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Abstract—In this paper, the infinite horizon optimal robust
guaranteed cost control of continuous-time uncertain nonlin-
ear systems is investigated using neural-network-based online
solution of Hamilton–Jacobi–Bellman (HJB) equation. By estab-
lishing an appropriate bounded function and defining a modified
cost function, the optimal robust guaranteed cost control prob-
lem is transformed into an optimal control problem. It can be
observed that the optimal cost function of the nominal system is
nothing but the optimal guaranteed cost of the original uncer-
tain system. A critic neural network is constructed to facilitate
the solution of the modified HJB equation corresponding to
the nominal system. More importantly, an additional stabiliz-
ing term is introduced for helping to verify the stability, which
reinforces the updating process of the weight vector and reduces
the requirement of an initial stabilizing control. The uniform
ultimate boundedness of the closed-loop system is analyzed by
using the Lyapunov approach as well. Two simulation examples
are provided to verify the effectiveness of the present control
approach.

Index Terms—Adaptive critic designs, adaptive/approximate
dynamic programming (ADP), Hamilton–Jacobi–Bellman (HJB)
equation, neural networks, optimal robust guaranteed cost
control, uncertain nonlinear systems.

I. INTRODUCTION

THE adaptive or approximate dynamic program-
ming (ADP) algorithm was first proposed by Werbos [1]

as an effective method to solve optimization and optimal
control problems. In general, it is implemented by solving the
Hamilton–Jacobi–Bellman (HJB) equation based on function
approximators, such as neural networks. It is one of the key
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directions for future researches in intelligent control and
understanding brain intelligence [2], [3]. As a result, the ADP
and related research have gained much attention from scholars
across many disciplines (see [4]–[14] and the numerous refer-
ences therein). Significantly, the ADP method has been often
used in feedback control applications, both for discrete-time
systems [15]–[36] and for continuous-time systems [37]–[54].
Besides, various traditional control problems, like robust
control [55], [56], decentralized control [57], networked con-
trol [58], power system control [59], are studied under the new
framework, which greatly extends the application scope of
ADP methods.

Unavoidable discrepancies between system models and
real-world dynamics may result in degradation of system
performance including instability [60]–[62]. In this sense,
the feedback control should be designed to be robust with
respect to system uncertainties. The importance of robust
control has been recognized by control scientists for sev-
eral decades and various approaches have been proposed.
In [63], it was shown that the robust control problem can be
solved by studying the corresponding optimal control prob-
lem, hence the optimal control method can be employed to
design robust controllers. However, the results are restricted to
a class of systems with special form of uncertainties. Though
Adhyaru et al. [55], [56] proposed an HJB equation-based
optimal control algorithm to deal with the nonlinear robust
control problem, the algorithm was constructed using the least
square method and performed offline, not to mention the stabil-
ity analysis of the closed-loop optimal control system was not
conducted. On the other hand, when controlling a real plant,
it is desirable to design a controller, which not only makes the
closed-loop system asymptotically stable but also guarantees
an adequate level of performance. The so-called guaranteed
cost control approach [64] has the advantage of providing
an upper bound on a given cost and thus the system perfor-
mance degradation incurred by the model parameter uncer-
tainties is guaranteed to be less than this bound [65], [66].
The optimal robust guaranteed cost control problem arises
when discussing optimality of the guaranteed cost func-
tion. To the best of our knowledge, however, there are no
results on optimal robust guaranteed cost control of uncertain
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nonlinear systems using online ADP strategy. These motivate
our research.

From a structural perspective, in many ADP-related litera-
ture, the main control strategy is implemented based on the
actor-critic architecture, where two neural networks referred to
as critic network and action network are taken to approximate
the optimal cost function and the optimal control, respectively.
In addition, from an algorithmic point of view, the value iter-
ation and policy iteration are two important algorithms when
designing the ADP-based optimal feedback control. It should
be pointed out that the initial admissible control is necessary
when employing the policy iteration algorithm. However, in
many situations, finding the initial admissible control is not
an easy task. Therefore, how to simplify the structure of ADP
and relax the need for an initial stabilizing control are of great
significance.

In this paper, we investigate the optimal robust guaranteed
cost control of continuous-time uncertain nonlinear systems
using neural-network-based online solution of HJB equation.
The optimal robust guaranteed cost control problem is trans-
formed into an optimal control problem by introducing an
appropriate cost function. It can be proved that the optimal
cost function of the nominal system is the optimal guaranteed
cost of the controlled uncertain system. Then, a critic network
is constructed for facilitating the solution of modified HJB
equation. Moreover, inspired by the work of [45] and [46], an
additional stabilizing term is introduced to verify the stabil-
ity, which relaxes the need for an initial stabilizing control.
The uniform ultimate boundedness (UUB) of the closed-loop
system is also proved by using the well-known Lyapunov
approach. The approximate control input can converge to the
optimal control within a small bound.

In summary, the main contributions of this paper are as
follows.

1) It is the first time that the infinite horizon optimal robust
guaranteed cost control of uncertain nonlinear systems is
investigated using the neural-network-based online HJB
solution. The bounded function is introduced and the
proper cost function is defined, then the optimal cost
function of the nominal system is related to the optimal
guaranteed cost of the original system.

2) Since the system uncertainties are not always con-
sidered in ADP-related literature, the control strategy
established in this paper is significant to design robust
controllers for uncertain nonlinear systems. In this sense,
the conducted research extends the application scope of
ADP method.

The rest of this paper is organized as follows. In Section II,
the optimal robust guaranteed cost control problem of uncer-
tain nonlinear systems is stated. In Section III, the studied
problem is transformed into an optimal control problem with
a modified cost function. In Section IV, a neural network
is constructed to solve the modified HJB equation approxi-
mately. Then, the stability of the overall closed-loop system
is proved. In Section V, two numerical examples are given to
demonstrate the effectiveness of the established approach. In
Section VI, concluding remarks and the discussion of future
work are presented.

II. PROBLEM STATEMENT

In this paper, we study a class of continuous-time uncertain
nonlinear systems given by

ẋ(t) = F(x(t), u(t))

= f (x(t)) + g(x(t))u(t) + �f (x(t)) (1)

where x(t) ∈ R
n is the state vector and u(t) ∈ R

m is the control
input. The known functions f (·) and g(·) are differentiable in
their arguments with f (0) = 0, and �f (x(t)) is the nonlinear
perturbation of the corresponding nominal system

ẋ(t) = F(x(t), u(t)) = f (x(t)) + g(x(t))u(t). (2)

Here, we let x(0) = x0 be the initial state. In addition, as
in many other literature, we assume that f + gu is Lipschitz
continuous on a set � in R

n containing the origin and that the
system (2) is controllable.

Before proceeding, we assign an explicit structure to the
system uncertainty. The following assumption is given, which
has been used in [61] and [62].

Assumption 1: Assume that the uncertainty �f (x) has the
form

�f (x) = G(x)d(ϕ(x)) (3)

where

dT(ϕ(x))d(ϕ(x)) ≤ hT(ϕ(x))h(ϕ(x)). (4)

In (3) and (4), G(·) ∈ R
n×r and ϕ(·) satisfying ϕ(0) = 0

are known functions denoting the structure of the uncertainty,
d(·) ∈ R

r is an uncertain function with d(0) = 0, and h(·)∈ R
r

is a given function with h(0) = 0.
Consider system (1) with infinite horizon cost function

J(x0, u) =
∫ ∞

0
U(x(τ ), u(τ ))dτ (5)

where U(x, u) = Q(x) + uTRu, Q(x) ≥ 0, and R = RT > 0 is
a constant matrix.

In this paper, the aim of solving the robust guaranteed
cost control problem is to find a feedback control function
u(x) and determine a finite upper bound function �(u), i.e.,
�(u) < +∞, such that the closed-loop system is robustly
stable and the cost function (5) satisfies J ≤ �. Here, the
upper bound function �(u) is termed as a robust guaranteed
cost function. Only when �(u) is minimized, it is named
as the optimal robust guaranteed cost and is denoted as �∗,
i.e., �∗ = minu �(u). Additionally, the corresponding con-
trol function ū∗ is called the optimal robust guaranteed cost
control, i.e., ū∗ = arg minu �(u).

In this paper, we will prove that the optimal robust guar-
anteed cost control problem of system (1) can be transformed
into the optimal control problem of nominal system (2). The
ADP technique can be employed to deal with the optimal
control problem of system (2). Note that in this paper, the
feedback control u(x) is often written as u for simplicity.
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III. OPTIMAL ROBUST GUARANTEED COST CONTROL

OF UNCERTAIN NONLINEAR SYSTEMS

VIA HJB SOLUTION

In this section, we show that the guaranteed cost of the
uncertain nonlinear system is closely related to the modified
cost function of the nominal system. The next theorem is
derived by rechecking [60] with relaxed conditions.

Theorem 1: Assume that there exist a continuously differ-
entiable and radially unbounded cost function V(x) satisfying
V(x) > 0 for all x �= 0 and V(0) = 0, a bounded function
�(x) satisfying �(x) ≥ 0, and a feedback control function
u(x) such that

(∇V(x))TF(x, u) ≤ (∇V(x))TF(x, u) + �(x) (6)

(∇V(x))TF(x, u) + �(x) < 0, x �= 0 (7)

U(x, u) + (∇V(x))TF(x, u) + �(x) = 0 (8)

where the symbol ∇V(x) denotes the partial derivative of the
cost function V(x) with respect to x, i.e., ∇V(x) = ∂V(x)/∂x.
Then, with the feedback control function u(x), there exists
a neighborhood of the origin such that system (1) is locally
asymptotically stable. Furthermore

J(x0, u) ≤ V(x0) = J(x0, u) (9)

where J(x0, u) is defined as

J(x0, u) =
∫ ∞

0

{
U(x(τ ), u(x(τ ))) + �(x(τ ))

}
dτ (10)

and is termed as the modified cost function of system (2).
Proof: First, we show the asymptotic stability of system (1)

under the feedback control u(x). Let

V̇(x) � dV(x)

dt
= (∇V(x))TF(x, u). (11)

Considering (6) and (7), we obtain V̇(x(t)) < 0 for any
x �= 0. This implies that V(·) is a Lyapunov function for
system (1), which proves the local asymptotic stability.

Then, we show J(x0, u) is upper bounded by a modified
cost function corresponding to the nominal system (2).

For system (1), considering the fact that V̇(x) =
(∇V(x))TF(x, u), we have U(x, u) = −V̇(x) + (∇V(x))T

F(x, u) + U(x, u). According to (6) and (8),
we have

U(x, u) = −V̇(x) + U(x, u) + (∇V(x))TF(x, u)

≤ −V̇(x) + U(x, u) + (∇V(x))TF(x, u) + �(x)

= −V̇(x). (12)

Integrating over [0, t) yields
∫ t

0
U(x, u)dτ ≤ −V(x(t)) + V(x0). (13)

Letting t → ∞ and noting that V(x(t)) → 0, we can obtain

J(x0, u) ≤ V(x0). (14)

When �f (x) = 0, we can still find that (6)–(8) are true since
�(x) ≥ 0. In this case, we derive that V̇(x) = (∇V(x))TF(x, u).

Then, U(x, u)+�(x) = −V̇(x)+ (∇V(x))TF(x, u)+U(x, u)+
�(x). Based on (8), we obtain

U(x, u) + �(x) = −V̇(x) + U(x, u)

+ (∇V(x))TF(x, u) + �(x)

= −V̇(x). (15)

Similarly, by integrating over [0, t), we have∫ t

0

{
U(x, u) + �(x)

}
dτ = −V(x(t)) + V(x0). (16)

Here, letting t → ∞ yields

J(x0, u) = V(x0). (17)

Based on (14) and (17), we can easily find that (9) is true.
This completes the proof.

Theorem 1 shows that the bounded function �(x) takes an
important role in deriving the guaranteed cost of the controlled
system. The following lemma presents a specific form of �(x).

Lemma 1: For any continuously differentiable and radially
unbounded function V(x), define

�(x) = hT(ϕ(x))h(ϕ(x)) + 1

4
(∇V(x))TG(x)GT(x)∇V(x).

(18)

Then, we have

(∇V(x))T�f (x) ≤ �(x). (19)

Proof: Considering (3), (4), and (18), since

0 ≤
(

d(ϕ(x)) − 1

2
GT(x)∇V(x)

)T(
d(ϕ(x))

− 1

2
GT(x)∇V(x)

)

= dT(ϕ(x))d(ϕ(x)) + 1

4
(∇V(x))TG(x)GT(x)∇V(x)

− (∇V(x))TG(x)d(ϕ(x))

≤ hT(ϕ(x))h(ϕ(x)) + 1

4
(∇V(x))TG(x)GT(x)∇V(x)

− (∇V(x))T�f (x)

= �(x) − (∇V(x))T�f (x) (20)

we can see that (19) holds.
Remark 1: For any continuously differentiable and radially

unbounded function V(x), since

(∇V(x))TF(x, u) = (∇V(x))TF(x, u) + (∇V(x))T�f (x) (21)

we can easily find that the bounded function (18) satisfies (6).
Note that the Lemma 1 seems only imply (6), but in fact, it
presents a specific form of �(x) satisfying (6)–(8). The rea-
son is that (7) and (8) are implicit assumptions of Theorem 1,
noticing the framework of the generalized HJB equation [67]
and the fact that (∇V(x))TF(x, u) + �(x) = −U(x, u) < 0
when x �= 0. Hence, it can be used for problem transfor-
mation. In fact, based on (6) and (21), we can find that the
positive semi-definite bounded function �(x) gives an upper
bound of the term (∇V(x))T�f (x), which facilitates us to solve
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the optimal robust guaranteed cost control problem of a class
of nonlinear systems with uncertainties.

Remark 2: It is important to note that Theorem 1 indicates
the existence of the guaranteed cost of the uncertain nonlinear
system (1). In addition, in order to derive the optimal guar-
anteed cost controller, we should minimize the upper bound
J(x0, u) with respect to u. Therefore, we should solve the opti-
mal control problem of system (2) with V(x0) considered as
the cost function.

For optimal control problem, the designed feedback control
must not only stabilize the controlled system on � but also
guarantee that the cost function is finite. In other words, the
control function must be admissible.

Definition 1: A control function u(x) is said to be admissi-
ble with respect to (10) on �, denoted by u ∈ 	(�) (	(�)

is the set of admissible controls on �), if u(x) is continuous
on �, u(0) = 0, u(x) stabilizes system (2) on �, and J(x0, u)

is finite for all x0 ∈ �.
For system (2), observing that

V(x0) =
∫ ∞

0

{
U(x, u) + �(x)

}
dτ

=
∫ T

0

{
U(x, u) + �(x)

}
dτ + V(x(T)) (22)

we have

lim
T→0

1

T

(
V(x(T)) − V(x0) +

∫ T

0
{U(x, u) + �(x)} dτ

)
= 0.

(23)

Clearly, (23) is equivalent to (8). Hence, (8) is an infinites-
imal version of the modified cost function (22) and is the
so-called nonlinear Lyapunov equation.

For system (2) with modified cost function (22), define the
Hamiltonian function of the optimal control problem as

H(x, u,∇V(x)) = U(x, u) + (∇V(x))TF(x, u) + �(x).

(24)

Define the optimal cost function of system (2) as J∗(x0) =
minu∈	(�) J(x0, u), where J(x0, u) is given in (10). Note that
J∗(x) satisfies the modified HJB equation

0 = min
u∈	(�)

H(x, u,∇J∗(x)) (25)

where ∇J∗(x) = ∂J∗(x)/∂x. Assume that the minimum on the
right hand side of (25) exists and is unique. Then, the optimal
control of system (2) is

u∗(x) = arg min
u∈	(�)

H(x, u,∇J∗(x))

= −1

2
R−1gT(x)∇J∗(x). (26)

Hence, the modified HJB equation becomes

0 = U(x, u∗) + (∇J∗(x))TF(x, u∗) + hT(ϕ(x))h(ϕ(x))

+ 1

4
(∇J∗(x))TG(x)GT(x)∇J∗(x) (27)

with J∗(0) = 0.

Substituting (26) into (27), we can obtain the formulation
of the modified HJB equation in terms of ∇J∗(x) as follows:

0 = Q(x) + (∇J∗(x))Tf (x) + hT(ϕ(x))h(ϕ(x))

− 1

4
(∇J∗(x))Tg(x)R−1gT(x)∇J∗(x)

+ 1

4
(∇J∗(x))TG(x)GT(x)∇J∗(x) (28)

with J∗(0) = 0.
Now, we give the following assumption, which is helpful to

derive the optimal control with regard to system (2) and prove
the stability of the closed-loop system.

Assumption 2: Consider system (2) with cost function (22)
and the optimal feedback control function (26). Let Js(x)
be a continuously differentiable Lyapunov function candidate
formed as a polynomial and satisfying

J̇s(x) = (∇Js(x))
Tẋ = (∇Js(x))

T( f (x) + g(x)u∗) < 0 (29)

where ∇Js(x) = ∂Js(x)/∂x. Assume there exists a positive
definite matrix 
(x) such that the following relation holds:

(∇Js(x))
T( f (x) + g(x)u∗) = −(∇Js(x))

T
(x)∇Js(x). (30)

Remark 3: This is a common assumption that has been used
in the literature, for instance [42], [45], and [46], to facilitate
discussing the stability issue of closed-loop system. According
to [45], we assume that the closed-loop dynamics with opti-
mal control can be bounded by a function of system state
on the compact set of this paper. Without loss of generality,
we assume that ‖ f (x) + g(x)u∗‖ ≤ η‖∇Js(x)‖ with η > 0.
Hence, we can further obtain ‖(∇Js(x))T( f (x) + g(x)u∗)‖ ≤
η‖∇Js(x)‖2. Let λm and λM be the minimum and maximum
eigenvalues of matrix 
(x), then we have

λm‖∇Js(x)‖2 ≤ (∇Js(x))
T
(x)∇Js(x) ≤ λM‖∇Js(x)‖2. (31)

Therefore, by noticing (29) and (31), we can conclude that
the Assumption 2 is reasonable. Specifically, in this paper,
Js(x) can be obtained by properly selecting a polynomial when
implementing the ADP method.

The following theorem illustrates how to develop the opti-
mal robust guaranteed cost control scheme for system (1).

Theorem 2: Consider system (1) with cost function (5).
Suppose the modified HJB equation (28) has a continuously
differentiable solution J∗(x). Then, for any admissible control
function u, the cost function (5) satisfies

J(x0, u) ≤ �(u) (32)

where

�(u) � J∗(x0) +
∫ ∞

0
(u − u∗)TR(u − u∗)dτ. (33)

Moreover, the optimal robust guaranteed cost of the con-
trolled uncertain nonlinear system is given by �∗ = �(u∗) =
J∗(x0). Accordingly, the optimal robust guaranteed cost control
is given by ū∗ = u∗.

Proof: For any admissible control function u(x), the cost
function (5) can be written as the following form:

J(x0, u) = J∗(x0) +
∫ ∞

0

{
U(x, u) +J̇

∗
(x)
}
dτ. (34)
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Along the closed-loop trajectories of system (1) and accord-
ing to (28), we find that

U(x, u) +J̇
∗
(x)

= Q(x) + uTRu + (∇J∗(x)
)T

( f (x) + g(x)u + �f (x))

= uTRu + (∇J∗(x)
)T

(g(x)u + �f (x))

− hT(ϕ(x))h(ϕ(x)) − 1

4

(∇J∗(x)
)T

G(x)GT(x)∇J∗(x)

+ 1

4

(∇J∗(x)
)T

g(x)R−1gT(x)∇J∗(x). (35)

For the optimal cost function J∗(x), in light of Lemma 1,
we have the following inequality holds:
(∇J∗(x)

)T
�f (x) ≤ hT(ϕ(x))h(ϕ(x))

+ 1

4

(∇J∗(x)
)T

G(x)GT(x)∇J∗(x). (36)

Substituting (36) into (35), we can further obtain

U(x, u) +J̇
∗
(x) ≤ uTRu + (∇J∗(x)

)T
g(x)u

+ 1

4

(∇J∗(x)
)T

g(x)R−1gT(x)∇J∗(x). (37)

Considering the expression of the optimal control in (26),
the (37) is in fact

U(x, u) +J̇
∗
(x) ≤ (u − u∗)TR(u − u∗). (38)

Thus, combining (34) with (38), we can find that

J(x0, u) ≤ J∗(x0) +
∫ ∞

0
(u − u∗)TR(u − u∗)dτ (39)

holds. Clearly, the optimal robust guaranteed cost can be
obtained when setting u = u∗, i.e., �(u∗) = J∗(x0).
Furthermore, we can derive that �∗ = minu �(u) = J∗(x0)

and ū∗ = arg minu �(u) = u∗. This completes the proof.
Remark 4: According to Theorem 2, the optimal robust

guaranteed cost control of uncertain nonlinear system is trans-
formed into the optimal control of nominal system, where the
modified cost function is considered as the upper bound func-
tion. In other words, once the solution of the modified HJB
equation (28) corresponding to nominal system (2) is derived,
we can establish the optimal robust guaranteed cost control
scheme of system (1).

IV. ONLINE HJB SOLUTION OF THE TRANSFORMED

OPTIMAL CONTROL PROBLEM

For nonlinear system (2), the solution of optimal con-
trol problem can be obtained by solving the modified HJB
equation (28) [9], [10], [12], [15], [38]. However, it is always
difficult or even impossible to obtain the analytical solu-
tion. Thus, in many literature, the value iteration and policy
iteration-based approaches are employed to get its approximate
solution. The traditional ADP-based design methodology often
utilizes critic network and action network without considering
uncertainties of the controlled system. Besides, the design pro-
cedure is often performed with the requirement of an initial
stabilizing control.

In this section, inspired by the excellent work of [39], [40],
and [45], an improved online technique without utilizing the

iterative strategy and an initial stabilizing control is devel-
oped by constructing a single network, namely, the critic
network. Here, the ADP method is introduced to the frame-
work of infinite horizon optimal robust guaranteed cost control
of nonlinear systems with uncertainties.

A. Neural Network Implementation

Assume that the cost function V(x) is continuously differ-
entiable. According to the universal approximation property of
neural networks, V(x) can be reconstructed by a single-layer
neural network on a compact set � as

V(x) = ωT
c σc(x) + εc(x) (40)

where ωc ∈ R
l is the ideal weight, σc(x) ∈ R

l is the activa-
tion function, l is the number of neurons in the hidden layer,
and εc(x) is the unknown approximation error of the neural
network. Then

∇V(x) = (∇σc(x)
)T

ωc + ∇εc(x) (41)

is also unknown, where ∇σc(x) = ∂σc(x)/∂x and ∇εc(x) =
∂εc(x)/∂x are the gradient of the activation function and neural
network approximation error, respectively. Based on (41), the
Lyapunov equation (8) takes the following form:

0 = U(x, u) +
(
ωT

c ∇σc(x) + (∇εc(x))
T
)

F(x, u)

+ hT(ϕ(x))h(ϕ(x)) + 1

4

(
ωT

c ∇σc(x) + (∇εc(x))
T
)

× G(x)GT(x)
(
(∇σc(x))

T ωc + ∇εc(x)
)
. (42)

Following the framework of [39], [40], and [45], we assume
that the weight vector ωc, the gradient ∇σc(x), and the approx-
imation error εc(x) and its derivative ∇εc(x) are all bounded
on a compact set �.

Since the ideal weights are unknown, a critic neural network
can be built in terms of the estimated weights as

V̂(x) = ω̂T
c σc(x) (43)

to approximate the cost function. Under the framework of
ADP method, the selection of the activation function of the
critic network is often a natural choice guided by engineering
experience and intuition [37], [67]. Then, we have

∇V̂(x) = (∇σc(x))
T ω̂c (44)

where ∇V̂(x) = ∂V̂(x)/∂x.
According to (26) and (41), we have

u(x) = −1

2
R−1gT(x)

(
(∇σc(x))

Tωc + ∇εc(x)
)

(45)

which, in fact, represents the expression of optimal control
u∗(x) if the cost function in (40) is considered as the optimal
one J∗(x). Besides, in light of (26) and (44), the approximate
control function can be given as

û(x) = −1

2
R−1gT(x)(∇σc(x))

Tω̂c. (46)

Applying (46) to system (2), the closed-loop system dynam-
ics is expressed as

ẋ = f (x) − 1

2
g(x)R−1gT(x)(∇σc(x))

Tω̂c. (47)
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Recalling the definition of the Hamiltonian function (24)
and the modified HJB equation (25), we can easily obtain
that H(x, u∗,∇J∗) = 0. The neural network expressions (41)
and (45) imply that u∗ and ∇J∗ can be formulated based
on the ideal weight of the critic network, i.e., ωc. As a
result, the Hamiltonian function becomes H(x, ωc) = 0, which
specifically, can be written as

H(x, ωc) = Q(x) + ωT
c ∇σc(x)f (x)

− 1

4
ωT

c ∇σc(x)g(x)R−1gT(x)(∇σc(x))
Tωc

+ hT(ϕ(x))h(ϕ(x))

+ 1

4
ωT

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tωc + ecH

= 0 (48)

where

ecH = (∇εc(x))
Tf (x)

− 1

2
(∇εc(x))

Tg(x)R−1gT(x)(∇σc(x))
Tωc

− 1

4
(∇εc(x))

Tg(x)R−1gT(x)∇εc(x)

+ 1

2
(∇εc(x))

TG(x)GT(x)(∇σc(x))
Tωc

+ 1

4
(∇εc(x))

TG(x)GT(x)∇εc(x). (49)

In (49), ecH denotes the residual error generated due to the
neural network approximation.

Then, using the estimated weight vector, the approximate
Hamiltonian function can be derived as

Ĥ(x, ω̂c) = Q(x) + ω̂T
c ∇σc(x)f (x)

− 1

4
ω̂T

c ∇σc(x)g(x)R−1gT(x)(∇σc(x))
Tω̂c

+ hT(ϕ(x))h(ϕ(x))

+ 1

4
ω̂T

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tω̂c. (50)

Letting ec = Ĥ(x, ω̂c) − H(x, ωc) and considering (48), we
have ec = Ĥ(x, ω̂c). Let the weight estimation error of the
critic network be

ω̃c = ωc − ω̂c. (51)

Then, based on (48), (50), and (51), we can obtain the
formulation of ec in terms of ω̃c as follows:

ec = Ĥ(x, ω̂c) − H(x, ωc)

= −ω̃T
c ∇σc(x)f (x)

− 1

4
ω̃T

c ∇σc(x)g(x)R−1gT(x)(∇σc(x))
Tω̃c

+ 1

2
ω̃T

c ∇σc(x)g(x)R−1gT(x)(∇σc(x))
Tωc

+ 1

4
ω̃T

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tω̃c

− 1

2
ω̃T

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tωc − ecH . (52)

For training the critic network, it is desired to design ω̂c to
minimize the objective function

Ec = 1

2
eT

c ec. (53)

Here, the weights of the critic network are tuned based on
the standard steepest descent algorithm with an additional term
introduced to assure the boundedness of system state, that is

˙̂ωc = −αc

(
∂Ec

∂ω̂c

)

+ 1

2
αs�(x, û)∇σc(x)g(x)R−1gT(x)∇Js(x) (54)

where αc > 0 is the learning rate of the critic network, αs > 0
is the learning rate of the additional term, and Js(x) is the
Lyapunov function candidate given in Assumption 2. In (54),
the �(x, û) is the additional stabilizing term defined as

�(x, û) =
{

0, if J̇s(x) = (∇Js(x))TF(x, û) < 0
1, else.

(55)

Remark 5: From the definition of the additional stabilizing
term �(x, û), the second term in (54) is removed when the
nonlinear system exhibits stable behavior. Hence, minimizing
the approximate Hamiltonian becomes the primary objective
of the weight update process. In contrast, when the controlled
system exhibits signs of instability, i.e., (∇Js(x))TF(x, û) > 0,
the second term of (54) is activated and is used to reinforce the
training process of the weight vector until the system exhibits
stable behavior. Hence, it can be seen that the term �(x, û) is
defined based on the Lyapunov condition for stability. In this
paper, we can obtain

− ∂
(
(∇Js(x))TF(x, û)

)
∂ω̂c

= −
(

∂ û

∂ω̂c

)T ∂
(
(∇Js(x))TF(x, û)

)
∂ û

= 1

2
∇σc(x)g(x)R−1gT(x)∇Js(x) (56)

which shows that the reinforced training process is carried
out along the negative gradient direction of (∇Js(x))TF(x, û).
When the case (∇Js(x))TF(x, û) > 0 occurs, the reinforced
training process reduces the value of (∇Js(x))TF(x, û) to make
it negative. To summarize, the second term in (54) is chosen
for ensuring the stability of closed-loop system, and mean-
while, for facilitating the stability proof given in the sequel.
Actually, it is in this sense that the requirement of an initial
stabilizing control is relaxed. Therefore, the weight vector of
critic network is initialized to zero during the neural network
implementation process.

The structural diagram of the implementation process using
neural network is displayed in Fig. 1.

Next, we will find the dynamics of the weight estimation
error ω̃c. According to (50), we have

∂ec

∂ω̂c
= ∇σc(x)f (x)

− 1

2
∇σc(x)g(x)R−1gT(x)(∇σc(x))

Tω̂c

+ 1

2
∇σc(x)G(x)GT(x)(∇σc(x))

Tω̂c. (57)
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Fig. 1. Structural diagram of neural network implementation (the solid line
represents the signal and the dashed line represents the back-propagating path).

In light of (51), (53), and (54), the dynamics of the weight
estimation error is

˙̃ωc = − ˙̂ωc

= αcec

(
∂ec

∂ω̂c

)

− 1

2
αs�(x, û)∇σc(x)g(x)R−1gT(x)∇Js(x). (58)

Then, combining (51), (52), and (57), the error dynam-
ics (58) becomes

˙̃ωc = αc

(
− ω̃T

c ∇σc(x)f (x)

− 1

4
ω̃T

c ∇σc(x)g(x)R−1gT(x)(∇σc(x))
Tω̃c

+ 1

2
ω̃T

c ∇σc(x)g(x)R−1gT(x)(∇σc(x))
Tωc

+ 1

4
ω̃T

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tω̃c

− 1

2
ω̃T

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tωc − ecH

)

×
(

∇σc(x)f (x)

− 1

2
∇σc(x)g(x)R−1gT(x)(∇σc(x))

Tωc

+ 1

2
∇σc(x)g(x)R−1gT(x)(∇σc(x))

Tω̃c

+ 1

2
∇σc(x)G(x)GT(x)(∇σc(x))

Tωc

− 1

2
∇σc(x)G(x)GT(x)(∇σc(x))

Tω̃c

)

− 1

2
αs�(x, û)∇σc(x)g(x)R−1gT(x)∇Js(x). (59)

In the following, the stability analysis of the neural-network-
based feedback control system is presented by using the
Lyapunov theory.

B. Stability Analysis

In this section, the error dynamics of the critic network
and the closed-loop system based on the approximate optimal
control will be proved to be UUB.

Theorem 3: Consider the nonlinear system given by (2).
Let the control input be provided by (46) and the weights
of the critic network be tuned by (54). Then, the state x of the

closed-loop system and the weight estimation error ω̃c of the
critic network are UUB.

Proof: See the Appendix.
Corollary 1: The approximate control input û in (46) con-

verges to a neighborhood of optimal control input u∗ with
finite bound.
Proof: According to (45) and (46), we have

u∗ − û = −1

2
R−1gT(x)(∇σ(x))Tω̃c − 1

2
R−1gT(x)∇εc(x).

(60)

In light of Theorem 3, we have ‖ω̃c‖ < A , where A
is defined in the Appendix. Then, the terms
R−1gT(x)(∇σ(x))Tω̃c and R−1gT(x)∇εc(x) are all bounded.
Thus, we can further determine that

‖u∗ − û‖ ≤ 1

2
R−1

M gMσdMA + 1

2
R−1

M gMλ10

� εu (61)

where λ10 is given in the Appendix and εu is the finite bound.
This completes the proof.

C. Design Procedure of the Optimal Robust Guaranteed
Cost Control

For continuous-time uncertain nonlinear systems (1) satisfy-
ing (3) and (4), we summarize the design procedure of optimal
robust guaranteed cost control as follows.

Step 1: Select G(x) and ϕ(x), determine h(ϕ(x)), and con-
duct the problem transformation based on the
bounded function �(x).

Step 2: Choose the Lyapunov function candidate Js(x),
construct a critic network as (43), and set its initial
weights to zero.

Step 3: Solve the transformed optimal control problem
via online solution of the modified HJB equation,
using the expressions of approximate control func-
tion (46), approximate Hamiltonian function (50),
and weights update criterion (54).

Step 4: Derive the optimal robust guaranteed cost and
optimal robust guaranteed cost control of original
uncertain nonlinear system based on the converged
weights of critic network.

Remark 6: It is observed from (43) and (50), both the
approximate cost function and the approximate Hamiltonian
become zero when ‖x‖ = 0. In this case, we can find that˙̂ωc = 0. Thus, when the system state converges to zero, the
weights of the critic network are no longer updated. This can
be viewed as a persistency of excitation requirement of the
neural network inputs. In other words, the system state must
be persistently exciting long enough in order to ensure the
critic network to learn the optimal cost function as accurately
as possible. In this paper, the persistency of excitation condi-
tion is satisfied by adding an exploration noise to the control
input. The condition can be removed once the weights of the
critic network converge to their target values. Actually, it is
for this reason that there always exists a tradeoff between
computational accuracy and time consumption for practical
realization.
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Fig. 2. Convergence of weight vector of the critic network (ωac1, ωac2, and
ωac3 represents ω̂c1, ω̂c2, and ω̂c3, respectively).

V. SIMULATION STUDIES

In this section, two simulation examples are provided to
demonstrate the effectiveness of the optimal robust guaranteed
cost control strategy derived based on the online HJB solution.
We first consider a continuous-time linear system and then a
nonlinear system, both with system uncertainty.

Example 1: Consider the continuous-time linear system

ẋ =
[−1 −2

1 −4

]
x +

[
1

−3

]
u + �f (x) (62)

where x = [x1, x2]T and �f (x) = [px1 sin x2, 0]T with p ∈
[ − 0.5, 0.5]. According to the form of system uncertainty, we
choose G(x) = [1, 0]T and ϕ(x) = x. Then, we have d(ϕ(x)) =
px1 sin x2. Besides, we select h(ϕ(x)) = 0.5x1 sin x2.

In this example, we first choose Q(x) = xTx, R = I, where I
is an identity matrix with suitable dimension. In order to solve
the transformed optimal control problem, a critic network is
constructed to approximate the modified cost function as

V̂(x) = ω̂c1x2
1 + ω̂c2x1x2 + ω̂c3x2

2. (63)

Let the initial state of the controlled plant be x0 = [1,−1]T.
Select the Lyapunov function candidate of the weights tun-
ing criterion as Js(x) = (1/2)xTx. Let the learning rate of
the critic network and the additional term be αc = 0.8 and
αs = 0.5, respectively. During the neural network implemen-
tation process, we bring in an exploration noise N (t) =
sin2(t) cos(t) + sin2(2t) cos(0.1t) + sin2(−1.2t) cos(0.5t) +
sin5(t) + sin2(1.12t) + cos(2.4t) sin3(2.4t) to satisfy the per-
sistency of excitation condition. It is introduced into the
control input and thus affects the system state. After a learn-
ing session, the weights of the critic network converge to
[0.3461,−0.1330, 0.1338]T as shown in Fig. 2. Here, it is
important to note that the initial weights of the critic network
are all set as zero, which implies that no initial stabilizing con-
trol is needed for implementing the control strategy. This can
be verified by observing Fig. 3, which displays the updating
process of weight vector during the first 10 s.

Fig. 3. Updating process of weight vector during the first 10 s (ωac1, ωac2,
and ωac3 represent ω̂c1, ω̂c2, and ω̂c3, respectively).

Fig. 4. System state (p = 0.5).

Based on the converged weight vector, the optimal robust
guaranteed cost of the controlled system is �(u∗) = J∗
(x0) = 0.6129. Next, the scalar parameter p = 0.5 is cho-
sen for evaluating the control performance. Under the action
of the obtained control function, the system trajectory during
the first 20 s is presented in Fig. 4, which shows the good
performance of the control approach.

Next, we set Q(x) = 8xTx, R = 5I, and conduct the
neural network implementation again by increasing the learn-
ing rates of the critic network and the additional term
properly. In this case, the weights of the critic network
converge to [5.4209,−3.5088, 1.2605]T, which is depicted
in Fig. 5. Similarly, the system trajectory during the first
20 s when choosing p = 0.5 is displayed in Fig. 6. These
simulation results show that the parameters Q(x) and R
play an important role in the design process. In addition,
the power of the present control technique is demonstrated
again.
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Fig. 5. Convergence of weight vector of the critic network (ωac1, ωac2, and
ωac3 represents ω̂c1, ω̂c2, and ω̂c3, respectively).

Fig. 6. System state (p = 0.5).

Example 2: Consider the following continuous-time
nonlinear system:

ẋ =
⎡
⎣ −x1 + x2

0.1x1 − x2 − x1x3
x1x2 − x3

⎤
⎦+

⎡
⎣0

1
0

⎤
⎦ u + �f (x) (64)

where x = [x1, x2, x3]T, �f (x) = [0, 0, px1 sin x2 cos x3]T,
and p ∈ [ − 1, 1]. Similarly, if we choose G(x) = [0, 0, 1]T

and ϕ(x) = x based on the form of system uncertainty, then
d(ϕ(x)) = px1 sin x2 cos x3. Clearly, we can select h(ϕ(x)) =
x1 sin x2 cos x3.

In this example, Q(x) and R are chosen the same as the first
case of Example 1. However, the critic network is constructed
using the following form:

V̂(x) = ω̂c1x2
1 + ω̂c2x2

2 + ω̂c3x2
3 + ω̂c4x1x2 + ω̂c5x1x3

+ ω̂c6x2x3 + ω̂c7x4
1 + ω̂c8x4

2 + ω̂c9x4
3

+ ω̂c10x2
1x2

2 + ω̂c11x2
1x2

3 + ω̂c12x2
2x2

3

+ ω̂c13x2
1x2x3 + ω̂c14x1x2

2x3 + ω̂c15x1x2x2
3

+ ω̂c16x3
1x2 + ω̂c17x3

1x3 + ω̂c18x1x3
2

+ ω̂c19x3
2x3 + ω̂c20x1x3

3 + ω̂c21x2x3
3. (65)

Fig. 7. System state (p = −1).

Here, let the initial state of the controlled system be
x0 = [1,−1, 0.5]T. Besides, let the learning rate of the critic
network and the additional term be αc = 0.3 and αs = 0.5,
respectively. Same as above, an exploration noise is added
to satisfy the persistency of excitation condition during the
neural network implementation process. Besides, all the ele-
ments of the weight vector of critic network are initialized
to zero. After a sufficient learning session, the weights of the
critic network converge to [0.4759, 0.5663, 0.1552, 0.4214,
0.0911, 0.0375, 0.0886, −0.0099, 0.0986, 0.1539, 0.0780,
−0.0192, −0.1335, −0.0052, −0.0639, −0.1583, 0.0456,
0.0576, −0.0535, 0.0885, −0.0227]T.

Similarly, the optimal robust guaranteed cost of the nonlin-
ear system is �(u∗) = J∗(x0) = 1.1841. In this example,
the scalar parameter p = −1 is chosen for evaluating the
robust control performance. The system trajectory is depicted
in Fig. 7 when applying the obtained control to system (64)
for 20 s. These simulation results verify the effectiveness of
the developed control approach.

VI. CONCLUSION

A novel strategy is developed to derive the optimal robust
guaranteed cost control of uncertain nonlinear systems. This
is accomplished by properly modifying the cost function to
account for system uncertainty, so that the solution of the
transformed optimal control problem serves as the optimal
robust guaranteed cost of the original system. A critic network
is constructed to solve the modified HJB equation online. Two
simulation examples are presented to reinforce the theoretical
results as well.

As for future works, we will study the optimal robust
guaranteed cost control of uncertain nonlinear systems with
constrained inputs based on single network ADP approach. In
this case, we let all the elements of control input u(t) in sys-
tem (1) have lower and upper bounds, i.e., uimin ≤ ui ≤ uimax,
i = 1, 2, . . . , m, where uimin and uimax are constants. Besides,
how to deal with the problem when the dynamic knowledge
of nominal system is unknown serves as another interesting
direction of future research. Under such circumstance, func-
tions f (x) and g(x) are assumed to be unknown, hence the
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system identification will be employed by constructing neu-
ral networks. Remarkably, as an important part of machine
learning community, reinforcement learning is characterized
by finding optimal actions in unknown environment [10], [11].
Thus, it is of great significance to use more advanced idea of
reinforcement learning to handle the optimal control problems
under uncertain and unknown environment. Moreover, how to
relax the restrictive condition of system uncertainty is also one
of the directions of our future works. Additionally, the inverse
optimal control [68], [69], which is featured by the fact that
the meaningful cost function is determined from the stabilizing
feedback control, serves as another effective strategy aimed at
circumventing the challenging task of solving the HJB equa-
tion. Thus, the inverse optimal control approach will also be
helpful for our future study.

APPENDIX

Proof of Theorem 3: We choose the following Lyapunov
function candidate:

L(t) = 1

2αc
ω̃T

c ω̃c + αs

αc
Js(x) (A.1)

where Js(x) is presented in Assumption 2. The derivative of
the Lyapunov function candidate (A.1) with respect to time
along the dynamics of (47) and (59) is

L̇(t) = 1

αc
ω̃T

c
˙̃ωc + αs

αc
(∇Js(x))

Tẋ. (A.2)

Substituting (47) and (59) into (A.2), we obtain

L̇(t) = ω̃T
c

(
− ω̃T

c ∇σc(x)f (x)

− 1

4
ω̃T

c ∇σc(x)g(x)R−1gT(x)(∇σc(x))
Tω̃c

+ 1

2
ω̃T

c ∇σc(x)g(x)R−1gT(x)(∇σc(x))
Tωc

+ 1

4
ω̃T

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tω̃c

− 1

2
ω̃T

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tωc − ecH

)

×
(

∇σc(x)f (x)

− 1

2
∇σc(x)g(x)R−1gT(x)(∇σc(x))

Tωc

+ 1

2
∇σc(x)g(x)R−1gT(x)(∇σc(x))

Tω̃c

+ 1

2
∇σc(x)G(x)GT(x)(∇σc(x))

Tωc

− 1

2
∇σc(x)G(x)GT(x)(∇σc(x))

Tω̃c

)

− αs

2αc
�(x, û)ω̃T

c ∇σc(x)g(x)R−1gT(x)∇Js(x)

+ αs

αc
(∇Js(x))

Tẋ. (A.3)

For simplicity, we denote

A = ∇σc(x)g(x)R−1gT(x)(∇σc(x))
T (A.4)

B = ∇σc(x)G(x)GT(x)(∇σc(x))
T. (A.5)

Then, (A.3) becomes

L̇(t) = −
(

ω̃T
c ∇σc(x)f (x) + 1

4
ω̃T

c Aω̃c − 1

2
ω̃T

c Aωc

− 1

4
ω̃T

c Bω̃c + 1

2
ω̃T

c Bωc + ecH

)

×
(

ω̃T
c ∇σc(x)f (x) + 1

2
ω̃T

c Aω̃c − 1

2
ω̃T

c Aωc

− 1

2
ω̃T

c Bω̃c + 1

2
ω̃T

c Bωc

)

− αs

2αc
�(x, û)ω̃T

c ∇σc(x)g(x)R−1gT(x)∇Js(x)

+ αs

αc
(∇Js(x))

Tẋ. (A.6)

Considering (47), we have

L̇(t) = −
(

ω̃T
c ∇σc(x)ẋ − 1

4
ω̃T

c Aω̃c − 1

4
ω̃T

c Bω̃c

+ 1

2
ω̃T

c Bωc + ecH

)

×
(

ω̃T
c ∇σc(x)ẋ − 1

2
ω̃T

c Bω̃c + 1

2
ω̃T

c Bωc

)

− αs

2αc
�(x, û)ω̃T

c ∇σc(x)g(x)R−1gT(x)∇Js(x)

+ αs

αc
(∇Js(x))

Tẋ. (A.7)

Noticing that ẋ∗ = f (x)+g(x)u∗, where u∗ is given by (45),
we can further obtain that

L̇(t) = −
(

ω̃T
c ∇σc(x)ẋ

∗ + 1

4
ω̃T

c Aω̃c

+ 1

2
ω̃T

c ∇σc(x)g(x)R−1gT(x)∇εc(x)

− 1

4
ω̃T

c Bω̃c + 1

2
ω̃T

c Bωc + ecH

)

×
(

ω̃T
c ∇σc(x)ẋ

∗ + 1

2
ω̃T

c Aω̃c

+ 1

2
ω̃T

c ∇σc(x)g(x)R−1gT(x)∇εc(x)

− 1

2
ω̃T

c Bω̃c + 1

2
ω̃T

c Bωc

)

− αs

2αc
�(x, û)ω̃T

c ∇σc(x)g(x)R−1gT(x)∇Js(x)

+ αs

αc
(∇Js(x))

Tẋ. (A.8)

As in [45], we assume that λ1m > 0 and λ1M > 0 are the
lower and upper bounds of the norm of matrix A. Similarly,
assume that λ2m > 0 and λ2M > 0 are the lower and upper
bounds of the norm of matrix B. Assume that ‖R−1‖ ≤ R−1

M ,
‖g(x)‖ ≤ gM , ‖∇σ(x)‖ ≤ σdM , ‖Bωc‖ ≤ λ4, ‖∇εc(x)‖ ≤ λ10,
and ‖ecH‖ ≤ λ12, where R−1

M , gM , σdM , λ4, λ10, and λ12 are
positive constants. In addition, assume that ‖∇σc(x)ẋ∗‖ ≤ λ3,
where λ3 is a positive constant. Let λ5 = (

√
6/2)λ12, λ9 =

g2
MR−1

M , and λ11 = σdMg2
MR−1

M λ10, then ‖g(x)R−1gT(x)‖ ≤ λ9

and ‖∇σ(x)g(x)R−1gT(x)∇εc(x)‖ ≤ λ11. Using the relations

ab = 1

2

(
−
(

φ+a − b

φ+

)2

+ φ2+a2 + b2

φ2+

)
(A.9)
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−ab = −1

2

((
φ−a + b

φ−

)2

− φ2−a2 − b2

φ2−

)
(A.10)

we have

−3

4
(ω̃T

c ∇σc(x)ẋ
∗)(ω̃T

c Aω̃c)

= −3

8

((
φ1ω̃

T
c ∇σc(x)ẋ

∗ + ω̃T
c Aω̃c

φ1

)2

− φ2
1(ω̃T

c ∇σc(x)ẋ
∗)2 − (ω̃T

c Aω̃c)
2

φ2
1

)

≤ 3

8

(
φ2

1(ω̃T
c ∇σc(x)ẋ

∗)2 + (ω̃T
c Aω̃c)

2

φ2
1

)

≤ 3

8φ2
1

λ2
1M‖ω̃c‖4 + 3

8
φ2

1λ2
3‖ω̃c‖2 (A.11)

where φ+, φ−, and φ1 are nonzero constants. Other terms
of (A.8) can be handled the same way. Then, we can find that

L̇(t) ≤ −λ7‖ω̃c‖4 + λ8‖ω̃c‖2 + λ2
5

− αs

2αc
�(x, û)ω̃T

c ∇σc(x)g(x)R−1gT(x)∇Js(x)

+ αs

αc
(∇Js(x))

Tẋ (A.12)

where

λ7 = 1

8
λ2

1m + 1

8
λ2

2m − 3

8φ2
1

λ2
1M − 3

8φ2
2

λ2
2M

− 3

16
φ2

3λ2
1M − 3

16
φ2

4λ2
1M − 3

16
φ2

5λ2
11 − 3

16
φ2

6λ2
2M

(A.13)

λ8 = 3

8
φ2

1λ2
3 + 3

8
φ2

2λ2
3 + 3

16φ2
3

λ2
11

+ 3

16φ2
4

λ2
4 + 3

16φ2
5

λ2
11 + 3

16φ2
6

λ2
4 (A.14)

and φi, i = 1, 2, . . . , 6, are nonzero constants chosen
for the design purpose. Note that under the action of φi,
i = 1, 2, . . . , 6, the relation λ7 > 0 can be guaranteed.

In the following, the cases of �(x, û) = 0 and �(x, û) = 1
will be considered, respectively.

Case 1: �(x, û) = 0. Since (∇Js(x))Tẋ < 0, we have
−(∇Js(x))Tẋ > 0. According to the density property of
real numbers, there exists a positive constant λ6 such that
0 < λ6‖∇Js(x)‖ ≤ −(∇Js(x))Tẋ holds for all x ∈ �, i.e.,
(∇Js(x))Tẋ ≤ −λ6‖∇Js(x)‖. Hence, the inequality (A.12)
becomes

L̇(t) ≤ −λ7‖ω̃c‖4 + λ8‖ω̃c‖2 + λ2
5 + αs

αc
(∇Js(x))

Tẋ

≤ −λ7‖ω̃c‖4 + λ8‖ω̃c‖2 + λ2
5 − αs

αc
λ6‖∇Js(x)‖. (A.15)

Therefore, given the following inequality:

‖ω̃c‖ ≥

√√√√λ8 +
√

4λ2
5λ7 + λ2

8

2λ7
� A1 (A.16)

or

‖∇Js(x)‖ ≥ αc
(
4λ2

5λ7 + λ2
8

)
4αsλ6λ7

� B1 (A.17)

holds, we conclude L̇(t) < 0.

Case 2: �(x, û) = 1. Adding and subtracting αs(∇Js(x))T

g(x)R−1gT(x)∇εc(x)/(2αc) to the right hand side of (A.12)
and taking Assumption 2 into consideration yield

L̇(t) ≤ −λ7‖ω̃c‖4 + λ8‖ω̃c‖2 + λ2
5

− αs

2αc
ω̃T

c ∇σc(x)g(x)R−1gT(x)∇Js(x)

+ αs

αc
(∇Js(x))

T(f (x) + g(x)û)

= −λ7‖ω̃c‖4 + λ8‖ω̃c‖2 + λ2
5

+ αs

αc
(∇Js(x))

T(f (x) + g(x)u∗)

+ αs

2αc
(∇Js(x))

Tg(x)R−1gT(x)∇εc(x)

≤ −λ7‖ω̃c‖4 + λ8‖ω̃c‖2 + λ2
5

− αs

αc
λm‖∇Js(x)‖2 + αs

2αc
λ9λ10‖∇Js(x)‖. (A.18)

Therefore, given the following inequality:

‖ω̃c‖ ≥
√√√√ λ8

2λ7
+
√

λ2
5

λ7
+ λ2

8

4λ2
7

+ αsλ
2
9λ

2
10

16αcλmλ7
� A2 (A.19)

or

‖∇Js(x)‖ ≥ λ9λ10

4λm
+
√

αc
(
4λ2

5λ7 + λ2
8

)
4αsλmλ7

+ λ2
9λ

2
10

16λ2
m

� B2

(A.20)

holds, we obtain L̇(t) < 0.
To summarize, if the inequality ‖ω̃c‖ > max(A1,A2) = A

or ‖∇Js(x)‖ > max(B1,B2) = B holds, then L̇(t) < 0.
Considering the fact that Js(x) is chosen as a polynomial and
in accordance with the standard Lyapunov extension theo-
rem [70], we can derive the conclusion that the state x and
the weight estimation error ω̃c are UUB. This completes the
proof.

REFERENCES

[1] P. J. Werbos, “Approximate dynamic programming for real-time control
and neural modeling,” in Handbook of Intelligent Control: Neural, Fuzzy,
and Adaptive Approaches, D. A. White and D. A. Sofge, Eds. New York,
NY, USA: Van Nostrand Reinhold, 1992, ch. 13.

[2] P. J. Werbos, “ADP: The key direction for future research in intelligent
control and understanding brain intelligence,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 38, no. 4, pp. 898–900, Aug. 2008.

[3] P. J. Werbos, “Intelligence in the brain: A theory of how it works and
how to build it,” Neural Netw., vol. 22, no. 3, pp. 200–212, Apr. 2009.

[4] D. V. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” IEEE
Trans. Neural Netw., vol. 8, no. 5, pp. 997–1007, Sep. 1997.

[5] D. P. Bertsekas, M. L. Homer, D. A. Logan, S. D. Patek, and
N. R. Sandell, “Missile defense and interceptor allocation by neuro-
dynamic programming,” IEEE Trans. Syst., Man, Cybern. A, Syst.,
Humans, vol. 30, no. 1, pp. 42–51, Jan. 2000.

[6] J. Si and Y. T. Wang, “On-line learning control by association and rein-
forcement,” IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 264–276,
Mar. 2001.

[7] S. Shervais, T. T. Shannon, and G. G. Lendaris, “Intelligent supply chain
management using adaptive critic learning,” IEEE Trans. Syst., Man,
Cybern. A, Syst., Humans, vol. 33, no. 2, pp. 235–244, Mar. 2003.

[8] J. Varghese and S. Mukhopadhyay, “Automated web navigation using
multiagent adaptive dynamic programming,” IEEE Trans. Syst., Man,
Cybern. A, Syst., Humans, vol. 33, no. 3, pp. 412–417, May 2003.

[9] F. Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming:
An introduction,” IEEE Comput. Intell. Mag., vol. 4, no. 2, pp. 39–47,
May 2009.



LIU et al.: NEURAL-NETWORK-BASED ONLINE HJB SOLUTION FOR OPTIMAL ROBUST GUARANTEED COST CONTROL 2845

[10] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive
dynamic programming for feedback control,” IEEE Circuits Syst. Mag.,
vol. 9, no. 3, pp. 32–50, Jul. 2009.

[11] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, “Reinforcement learn-
ing and feedback control: Using natural decision methods to design
optimal adaptive controllers,” IEEE Control Syst. Mag., vol. 32, no. 6,
pp. 76–105, Dec. 2012.

[12] H. Zhang, X. Zhang, Y. Luo, and J. Yang, “An overview of research
on adaptive dynamic programming,” Acta Autom. Sinica, vol. 39, no. 4,
pp. 303–311, Apr. 2013.

[13] D. Liu, H. Li, and D. Wang, “Data-based self-learning optimal control:
Research progress and prospects,” Acta Autom. Sinica, vol. 39, no. 11,
pp. 1858–1870, Nov. 2013.

[14] P. Rakshit et al., “Realization of an adaptive memetic algorithm using
differential evolution and Q-learning: A case study in multirobot path
planning,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 43, no. 4,
pp. 814–831, Jul. 2013.

[15] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time
nonlinear HJB solution using approximate dynamic programming:
Convergence proof,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 38, no. 4, pp. 943–949, Aug. 2008.

[16] H. Zhang, Y. Luo, and D. Liu, “Neural-network-based near-optimal con-
trol for a class of discrete-time affine nonlinear systems with control
constraints,” IEEE Trans. Neural Netw., vol. 20, no. 9, pp. 1490–1503,
Sep. 2009.

[17] F. Y. Wang, N. Jin, D. Liu, and Q. Wei, “Adaptive dynamic programming
for finite-horizon optimal control of discrete-time nonlinear systems with
ε-error bound,” IEEE Trans. Neural Netw., vol. 22, no. 1, pp. 24–36,
Jan. 2011.

[18] D. Wang, D. Liu, and Q. Wei, “Finite-horizon neuro-optimal tracking
control for a class of discrete-time nonlinear systems using adap-
tive dynamic programming approach,” Neurocomputing, vol. 78, no. 1,
pp. 14–22, Feb. 2012.

[19] D. Liu, D. Wang, D. Zhao, Q. Wei, and N. Jin, “Neural-network-based
optimal control for a class of unknown discrete-time nonlinear systems
using globalized dual heuristic programming,” IEEE Trans. Autom. Sci.
Eng., vol. 9, no. 3, pp. 628–634, Jul. 2012.

[20] D. Wang, D. Liu, Q. Wei, D. Zhao, and N. Jin, “Optimal control of
unknown nonaffine nonlinear discrete-time systems based on adaptive
dynamic programming,” Automatica, vol. 48, no. 8, pp. 1825–1832,
Aug. 2012.

[21] D. Wang, D. Liu, D. Zhao, Y. Huang, and D. Zhang, “A neural-
network-based iterative GDHP approach for solving a class of nonlinear
optimal control problems with control constraints,” Neural Comput.
Appl., vol. 22, no. 2, pp. 219–227, Feb. 2013.

[22] D. Liu, H. Li, and D. Wang, “Neural-network-based zero-sum game for
discrete-time nonlinear systems via iterative adaptive dynamic program-
ming algorithm,” Neurocomputing, vol. 110, pp. 92–100, Jun. 2013.

[23] H. Li and D. Liu, “Optimal control for discrete-time affine nonlinear
systems using general value iteration,” IET Control Theory Appl., vol. 6,
no. 18, pp. 2725–2736, Dec. 2012.

[24] A. Heydari and S. N. Balakrishnan, “Finite-horizon control-constrained
nonlinear optimal control using single network adaptive critics,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 24, no. 1, pp. 145–157, Jan. 2013.

[25] Z. Ni, H. He, and J. Wen, “Adaptive learning in tracking control based
on the dual critic network design,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 24, no. 6, pp. 913–928, Jun. 2013.

[26] H. He, Z. Ni, and J. Fu, “A three-network architecture for on-line
learning and optimization based on adaptive dynamic programming,”
Neurocomputing, vol. 78, no. 1, pp. 3–13, Feb. 2012.

[27] Z. Ni, H. He, J. Wen, and X. Xu, “Goal representation heuristic dynamic
programming on maze navigation,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 24, no. 12, pp. 2038–2050, Dec. 2013.

[28] X. Xu, C. Lian, L. Zuo, and H. He, “Kernel-based approximate dynamic
programming for real-time online learning control: An experimental
study,” IEEE Trans. Control Syst. Technol., vol. 22, no. 1, pp. 146–156,
Jan. 2014.

[29] T. Dierks and S. Jagannathan, “Online optimal control of affine nonlinear
discrete-time systems with unknown internal dynamics by using time-
based policy update,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23,
no. 7, pp. 1118–1129, Jul. 2012.

[30] Q. Wei and D. Liu, “Data-driven neuro-optimal temperature control of
water gas shift reaction using stable iterative adaptive dynamic pro-
gramming,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6399–6408,
Nov. 2014.

[31] D. Liu and Q. Wei, “Policy iterative adaptive dynamic programming
algorithm for discrete-time nonlinear systems,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 25, no. 3, pp. 621–634, Mar. 2014.

[32] D. Wang and D. Liu, “Neuro-optimal control for a class of unknown
nonlinear dynamic systems using SN-DHP technique,” Neurocomputing,
vol. 121, pp. 218–225, Dec. 2013.

[33] D. Liu, D. Wang, and X. Yang, “An iterative adaptive dynamic program-
ming algorithm for optimal control of unknown discrete-time nonlinear
systems with constrained inputs,” Inf. Sci., vol. 220, pp. 331–342,
Jan. 2013.

[34] Q. Wei and D. Liu, “An iterative ε-optimal control scheme for a class of
discrete-time nonlinear systems with unfixed initial state,” Neural Netw.,
vol. 32, no. 6, pp. 236–244, Aug. 2012.

[35] D. Liu and Q. Wei, “Finite-approximation-error-based optimal control
approach for discrete-time nonlinear systems,” IEEE Trans. Cybern.,
vol. 43, no. 2, pp. 779–789, Apr. 2013.

[36] D. Liu, H. Javaherian, O. Kovalenko, and T. Huang, “Adaptive critic
learning techniques for engine torque and air-fuel ratio control,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 4, pp. 988–993,
Aug. 2008.

[37] M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for non-
linear systems with saturating actuators using a neural network HJB
approach,” Automatica, vol. 41, no. 5, 779–791, May 2005.

[38] D. Vrabie and F. L. Lewis, “Neural network approach to continuous-
time direct adaptive optimal control for partially unknown nonlinear
systems,” Neural Netw., vol. 22, no. 3, pp. 237–246, Apr. 2009.

[39] K. G. Vamvoudakis and F. L. Lewis, “Online actor-critic algorithm to
solve the continuous-time infinite horizon optimal control problem,”
Automatica, vol. 46, no. 5, pp. 878–888, May 2010.

[40] S. Bhasin et al., “A novel actor-critic-identifier architecture for approx-
imate optimal control of uncertain nonlinear systems,” Automatica,
vol. 49, no. 1, pp. 82–92, Jan. 2013.

[41] H. N. Wu and B. Luo, “Neural network based online simultaneous policy
update algorithm for solving the HJI equation in nonlinear H∞ control,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 12, pp. 1884–1895,
Dec. 2012.

[42] H. Zhang, L. Cui, and Y. Luo, “Near-optimal control for nonzero-sum
differential games of continuous-time nonlinear systems using single-
network ADP,” IEEE Trans. Cybern., vol. 43, no. 1, pp. 206–216,
Feb. 2013.

[43] D. Liu, X. Yang, and H. Li, “Adaptive optimal control for a class
of continuous-time affine nonlinear systems with unknown internal
dynamics,” Neural Comput. Appl., vol. 23, pp. 1843–1850, Dec. 2013.

[44] D. Liu, Y. Huang, D. Wang, and Q. Wei, “Neural-network-observer-
based optimal control for unknown nonlinear systems using adaptive
dynamic programming,” Int. J. Control, vol. 86, no. 9, pp. 1554–1566,
2013.

[45] T. Dierks and S. Jagannathan, “Optimal control of affine nonlinear
continuous-time systems,” in Proc. Amer. Control Conf., Baltimore, MD,
USA, Jun. 2010, pp. 1568–1573.

[46] D. Nodland, H. Zargarzadeh, and S. Jagannathan, “Neural network-
based optimal adaptive output feedback control of a helicopter UAV,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 7, pp. 1061–1073,
Jul. 2013.

[47] D. Liu, D. Wang, and H. Li, “Decentralized stabilization for a class
of continuous-time nonlinear interconnected systems using online learn-
ing optimal control approach,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 25, no. 2, pp. 418–428, Feb. 2014.

[48] D. Liu, H. Li, and D. Wang, “Online synchronous approximate optimal
learning algorithm for multi-player non-zero-sum games with unknown
dynamics,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 44, no. 8,
pp. 1015–1027, Aug. 2014.

[49] D. Wang, D. Liu, and H. Li, “Policy iteration algorithm for online design
of robust control for a class of continuous-time nonlinear systems,” IEEE
Trans. Autom. Sci. Eng., vol. 11, no. 2, pp. 627–632, Apr. 2014.

[50] D. Wang, D. Liu, H. Li, and H. Ma, “Neural-network-based robust
optimal control design for a class of uncertain nonlinear systems
via adaptive dynamic programming,” Inf. Sci., vol. 282, pp. 167–179,
Oct. 2014.

[51] X. Yang, D. Liu, and D. Wang, “Reinforcement learning for adap-
tive optimal control of unknown continuous-time nonlinear systems
with input constraints,” Int. J. Control, vol. 87, no. 3, pp. 553–566,
Mar. 2014.

[52] H. Li, D. Liu, and D. Wang, “Integral reinforcement learning for linear
continuous-time zero-sum games with completely unknown dynamics,”
IEEE Trans. Autom. Sci. Eng., vol. 11, no. 3, pp. 706–714, Jul. 2014.



2846 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 12, DECEMBER 2014

[53] H. Modares, F. L. Lewis, and M. B. Naghibi-Sistani, “Adaptive optimal
control of unknown constrained-input systems using policy iteration and
neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 10,
pp. 1513–1525, Oct. 2013.

[54] B. Luo, H. N. Wu, and T. Huang, “Off-policy reinforcement learning
for H∞ control design,” IEEE Trans. Cybern., to be published.

[55] D. M. Adhyaru, I. N. Kar, and M. Gopal, “Bounded robust control of
nonlinear systems using neural network-based HJB solution,” Neural
Comput. Appl., vol. 20, no. 1, pp. 91–103, 2011.

[56] D. M. Adhyaru, I. N. Kar, and M. Gopal, “Fixed final time opti-
mal control approach for bounded robust controller design using
Hamilton–Jacobi–Bellman solution,” IET Control Theory Appl., vol. 3,
no. 9, pp. 1183–1195, Sep. 2009.

[57] S. Mehraeen and S. Jagannathan, “Decentralized optimal control of a
class of interconnected nonlinear discrete-time systems by using online
Hamilton–Jacobi–Bellman formulation,” IEEE Trans. Neural Netw.,
vol. 22, no. 11, pp. 1757–1769, Nov. 2011.

[58] H. Xu, S. Jagannathan, and F. L. Lewis, “Stochastic optimal control of
unknown linear networked control system in the presence of random
delays and packet losses,” Automatica, vol. 48, no. 6, pp. 1017–1030,
Jun. 2012.

[59] J. Liang, G. K. Venayagamoorthy, and R. G. Harley, “Wide-area mea-
surement based dynamic stochastic optimal power flow control for smart
grids with high variability and uncertainty,” IEEE Trans. Smart Grid,
vol. 3, no. 1, pp. 59–69, Mar. 2012.

[60] W. M. Haddad, V. S. Chellaboina, and J. L. Fausz, “Robust nonlin-
ear feedback control for uncertain linear systems with nonquadratic
performance criteria,” Syst. Control Lett., vol. 33, no. 5, pp. 327–338,
1998.

[61] W. M. Haddad, V. Chellaboina, J. L. Fausz, and A. Leonessa, “Optimal
non-linear robust control for nonlinear uncertain systems,” Int. J.
Control, vol. 73, no. 4, pp. 329–342, 2000.

[62] W. M. Haddad and V. Chellaboina, Nonlinear Dynamical Systems and
Control: A Lyapunov-Based Approach. Princeton, NJ, USA: Princeton
Univ. Press, 2008.

[63] F. Lin, R. D. Brand, and J. Sun, “Robust control of nonlinear sys-
tems: Compensating for uncertainty,” Int. J. Control, vol. 56, no. 6,
pp. 1453–1459, 1992.

[64] S. S. L. Chang and T. K. C. Peng, “Adaptive guaranteed cost control
of systems with uncertain parameters,” IEEE Trans. Autom. Control,
vol. 17, no. 4, pp. 474–483, Apr. 1972.

[65] L. Yu, Q. L. Han, and M. X. Sun, “Optimal guaranteed cost control of
linear uncertain systems with input constraints,” Int. J. Control Autom.
Syst., vol. 3, no. 3, pp. 397–402, Sep. 2005.

[66] L. Yu and J. Chu, “An LMI approach to guaranteed cost control
of linear uncertain time-delay systems,” Automatica, vol. 35, no. 6,
pp. 1155–1159, Jun. 1999.

[67] R. W. Beard, G. N. Saridis, and J. T. Wen, “Galerkin approximations
of the generalized Hamilton–Jacobi–Bellman equation,” Automatica,
vol. 33, no. 12, pp. 2159–2177, Dec. 1997.

[68] M. Krstic and Z. H. Li, “Inverse optimal design of input-to-state stabi-
lizing nonlinear controllers,” IEEE Trans. Autom. Control, vol. 43, no. 3,
pp. 336–350, Mar. 1998.

[69] M. Krstic and P. Tsiotras, “Inverse optimal stabilization of a rigid space-
craft,” IEEE Trans. Autom. Control, vol. 44, no. 5, pp. 1042–1049,
May 1999.

[70] F. L. Lewis, S. Jagannathan, and A. Yesildirek, Neural Network
Control of Robot Manipulators and Nonlinear Systems. London, U.K.:
Taylor & Francis, 1999.

Derong Liu (S’91–M’94–SM’96–F’05) received the
Ph.D. degree in electrical engineering from the
University of Notre Dame, Notre Dame, IN, USA,
in 1994.

He was a Staff Fellow at General Motors Research
and Development Center, from 1993 to 1995 and an
Assistant Professor at the Department of Electrical
and Computer Engineering, Stevens Institute of
Technology, Hoboken, NJ, USA, from 1995 to 1999.
He was with the University of Illinois at Chicago,
Chicago, IL, USA, in 1999, where he became a Full

Professor of electrical and computer engineering, and computer science, in
2006. He was selected for the “100 Talents Program” by the Chinese Academy
of Sciences, Beijing, China, in 2008. He has published 15 books (six research
monographs and nine edited volumes).

Prof. Liu was the recipient of the Faculty Early Career Development
Award from the National Science Foundation, in 1999, the University Scholar
Award from the University of Illinois at Chicago, from 2006 to 2009, and
the Overseas Outstanding Young Scholar Award from the National Natural
Science Foundation of China, in 2008. He is currently a Distinguished
Lecturer of the IEEE Computational Intelligence Society and also an
Editor-in-Chief of the IEEE TRANSACTIONS ON NEURAL NETWORKS AND

LEARNING SYSTEMS. He is the General Chair of the 2014 IEEE World
Congress on Computational Intelligence and the 2016 World Congress on
Intelligent Control and Automation. He is a fellow of the International Neural
Network Society.

Ding Wang received the B.S. degree in mathematics
from the Zhengzhou University of Light Industry,
Zhengzhou, China, the M.S. degree in opera-
tional research and cybernetics from Northeastern
University, Shenyang, China, and the Ph.D. degree
in control theory and control engineering from
the Institute of Automation, Chinese Academy of
Sciences, Beijing, China, in 2007, 2009, and 2012,
respectively.

He is currently an Assistant Professor with The
State Key Laboratory of Management and Control

for Complex Systems, Institute of Automation, Chinese Academy of Sciences.
His current research interests include adaptive dynamic programming, neural
networks and learning systems, and complex systems and intelligent control.



LIU et al.: NEURAL-NETWORK-BASED ONLINE HJB SOLUTION FOR OPTIMAL ROBUST GUARANTEED COST CONTROL 2847

Fei-Yue Wang (S’87–M’89–SM’94–F’03) received
the Ph.D. degree in computer and systems engineer-
ing from Rensselaer Polytechnic Institute, Troy, NY,
USA, in 1990.

He was with the University of Arizona, Tucson,
AZ, USA, in 1990, where he became a Professor
and a Director of the Robotics and Automation
Laboratory and the Program for Advanced Research
in Complex Systems. He is the Founder of the
Intelligent Control and Systems Engineering Center
with the Chinese Academy of Sciences (CAS),

Beijing, China, under the support of the Outstanding Overseas Chinese Talents
Program, in 1999. Since 2002, he has been the Director of the Key Laboratory
of Complex Systems and Intelligence Science with the CAS, and is currently
the Director of The State Key Laboratory of Management and Control for
Complex Systems. His current research interests include social computing,
web science, complex systems, and intelligent control.

Dr. Wang was the recipient of the National Prize in Natural Sciences of
China and was awarded the Outstanding Scientist by ACM for his work
in intelligent control and social computing. He was an Editor-in-Chief of
the International Journal of Intelligent Control and Systems and the World
Scientific Series in Intelligent Control and Intelligent Automation, from
1995 to 2000. He is currently an Editor-in-Chief of the IEEE TRANSACTIONS

ON INTELLIGENT TRANSPORTATION SYSTEMS. He has served as Chair for
over 20 IEEE, ACM, Institute for Operations Research and the Management
Sciences, and American Society of Mechanical Engineers (ASME) confer-
ences. He was the President of the IEEE Intelligent Transportation Systems
Society, from 2005 to 2007, the Chinese Association for Science and
Technology, New York, NY, USA, in 2005, and the U.S. Zhu Kezhen
Education Foundation from 2007 to 2008. He is currently the Vice President
of the ACM China Council and Vice President/Secretary-General of Chinese
Association of Automation. He is the member of Sigma Xi and an Elected
Fellow of the International Council on Systems Engineering, International
Federation of Automatic Control, ASME, and American Association for the
Advancement of Science.

Hongliang Li (S’13) received the B.S. degree
in mechanical engineering and automation
from the Beijing University of Posts and
Telecommunications, Beijing, China, in 2010. He is
currently pursuing the Ph.D. degree from The State
Key Laboratory of Management and Control for
Complex Systems, Institute of Automation, Chinese
Academy of Sciences, Beijing.

He is currently with the University of Chinese
Academy of Sciences. His current research interests
include machine learning, reinforcement learning,

neural networks, intelligent control, and smart grid.

Xiong Yang received the B.S. degree in mathe-
matics and applied mathematics from Central China
Normal University, Wuhan, China, the M.S. degree
in pure mathematics from Shandong University,
Jinan, China, and the Ph.D. degree in control the-
ory and control engineering from the Institute of
Automation, Chinese Academy of Sciences, Beijing,
China, in 2008, 2011, and 2014, respectively.

He is currently an Assistant Professor with
the Institute of Automation, Chinese Academy of
Sciences. His current research interests include adap-

tive dynamic programming, reinforcement learning, adaptive control, and
neural networks.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




