rechecking [60] with relaxed conditions.

Theorem 1: Assume that there exist a continuously differ-
entiable and radially unbounded cost function V(x) satisfying
V(x) > 0 for all x �= 0 and V(0) = 0, a bounded function
�(x) satisfying �(x) ≥ 0, and a feedback control function
u(x) such that

(∇V(x))TF(x, u) ≤ (∇V(x))TF(x, u) + �(x) (6)

(∇V(x))TF(x, u) + �(x) < 0, x �= 0 (7)

U(x, u) + (∇V(x))TF(x, u) + �(x) = 0 (8)

where the symbol ∇V(x) denotes the partial derivative of the
cost function V(x) with respect to x, i.e., ∇V(x) = ∂V(x)/∂x.
Then, with the feedback control function u(x), there exists
a neighborhood of the origin such that system (1) is locally
asymptotically stable. Furthermore

J(x0, u) ≤ V(x0) = J(x0, u) (9)

where J(x0, u) is defined as

J(x0, u) =
∫ ∞

0

{
U(x(τ ), u(x(τ ))) + �(x(τ ))

}
dτ (10)

and is termed as the modified cost function of system (2).
Proof: First, we show the asymptotic stability of system (1)

under the feedback control u(x). Let

V̇(x) � dV(x)

dt
= (∇V(x))TF(x, u). (11)

Considering (6) and (7), we obtain V̇(x(t)) < 0 for any
x �= 0. This implies that V(·) is a Lyapunov function for
system (1), which proves the local asymptotic stability.

Then, we show J(x0, u) is upper bounded by a modified
cost function corresponding to the nominal system (2).

For system (1), considering the fact that V̇(x) =
(∇V(x))TF(x, u), we have U(x, u) = −V̇(x) + (∇V(x))T

F(x, u) + U(x, u). According to (6) and (8),
we have

U(x, u) = −V̇(x) + U(x, u) + (∇V(x))TF(x, u)

≤ −V̇(x) + U(x, u) + (∇V(x))TF(x, u) + �(x)

= −V̇(x). (12)

Integrating over [0, t) yields
∫ t

0
U(x, u)dτ ≤ −V(x(t)) + V(x0). (13)

Letting t → ∞ and noting that V(x(t)) → 0, we can obtain

J(x0, u) ≤ V(x0). (14)

When �f (x) = 0, we can still find that (6)–(8) are true since
�(x) ≥ 0. In this case, we derive that V̇(x) = (∇V(x))TF(x, u).

Then, U(x, u)+�(x) = −V̇(x)+ (∇V(x))TF(x, u)+U(x, u)+
�(x). Based on (8), we obtain

U(x, u) + �(x) = −V̇(x) + U(x, u)

+ (∇V(x))TF(x, u) + �(x)

= −V̇(x). (15)

Similarly, by integrating over [0, t), we have∫ t

0

{
U(x, u) + �(x)

}
dτ = −V(x(t)) + V(x0). (16)

Here, letting t → ∞ yields

J(x0, u) = V(x0). (17)

Based on (14) and (17), we can easily find that (9) is true.
This completes the proof.

Theorem 1 shows that the bounded function �(x) takes an
important role in deriving the guaranteed cost of the controlled
system. The following lemma presents a specific form of �(x).

Lemma 1: For any continuously differentiable and radially
unbounded function V(x), define

�(x) = hT(ϕ(x))h(ϕ(x)) + 1

4
(∇V(x))TG(x)GT(x)∇V(x).

(18)

Then, we have

(∇V(x))T�f (x) ≤ �(x). (19)

Proof: Considering (3), (4), and (18), since

0 ≤
(

d(ϕ(x)) − 1

2
GT(x)∇V(x)

)T(
d(ϕ(x))

− 1

2
GT(x)∇V(x)

)

= dT(ϕ(x))d(ϕ(x)) + 1

4
(∇V(x))TG(x)GT(x)∇V(x)

− (∇V(x))TG(x)d(ϕ(x))

≤ hT(ϕ(x))h(ϕ(x)) + 1

4
(∇V(x))TG(x)GT(x)∇V(x)

− (∇V(x))T�f (x)

= �(x) − (∇V(x))T�f (x) (20)

we can see that (19) holds.
Remark 1: For any continuously differentiable and radially

unbounded function V(x), since

(∇V(x))TF(x, u) = (∇V(x))TF(x, u) + (∇V(x))T�f (x) (21)

we can easily find that the bounded function (18) satisfies (6).
Note that the Lemma 1 seems only imply (6), but in fact, it
presents a specific form of �(x) satisfying (6)–(8). The rea-
son is that (7) and (8) are implicit assumptions of Theorem 1,
noticing the framework of the generalized HJB equation [67]
and the fact that (∇V(x))TF(x, u) + �(x) = −U(x, u) < 0
when x �= 0. Hence, it can be used for problem transfor-
mation. In fact, based on (6) and (21), we can find that the
positive semi-definite bounded function �(x) gives an upper
bound of the term (∇V(x))T�f (x), which facilitates us to solve



LIU et al.: NEURAL-NETWORK-BASED ONLINE HJB SOLUTION FOR OPTIMAL ROBUST GUARANTEED COST CONTROL 2837

the optimal robust guaranteed cost control problem of a class
of nonlinear systems with uncertainties.

Remark 2: It is important to note that Theorem 1 indicates
the existence of the guaranteed cost of the uncertain nonlinear
system (1). In addition, in order to derive the optimal guar-
anteed cost controller, we should minimize the upper bound
J(x0, u) with respect to u. Therefore, we should solve the opti-
mal control problem of system (2) with V(x0) considered as
the cost function.

For optimal control problem, the designed feedback control
must not only stabilize the controlled system on � but also
guarantee that the cost function is finite. In other words, the
control function must be admissible.

Definition 1: A control function u(x) is said to be admissi-
ble with respect to (10) on �, denoted by u ∈ 	(�) (	(�)

is the set of admissible controls on �), if u(x) is continuous
on �, u(0) = 0, u(x) stabilizes system (2) on �, and J(x0, u)

is finite for all x0 ∈ �.
For system (2), observing that

V(x0) =
∫ ∞

0

{
U(x, u) + �(x)

}
dτ

=
∫ T

0

{
U(x, u) + �(x)

}
dτ + V(x(T)) (22)

we have

lim
T→0

1

T

(
V(x(T)) − V(x0) +

∫ T

0
{U(x, u) + �(x)} dτ

)
= 0.

(23)

Clearly, (23) is equivalent to (8). Hence, (8) is an infinites-
imal version of the modified cost function (22) and is the
so-called nonlinear Lyapunov equation.

For system (2) with modified cost function (22), define the
Hamiltonian function of the optimal control problem as

H(x, u,∇V(x)) = U(x, u) + (∇V(x))TF(x, u) + �(x).

(24)

Define the optimal cost function of system (2) as J∗(x0) =
minu∈	(�) J(x0, u), where J(x0, u) is given in (10). Note that
J∗(x) satisfies the modified HJB equation

0 = min
u∈	(�)

H(x, u,∇J∗(x)) (25)

where ∇J∗(x) = ∂J∗(x)/∂x. Assume that the minimum on the
right hand side of (25) exists and is unique. Then, the optimal
control of system (2) is

u∗(x) = arg min
u∈	(�)

H(x, u,∇J∗(x))

= −1

2
R−1gT(x)∇J∗(x). (26)

Hence, the modified HJB equation becomes

0 = U(x, u∗) + (∇J∗(x))TF(x, u∗) + hT(ϕ(x))h(ϕ(x))

+ 1

4
(∇J∗(x))TG(x)GT(x)∇J∗(x) (27)

with J∗(0) = 0.

Substituting (26) into (27), we can obtain the formulation
of the modified HJB equation in terms of ∇J∗(x) as follows:

0 = Q(x) + (∇J∗(x))Tf (x) + hT(ϕ(x))h(ϕ(x))

− 1

4
(∇J∗(x))Tg(x)R−1gT(x)∇J∗(x)

+ 1

4
(∇J∗(x))TG(x)GT(x)∇J∗(x) (28)

with J∗(0) = 0.
Now, we give the following assumption, which is helpful to

derive the optimal control with regard to system (2) and prove
the stability of the closed-loop system.

Assumption 2: Consider system (2) with cost function (22)
and the optimal feedback control function (26). Let Js(x)
be a continuously differentiable Lyapunov function candidate
formed as a polynomial and satisfying

J̇s(x) = (∇Js(x))
Tẋ = (∇Js(x))

T( f (x) + g(x)u∗) < 0 (29)

where ∇Js(x) = ∂Js(x)/∂x. Assume there exists a positive
definite matrix 
(x) such that the following relation holds:

(∇Js(x))
T( f (x) + g(x)u∗) = −(∇Js(x))

T
(x)∇Js(x). (30)

Remark 3: This is a common assumption that has been used
in the literature, for instance [42], [45], and [46], to facilitate
discussing the stability issue of closed-loop system. According
to [45], we assume that the closed-loop dynamics with opti-
mal control can be bounded by a function of system state
on the compact set of this paper. Without loss of generality,
we assume that ‖ f (x) + g(x)u∗‖ ≤ η‖∇Js(x)‖ with η > 0.
Hence, we can further obtain ‖(∇Js(x))T( f (x) + g(x)u∗)‖ ≤
η‖∇Js(x)‖2. Let λm and λM be the minimum and maximum
eigenvalues of matrix 
(x), then we have

λm‖∇Js(x)‖2 ≤ (∇Js(x))
T
(x)∇Js(x) ≤ λM‖∇Js(x)‖2. (31)

Therefore, by noticing (29) and (31), we can conclude that
the Assumption 2 is reasonable. Specifically, in this paper,
Js(x) can be obtained by properly selecting a polynomial when
implementing the ADP method.

The following theorem illustrates how to develop the opti-
mal robust guaranteed cost control scheme for system (1).

Theorem 2: Consider system (1) with cost function (5).
Suppose the modified HJB equation (28) has a continuously
differentiable solution J∗(x). Then, for any admissible control
function u, the cost function (5) satisfies

J(x0, u) ≤ �(u) (32)

where

�(u) � J∗(x0) +
∫ ∞

0
(u − u∗)TR(u − u∗)dτ. (33)

Moreover, the optimal robust guaranteed cost of the con-
trolled uncertain nonlinear system is given by �∗ = �(u∗) =
J∗(x0). Accordingly, the optimal robust guaranteed cost control
is given by ū∗ = u∗.

Proof: For any admissible control function u(x), the cost
function (5) can be written as the following form:

J(x0, u) = J∗(x0) +
∫ ∞

0

{
U(x, u) +J̇

∗
(x)
}
dτ. (34)
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Along the closed-loop trajectories of system (1) and accord-
ing to (28), we find that

U(x, u) +J̇
∗
(x)

= Q(x) + uTRu + (∇J∗(x)
)T

( f (x) + g(x)u + �f (x))

= uTRu + (∇J∗(x)
)T

(g(x)u + �f (x))

− hT(ϕ(x))h(ϕ(x)) − 1

4

(∇J∗(x)
)T

G(x)GT(x)∇J∗(x)

+ 1

4

(∇J∗(x)
)T

g(x)R−1gT(x)∇J∗(x). (35)

For the optimal cost function J∗(x), in light of Lemma 1,
we have the following inequality holds:
(∇J∗(x)

)T
�f (x) ≤ hT(ϕ(x))h(ϕ(x))

+ 1

4

(∇J∗(x)
)T

G(x)GT(x)∇J∗(x). (36)

Substituting (36) into (35), we can further obtain

U(x, u) +J̇
∗
(x) ≤ uTRu + (∇J∗(x)

)T
g(x)u

+ 1

4

(∇J∗(x)
)T

g(x)R−1gT(x)∇J∗(x). (37)

Considering the expression of the optimal control in (26),
the (37) is in fact

U(x, u) +J̇
∗
(x) ≤ (u − u∗)TR(u − u∗). (38)

Thus, combining (34) with (38), we can find that

J(x0, u) ≤ J∗(x0) +
∫ ∞

0
(u − u∗)TR(u − u∗)dτ (39)

holds. Clearly, the optimal robust guaranteed cost can be
obtained when setting u = u∗, i.e., �(u∗) = J∗(x0).
Furthermore, we can derive that �∗ = minu �(u) = J∗(x0)

and ū∗ = arg minu �(u) = u∗. This completes the proof.
Remark 4: According to Theorem 2, the optimal robust

guaranteed cost control of uncertain nonlinear system is trans-
formed into the optimal control of nominal system, where the
modified cost function is considered as the upper bound func-
tion. In other words, once the solution of the modified HJB
equation (28) corresponding to nominal system (2) is derived,
we can establish the optimal robust guaranteed cost control
scheme of system (1).

IV. ONLINE HJB SOLUTION OF THE TRANSFORMED

OPTIMAL CONTROL PROBLEM

For nonlinear system (2), the solution of optimal con-
trol problem can be obtained by solving the modified HJB
equation (28) [9], [10], [12], [15], [38]. However, it is always
difficult or even impossible to obtain the analytical solu-
tion. Thus, in many literature, the value iteration and policy
iteration-based approaches are employed to get its approximate
solution. The traditional ADP-based design methodology often
utilizes critic network and action network without considering
uncertainties of the controlled system. Besides, the design pro-
cedure is often performed with the requirement of an initial
stabilizing control.

In this section, inspired by the excellent work of [39], [40],
and [45], an improved online technique without utilizing the

iterative strategy and an initial stabilizing control is devel-
oped by constructing a single network, namely, the critic
network. Here, the ADP method is introduced to the frame-
work of infinite horizon optimal robust guaranteed cost control
of nonlinear systems with uncertainties.

A. Neural Network Implementation

Assume that the cost function V(x) is continuously differ-
entiable. According to the universal approximation property of
neural networks, V(x) can be reconstructed by a single-layer
neural network on a compact set � as

V(x) = ωT
c σc(x) + εc(x) (40)

where ωc ∈ R
l is the ideal weight, σc(x) ∈ R

l is the activa-
tion function, l is the number of neurons in the hidden layer,
and εc(x) is the unknown approximation error of the neural
network. Then

∇V(x) = (∇σc(x)
)T

ωc + ∇εc(x) (41)

is also unknown, where ∇σc(x) = ∂σc(x)/∂x and ∇εc(x) =
∂εc(x)/∂x are the gradient of the activation function and neural
network approximation error, respectively. Based on (41), the
Lyapunov equation (8) takes the following form:

0 = U(x, u) +
(
ωT

c ∇σc(x) + (∇εc(x))
T
)

F(x, u)

+ hT(ϕ(x))h(ϕ(x)) + 1

4

(
ωT

c ∇σc(x) + (∇εc(x))
T
)

× G(x)GT(x)
(
(∇σc(x))

T ωc + ∇εc(x)
)
. (42)

Following the framework of [39], [40], and [45], we assume
that the weight vector ωc, the gradient ∇σc(x), and the approx-
imation error εc(x) and its derivative ∇εc(x) are all bounded
on a compact set �.

Since the ideal weights are unknown, a critic neural network
can be built in terms of the estimated weights as

V̂(x) = ω̂T
c σc(x) (43)

to approximate the cost function. Under the framework of
ADP method, the selection of the activation function of the
critic network is often a natural choice guided by engineering
experience and intuition [37], [67]. Then, we have

∇V̂(x) = (∇σc(x))
T ω̂c (44)

where ∇V̂(x) = ∂V̂(x)/∂x.
According to (26) and (41), we have

u(x) = −1

2
R−1gT(x)

(
(∇σc(x))

Tωc + ∇εc(x)
)

(45)

which, in fact, represents the expression of optimal control
u∗(x) if the cost function in (40) is considered as the optimal
one J∗(x). Besides, in light of (26) and (44), the approximate
control function can be given as

û(x) = −1

2
R−1gT(x)(∇σc(x))

Tω̂c. (46)

Applying (46) to system (2), the closed-loop system dynam-
ics is expressed as

ẋ = f (x) − 1

2
g(x)R−1gT(x)(∇σc(x))

Tω̂c. (47)
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Recalling the definition of the Hamiltonian function (24)
and the modified HJB equation (25), we can easily obtain
that H(x, u∗,∇J∗) = 0. The neural network expressions (41)
and (45) imply that u∗ and ∇J∗ can be formulated based
on the ideal weight of the critic network, i.e., ωc. As a
result, the Hamiltonian function becomes H(x, ωc) = 0, which
specifically, can be written as

H(x, ωc) = Q(x) + ωT
c ∇σc(x)f (x)

− 1

4
ωT

c ∇σc(x)g(x)R−1gT(x)(∇σc(x))
Tωc

+ hT(ϕ(x))h(ϕ(x))

+ 1

4
ωT

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tωc + ecH

= 0 (48)

where

ecH = (∇εc(x))
Tf (x)

− 1

2
(∇εc(x))

Tg(x)R−1gT(x)(∇σc(x))
Tωc

− 1

4
(∇εc(x))

Tg(x)R−1gT(x)∇εc(x)

+ 1

2
(∇εc(x))

TG(x)GT(x)(∇σc(x))
Tωc

+ 1

4
(∇εc(x))

TG(x)GT(x)∇εc(x). (49)

In (49), ecH denotes the residual error generated due to the
neural network approximation.

Then, using the estimated weight vector, the approximate
Hamiltonian function can be derived as

Ĥ(x, ω̂c) = Q(x) + ω̂T
c ∇σc(x)f (x)

− 1

4
ω̂T

c ∇σc(x)g(x)R−1gT(x)(∇σc(x))
Tω̂c

+ hT(ϕ(x))h(ϕ(x))

+ 1

4
ω̂T

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tω̂c. (50)

Letting ec = Ĥ(x, ω̂c) − H(x, ωc) and considering (48), we
have ec = Ĥ(x, ω̂c). Let the weight estimation error of the
critic network be

ω̃c = ωc − ω̂c. (51)

Then, based on (48), (50), and (51), we can obtain the
formulation of ec in terms of ω̃c as follows:

ec = Ĥ(x, ω̂c) − H(x, ωc)

= −ω̃T
c ∇σc(x)f (x)

− 1

4
ω̃T

c ∇σc(x)g(x)R−1gT(x)(∇σc(x))
Tω̃c

+ 1

2
ω̃T

c ∇σc(x)g(x)R−1gT(x)(∇σc(x))
Tωc

+ 1

4
ω̃T

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tω̃c

− 1

2
ω̃T

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tωc − ecH . (52)

For training the critic network, it is desired to design ω̂c to
minimize the objective function

Ec = 1

2
eT

c ec. (53)

Here, the weights of the critic network are tuned based on
the standard steepest descent algorithm with an additional term
introduced to assure the boundedness of system state, that is

˙̂ωc = −αc

(
∂Ec

∂ω̂c

)

+ 1

2
αs�(x, û)∇σc(x)g(x)R−1gT(x)∇Js(x) (54)

where αc > 0 is the learning rate of the critic network, αs > 0
is the learning rate of the additional term, and Js(x) is the
Lyapunov function candidate given in Assumption 2. In (54),
the �(x, û) is the additional stabilizing term defined as

�(x, û) =
{

0, if J̇s(x) = (∇Js(x))TF(x, û) < 0
1, else.

(55)

Remark 5: From the definition of the additional stabilizing
term �(x, û), the second term in (54) is removed when the
nonlinear system exhibits stable behavior. Hence, minimizing
the approximate Hamiltonian becomes the primary objective
of the weight update process. In contrast, when the controlled
system exhibits signs of instability, i.e., (∇Js(x))TF(x, û) > 0,
the second term of (54) is activated and is used to reinforce the
training process of the weight vector until the system exhibits
stable behavior. Hence, it can be seen that the term �(x, û) is
defined based on the Lyapunov condition for stability. In this
paper, we can obtain

− ∂
(
(∇Js(x))TF(x, û)

)
∂ω̂c

= −
(

∂ û

∂ω̂c

)T ∂
(
(∇Js(x))TF(x, û)

)
∂ û

= 1

2
∇σc(x)g(x)R−1gT(x)∇Js(x) (56)

which shows that the reinforced training process is carried
out along the negative gradient direction of (∇Js(x))TF(x, û).
When the case (∇Js(x))TF(x, û) > 0 occurs, the reinforced
training process reduces the value of (∇Js(x))TF(x, û) to make
it negative. To summarize, the second term in (54) is chosen
for ensuring the stability of closed-loop system, and mean-
while, for facilitating the stability proof given in the sequel.
Actually, it is in this sense that the requirement of an initial
stabilizing control is relaxed. Therefore, the weight vector of
critic network is initialized to zero during the neural network
implementation process.

The structural diagram of the implementation process using
neural network is displayed in Fig. 1.

Next, we will find the dynamics of the weight estimation
error ω̃c. According to (50), we have

∂ec

∂ω̂c
= ∇σc(x)f (x)

− 1

2
∇σc(x)g(x)R−1gT(x)(∇σc(x))

Tω̂c

+ 1

2
∇σc(x)G(x)GT(x)(∇σc(x))

Tω̂c. (57)
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Fig. 1. Structural diagram of neural network implementation (the solid line
represents the signal and the dashed line represents the back-propagating path).

In light of (51), (53), and (54), the dynamics of the weight
estimation error is

˙̃ωc = − ˙̂ωc

= αcec

(
∂ec

∂ω̂c

)

− 1

2
αs�(x, û)∇σc(x)g(x)R−1gT(x)∇Js(x). (58)

Then, combining (51), (52), and (57), the error dynam-
ics (58) becomes

˙̃ωc = αc

(
− ω̃T

c ∇σc(x)f (x)

− 1

4
ω̃T

c ∇σc(x)g(x)R−1gT(x)(∇σc(x))
Tω̃c

+ 1

2
ω̃T

c ∇σc(x)g(x)R−1gT(x)(∇σc(x))
Tωc

+ 1

4
ω̃T

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tω̃c

− 1

2
ω̃T

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tωc − ecH

)

×
(

∇σc(x)f (x)

− 1

2
∇σc(x)g(x)R−1gT(x)(∇σc(x))

Tωc

+ 1

2
∇σc(x)g(x)R−1gT(x)(∇σc(x))

Tω̃c

+ 1

2
∇σc(x)G(x)GT(x)(∇σc(x))

Tωc

− 1

2
∇σc(x)G(x)GT(x)(∇σc(x))

Tω̃c

)

− 1

2
αs�(x, û)∇σc(x)g(x)R−1gT(x)∇Js(x). (59)

In the following, the stability analysis of the neural-network-
based feedback control system is presented by using the
Lyapunov theory.

B. Stability Analysis

In this section, the error dynamics of the critic network
and the closed-loop system based on the approximate optimal
control will be proved to be UUB.

Theorem 3: Consider the nonlinear system given by (2).
Let the control input be provided by (46) and the weights
of the critic network be tuned by (54). Then, the state x of the

closed-loop system and the weight estimation error ω̃c of the
critic network are UUB.

Proof: See the Appendix.
Corollary 1: The approximate control input û in (46) con-

verges to a neighborhood of optimal control input u∗ with
finite bound.
Proof: According to (45) and (46), we have

u∗ − û = −1

2
R−1gT(x)(∇σ(x))Tω̃c − 1

2
R−1gT(x)∇εc(x).

(60)

In light of Theorem 3, we have ‖ω̃c‖ < A , where A
is defined in the Appendix. Then, the terms
R−1gT(x)(∇σ(x))Tω̃c and R−1gT(x)∇εc(x) are all bounded.
Thus, we can further determine that

‖u∗ − û‖ ≤ 1

2
R−1

M gMσdMA + 1

2
R−1

M gMλ10

� εu (61)

where λ10 is given in the Appendix and εu is the finite bound.
This completes the proof.

C. Design Procedure of the Optimal Robust Guaranteed
Cost Control

For continuous-time uncertain nonlinear systems (1) satisfy-
ing (3) and (4), we summarize the design procedure of optimal
robust guaranteed cost control as follows.

Step 1: Select G(x) and ϕ(x), determine h(ϕ(x)), and con-
duct the problem transformation based on the
bounded function �(x).

Step 2: Choose the Lyapunov function candidate Js(x),
construct a critic network as (43), and set its initial
weights to zero.

Step 3: Solve the transformed optimal control problem
via online solution of the modified HJB equation,
using the expressions of approximate control func-
tion (46), approximate Hamiltonian function (50),
and weights update criterion (54).

Step 4: Derive the optimal robust guaranteed cost and
optimal robust guaranteed cost control of original
uncertain nonlinear system based on the converged
weights of critic network.

Remark 6: It is observed from (43) and (50), both the
approximate cost function and the approximate Hamiltonian
become zero when ‖x‖ = 0. In this case, we can find that˙̂ωc = 0. Thus, when the system state converges to zero, the
weights of the critic network are no longer updated. This can
be viewed as a persistency of excitation requirement of the
neural network inputs. In other words, the system state must
be persistently exciting long enough in order to ensure the
critic network to learn the optimal cost function as accurately
as possible. In this paper, the persistency of excitation condi-
tion is satisfied by adding an exploration noise to the control
input. The condition can be removed once the weights of the
critic network converge to their target values. Actually, it is
for this reason that there always exists a tradeoff between
computational accuracy and time consumption for practical
realization.



LIU et al.: NEURAL-NETWORK-BASED ONLINE HJB SOLUTION FOR OPTIMAL ROBUST GUARANTEED COST CONTROL 2841

Fig. 2. Convergence of weight vector of the critic network (ωac1, ωac2, and
ωac3 represents ω̂c1, ω̂c2, and ω̂c3, respectively).

V. SIMULATION STUDIES

In this section, two simulation examples are provided to
demonstrate the effectiveness of the optimal robust guaranteed
cost control strategy derived based on the online HJB solution.
We first consider a continuous-time linear system and then a
nonlinear system, both with system uncertainty.

Example 1: Consider the continuous-time linear system

ẋ =
[−1 −2

1 −4

]
x +

[
1

−3

]
u + �f (x) (62)

where x = [x1, x2]T and �f (x) = [px1 sin x2, 0]T with p ∈
[ − 0.5, 0.5]. According to the form of system uncertainty, we
choose G(x) = [1, 0]T and ϕ(x) = x. Then, we have d(ϕ(x)) =
px1 sin x2. Besides, we select h(ϕ(x)) = 0.5x1 sin x2.

In this example, we first choose Q(x) = xTx, R = I, where I
is an identity matrix with suitable dimension. In order to solve
the transformed optimal control problem, a critic network is
constructed to approximate the modified cost function as

V̂(x) = ω̂c1x2
1 + ω̂c2x1x2 + ω̂c3x2

2. (63)

Let the initial state of the controlled plant be x0 = [1,−1]T.
Select the Lyapunov function candidate of the weights tun-
ing criterion as Js(x) = (1/2)xTx. Let the learning rate of
the critic network and the additional term be αc = 0.8 and
αs = 0.5, respectively. During the neural network implemen-
tation process, we bring in an exploration noise N (t) =
sin2(t) cos(t) + sin2(2t) cos(0.1t) + sin2(−1.2t) cos(0.5t) +
sin5(t) + sin2(1.12t) + cos(2.4t) sin3(2.4t) to satisfy the per-
sistency of excitation condition. It is introduced into the
control input and thus affects the system state. After a learn-
ing session, the weights of the critic network converge to
[0.3461,−0.1330, 0.1338]T as shown in Fig. 2. Here, it is
important to note that the initial weights of the critic network
are all set as zero, which implies that no initial stabilizing con-
trol is needed for implementing the control strategy. This can
be verified by observing Fig. 3, which displays the updating
process of weight vector during the first 10 s.

Fig. 3. Updating process of weight vector during the first 10 s (ωac1, ωac2,
and ωac3 represent ω̂c1, ω̂c2, and ω̂c3, respectively).

Fig. 4. System state (p = 0.5).

Based on the converged weight vector, the optimal robust
guaranteed cost of the controlled system is �(u∗) = J∗
(x0) = 0.6129. Next, the scalar parameter p = 0.5 is cho-
sen for evaluating the control performance. Under the action
of the obtained control function, the system trajectory during
the first 20 s is presented in Fig. 4, which shows the good
performance of the control approach.

Next, we set Q(x) = 8xTx, R = 5I, and conduct the
neural network implementation again by increasing the learn-
ing rates of the critic network and the additional term
properly. In this case, the weights of the critic network
converge to [5.4209,−3.5088, 1.2605]T, which is depicted
in Fig. 5. Similarly, the system trajectory during the first
20 s when choosing p = 0.5 is displayed in Fig. 6. These
simulation results show that the parameters Q(x) and R
play an important role in the design process. In addition,
the power of the present control technique is demonstrated
again.
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Fig. 5. Convergence of weight vector of the critic network (ωac1, ωac2, and
ωac3 represents ω̂c1, ω̂c2, and ω̂c3, respectively).

Fig. 6. System state (p = 0.5).

Example 2: Consider the following continuous-time
nonlinear system:

ẋ =
⎡
⎣ −x1 + x2

0.1x1 − x2 − x1x3
x1x2 − x3

⎤
⎦+

⎡
⎣0

1
0

⎤
⎦ u + �f (x) (64)

where x = [x1, x2, x3]T, �f (x) = [0, 0, px1 sin x2 cos x3]T,
and p ∈ [ − 1, 1]. Similarly, if we choose G(x) = [0, 0, 1]T

and ϕ(x) = x based on the form of system uncertainty, then
d(ϕ(x)) = px1 sin x2 cos x3. Clearly, we can select h(ϕ(x)) =
x1 sin x2 cos x3.

In this example, Q(x) and R are chosen the same as the first
case of Example 1. However, the critic network is constructed
using the following form:

V̂(x) = ω̂c1x2
1 + ω̂c2x2

2 + ω̂c3x2
3 + ω̂c4x1x2 + ω̂c5x1x3

+ ω̂c6x2x3 + ω̂c7x4
1 + ω̂c8x4

2 + ω̂c9x4
3

+ ω̂c10x2
1x2

2 + ω̂c11x2
1x2

3 + ω̂c12x2
2x2

3

+ ω̂c13x2
1x2x3 + ω̂c14x1x2

2x3 + ω̂c15x1x2x2
3

+ ω̂c16x3
1x2 + ω̂c17x3

1x3 + ω̂c18x1x3
2

+ ω̂c19x3
2x3 + ω̂c20x1x3

3 + ω̂c21x2x3
3. (65)

Fig. 7. System state (p = −1).

Here, let the initial state of the controlled system be
x0 = [1,−1, 0.5]T. Besides, let the learning rate of the critic
network and the additional term be αc = 0.3 and αs = 0.5,
respectively. Same as above, an exploration noise is added
to satisfy the persistency of excitation condition during the
neural network implementation process. Besides, all the ele-
ments of the weight vector of critic network are initialized
to zero. After a sufficient learning session, the weights of the
critic network converge to [0.4759, 0.5663, 0.1552, 0.4214,
0.0911, 0.0375, 0.0886, −0.0099, 0.0986, 0.1539, 0.0780,
−0.0192, −0.1335, −0.0052, −0.0639, −0.1583, 0.0456,
0.0576, −0.0535, 0.0885, −0.0227]T.

Similarly, the optimal robust guaranteed cost of the nonlin-
ear system is �(u∗) = J∗(x0) = 1.1841. In this example,
the scalar parameter p = −1 is chosen for evaluating the
robust control performance. The system trajectory is depicted
in Fig. 7 when applying the obtained control to system (64)
for 20 s. These simulation results verify the effectiveness of
the developed control approach.

VI. CONCLUSION

A novel strategy is developed to derive the optimal robust
guaranteed cost control of uncertain nonlinear systems. This
is accomplished by properly modifying the cost function to
account for system uncertainty, so that the solution of the
transformed optimal control problem serves as the optimal
robust guaranteed cost of the original system. A critic network
is constructed to solve the modified HJB equation online. Two
simulation examples are presented to reinforce the theoretical
results as well.

As for future works, we will study the optimal robust
guaranteed cost control of uncertain nonlinear systems with
constrained inputs based on single network ADP approach. In
this case, we let all the elements of control input u(t) in sys-
tem (1) have lower and upper bounds, i.e., uimin ≤ ui ≤ uimax,
i = 1, 2, . . . , m, where uimin and uimax are constants. Besides,
how to deal with the problem when the dynamic knowledge
of nominal system is unknown serves as another interesting
direction of future research. Under such circumstance, func-
tions f (x) and g(x) are assumed to be unknown, hence the
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system identification will be employed by constructing neu-
ral networks. Remarkably, as an important part of machine
learning community, reinforcement learning is characterized
by finding optimal actions in unknown environment [10], [11].
Thus, it is of great significance to use more advanced idea of
reinforcement learning to handle the optimal control problems
under uncertain and unknown environment. Moreover, how to
relax the restrictive condition of system uncertainty is also one
of the directions of our future works. Additionally, the inverse
optimal control [68], [69], which is featured by the fact that
the meaningful cost function is determined from the stabilizing
feedback control, serves as another effective strategy aimed at
circumventing the challenging task of solving the HJB equa-
tion. Thus, the inverse optimal control approach will also be
helpful for our future study.

APPENDIX

Proof of Theorem 3: We choose the following Lyapunov
function candidate:

L(t) = 1

2αc
ω̃T

c ω̃c + αs

αc
Js(x) (A.1)

where Js(x) is presented in Assumption 2. The derivative of
the Lyapunov function candidate (A.1) with respect to time
along the dynamics of (47) and (59) is

L̇(t) = 1

αc
ω̃T

c
˙̃ωc + αs

αc
(∇Js(x))

Tẋ. (A.2)

Substituting (47) and (59) into (A.2), we obtain

L̇(t) = ω̃T
c

(
− ω̃T

c ∇σc(x)f (x)

− 1

4
ω̃T

c ∇σc(x)g(x)R−1gT(x)(∇σc(x))
Tω̃c

+ 1

2
ω̃T

c ∇σc(x)g(x)R−1gT(x)(∇σc(x))
Tωc

+ 1

4
ω̃T

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tω̃c

− 1

2
ω̃T

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tωc − ecH

)

×
(

∇σc(x)f (x)

− 1

2
∇σc(x)g(x)R−1gT(x)(∇σc(x))

Tωc

+ 1

2
∇σc(x)g(x)R−1gT(x)(∇σc(x))

Tω̃c

+ 1

2
∇σc(x)G(x)GT(x)(∇σc(x))

Tωc

− 1

2
∇σc(x)G(x)GT(x)(∇σc(x))

Tω̃c

)

− αs

2αc
�(x, û)ω̃T

c ∇σc(x)g(x)R−1gT(x)∇Js(x)

+ αs

αc
(∇Js(x))

Tẋ. (A.3)

For simplicity, we denote

A = ∇σc(x)g(x)R−1gT(x)(∇σc(x))
T (A.4)

B = ∇σc(x)G(x)GT(x)(∇σc(x))
T. (A.5)

Then, (A.3) becomes

L̇(t) = −
(

ω̃T
c ∇σc(x)f (x) + 1

4
ω̃T

c Aω̃c − 1

2
ω̃T

c Aωc

− 1

4
ω̃T

c Bω̃c + 1

2
ω̃T

c Bωc + ecH

)

×
(

ω̃T
c ∇σc(x)f (x) + 1

2
ω̃T

c Aω̃c − 1

2
ω̃T

c Aωc

− 1

2
ω̃T

c Bω̃c + 1

2
ω̃T

c Bωc

)

− αs

2αc
�(x, û)ω̃T

c ∇σc(x)g(x)R−1gT(x)∇Js(x)

+ αs

αc
(∇Js(x))

Tẋ. (A.6)

Considering (47), we have

L̇(t) = −
(

ω̃T
c ∇σc(x)ẋ − 1

4
ω̃T

c Aω̃c − 1

4
ω̃T

c Bω̃c

+ 1

2
ω̃T

c Bωc + ecH

)

×
(

ω̃T
c ∇σc(x)ẋ − 1

2
ω̃T

c Bω̃c + 1

2
ω̃T

c Bωc

)

− αs

2αc
�(x, û)ω̃T

c ∇σc(x)g(x)R−1gT(x)∇Js(x)

+ αs

αc
(∇Js(x))

Tẋ. (A.7)

Noticing that ẋ∗ = f (x)+g(x)u∗, where u∗ is given by (45),
we can further obtain that

L̇(t) = −
(

ω̃T
c ∇σc(x)ẋ

∗ + 1

4
ω̃T

c Aω̃c

+ 1

2
ω̃T

c ∇σc(x)g(x)R−1gT(x)∇εc(x)

− 1

4
ω̃T

c Bω̃c + 1

2
ω̃T

c Bωc + ecH

)

×
(

ω̃T
c ∇σc(x)ẋ

∗ + 1

2
ω̃T

c Aω̃c

+ 1

2
ω̃T

c ∇σc(x)g(x)R−1gT(x)∇εc(x)

− 1

2
ω̃T

c Bω̃c + 1

2
ω̃T

c Bωc

)

− αs

2αc
�(x, û)ω̃T

c ∇σc(x)g(x)R−1gT(x)∇Js(x)

+ αs

αc
(∇Js(x))

Tẋ. (A.8)

As in [45], we assume that λ1m > 0 and λ1M > 0 are the
lower and upper bounds of the norm of matrix A. Similarly,
assume that λ2m > 0 and λ2M > 0 are the lower and upper
bounds of the norm of matrix B. Assume that ‖R−1‖ ≤ R−1

M ,
‖g(x)‖ ≤ gM , ‖∇σ(x)‖ ≤ σdM , ‖Bωc‖ ≤ λ4, ‖∇εc(x)‖ ≤ λ10,
and ‖ecH‖ ≤ λ12, where R−1

M , gM , σdM , λ4, λ10, and λ12 are
positive constants. In addition, assume that ‖∇σc(x)ẋ∗‖ ≤ λ3,
where λ3 is a positive constant. Let λ5 = (

√
6/2)λ12, λ9 =

g2
MR−1

M , and λ11 = σdMg2
MR−1

M λ10, then ‖g(x)R−1gT(x)‖ ≤ λ9

and ‖∇σ(x)g(x)R−1gT(x)∇εc(x)‖ ≤ λ11. Using the relations

ab = 1

2

(
−
(

φ+a − b

φ+

)2

+ φ2+a2 + b2

φ2+

)
(A.9)
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−ab = −1

2

((
φ−a + b

φ−

)2

− φ2−a2 − b2

φ2−

)
(A.10)

we have

−3

4
(ω̃T

c ∇σc(x)ẋ
∗)(ω̃T

c Aω̃c)

= −3

8

((
φ1ω̃

T
c ∇σc(x)ẋ

∗ + ω̃T
c Aω̃c

φ1

)2

− φ2
1(ω̃T

c ∇σc(x)ẋ
∗)2 − (ω̃T

c Aω̃c)
2

φ2
1

)

≤ 3

8

(
φ2

1(ω̃T
c ∇σc(x)ẋ

∗)2 + (ω̃T
c Aω̃c)

2

φ2
1

)

≤ 3

8φ2
1

λ2
1M‖ω̃c‖4 + 3

8
φ2

1λ2
3‖ω̃c‖2 (A.11)

where φ+, φ−, and φ1 are nonzero constants. Other terms
of (A.8) can be handled the same way. Then, we can find that

L̇(t) ≤ −λ7‖ω̃c‖4 + λ8‖ω̃c‖2 + λ2
5

− αs

2αc
�(x, û)ω̃T

c ∇σc(x)g(x)R−1gT(x)∇Js(x)

+ αs

αc
(∇Js(x))

Tẋ (A.12)

where

λ7 = 1

8
λ2

1m + 1

8
λ2

2m − 3

8φ2
1

λ2
1M − 3

8φ2
2

λ2
2M

− 3

16
φ2

3λ2
1M − 3

16
φ2

4λ2
1M − 3

16
φ2

5λ2
11 − 3

16
φ2

6λ2
2M

(A.13)

λ8 = 3

8
φ2

1λ2
3 + 3

8
φ2

2λ2
3 + 3

16φ2
3

λ2
11

+ 3

16φ2
4

λ2
4 + 3

16φ2
5

λ2
11 + 3

16φ2
6

λ2
4 (A.14)

and φi, i = 1, 2, . . . , 6, are nonzero constants chosen
for the design purpose. Note that under the action of φi,
i = 1, 2, . . . , 6, the relation λ7 > 0 can be guaranteed.

In the following, the cases of �(x, û) = 0 and �(x, û) = 1
will be considered, respectively.

Case 1: �(x, û) = 0. Since (∇Js(x))Tẋ < 0, we have
−(∇Js(x))Tẋ > 0. According to the density property of
real numbers, there exists a positive constant λ6 such that
0 < λ6‖∇Js(x)‖ ≤ −(∇Js(x))Tẋ holds for all x ∈ �, i.e.,
(∇Js(x))Tẋ ≤ −λ6‖∇Js(x)‖. Hence, the inequality (A.12)
becomes

L̇(t) ≤ −λ7‖ω̃c‖4 + λ8‖ω̃c‖2 + λ2
5 + αs

αc
(∇Js(x))

Tẋ

≤ −λ7‖ω̃c‖4 + λ8‖ω̃c‖2 + λ2
5 − αs

αc
λ6‖∇Js(x)‖. (A.15)

Therefore, given the following inequality:

‖ω̃c‖ ≥

√√√√λ8 +
√

4λ2
5λ7 + λ2

8

2λ7
� A1 (A.16)

or

‖∇Js(x)‖ ≥ αc
(
4λ2

5λ7 + λ2
8

)
4αsλ6λ7

� B1 (A.17)

holds, we conclude L̇(t) < 0.

Case 2: �(x, û) = 1. Adding and subtracting αs(∇Js(x))T

g(x)R−1gT(x)∇εc(x)/(2αc) to the right hand side of (A.12)
and taking Assumption 2 into consideration yield

L̇(t) ≤ −λ7‖ω̃c‖4 + λ8‖ω̃c‖2 + λ2
5

− αs

2αc
ω̃T

c ∇σc(x)g(x)R−1gT(x)∇Js(x)

+ αs

αc
(∇Js(x))

T(f (x) + g(x)û)

= −λ7‖ω̃c‖4 + λ8‖ω̃c‖2 + λ2
5

+ αs

αc
(∇Js(x))

T(f (x) + g(x)u∗)

+ αs

2αc
(∇Js(x))

Tg(x)R−1gT(x)∇εc(x)

≤ −λ7‖ω̃c‖4 + λ8‖ω̃c‖2 + λ2
5

− αs

αc
λm‖∇Js(x)‖2 + αs

2αc
λ9λ10‖∇Js(x)‖. (A.18)

Therefore, given the following inequality:

‖ω̃c‖ ≥
√√√√ λ8

2λ7
+
√

λ2
5

λ7
+ λ2

8

4λ2
7

+ αsλ
2
9λ

2
10

16αcλmλ7
� A2 (A.19)

or

‖∇Js(x)‖ ≥ λ9λ10

4λm
+
√

αc
(
4λ2

5λ7 + λ2
8

)
4αsλmλ7

+ λ2
9λ

2
10

16λ2
m

� B2

(A.20)

holds, we obtain L̇(t) < 0.
To summarize, if the inequality ‖ω̃c‖ > max(A1,A2) = A

or ‖∇Js(x)‖ > max(B1,B2) = B holds, then L̇(t) < 0.
Considering the fact that Js(x) is chosen as a polynomial and
in accordance with the standard Lyapunov extension theo-
rem [70], we can derive the conclusion that the state x and
the weight estimation error ω̃c are UUB. This completes the
proof.
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