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Rear-View Vehicle Detection and Tracking by
Combining Multiple Parts for Complex
Urban Surveillance

Bin Tian, Ye Li, Bo Li, and Ding Wen, Senior Member, IEEE

Abstract—Traffic surveillance is an important topic in intelli-
gent transportation systems. Robust vehicle detection and tracking
is one challenging problem for complex urban traffic surveillance.
This paper proposes a rear-view vehicle detection and tracking
method based on multiple vehicle salient parts using a stationary
camera. We show that spatial modeling of these vehicle parts is
crucial for overall performance. First, the vehicle is treated as an
object composed of multiple salient parts, including the license
plate and rear lamps. These parts are localized using their distinc-
tive color, texture, and region feature. Furthermore, the detected
parts are treated as graph nodes to construct a probabilistic graph
using a Markov random field model. After that, the marginal
posterior of each part is inferred using loopy belief propagation
to get final vehicle detection. Finally, the vehicles’ trajectories are
estimated using a Kalman filter, and a tracking-based detection
technique is realized. Experiments in practical urban scenarios
are carried out under various weather conditions. It can be shown
that our method adapts to partial occlusion and various lighting
conditions. Experiments also show that our method can achieve
real-time performance.

Index Terms—Kalman filter (KF), Markov random field (MRF),
part-based object detection, tracking, vehicle detection.

I. INTRODUCTION

ITH rapid development of urbanization, traffic conges-

tion, incident, and violation pose great challenges for
traffic management systems. Vision, as an information col-
lection access of real-world environments, has attracted much
attention in intelligent transportation systems (ITSs). Computer
vision techniques are mainly used to collect traffic parameters
and analyze traffic behaviors for traffic surveillance. In [1], an
overview of the background, concepts, basic methods, major
issues, and current applications of parallel transportation man-
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agement systems (PTMSs) was proposed. Video processing
results can provide various information derived from the actual
traffic world for PTMSs.

Reliable and robust vehicle detection is a fundamental
component for traffic surveillance. There are still some issues
for vehicle detection in ITSs. Various vehicle appearances and
poses make it difficult to train a unified detection model. Com-
plex urban environments, bad weather, illumination changes,
and poor/strong lighting conditions will degrade the detection
performance dramatically. In particular, for traffic congestion,
vehicles are occluded by each other so that separate vehicles
will easily merge into a single vehicle. The parameter learning
for the vehicle detection is also a critical issue. A detection
method with complex parameters is usually not practical. The
advances of machine learning techniques can be used to learn
the parameters. In [2], a weakly supervised approach for object
detection was proposed. This method does not need manual col-
lection and labeling of training samples. A boosting algorithm
was extended to train samples with probabilistic labels.

In this paper, we aim to develop a vehicle detection and
tracking system particularly for urban traffic surveillance under
various environments in China. The system utilizes a rear-view
stationary camera to capture the image sequence. In practi-
cal traffic scenarios, occlusion between vehicles often occurs;
therefore, it is unreasonable to treat the vehicle as a whole.
Much research has detected the object by detecting its parts first
and measuring their spatial relationships; this is called a part-
based model. In our system, we treat the vehicle as an object
composed of multiple parts. Unlike other vehicle detection
methods, we choose salient vehicle parts, including the license
plate and rear lamps, which usually exist on each vehicle. Then,
we combine these parts into a vehicle by using a Markov ran-
dom field (MRF) to model their spatial relationships. We further
track the detected vehicles by employing a Kalman filter (KF)
to obtain vehicle trajectories. A detection-by-tracking strategy
is realized to improve vehicle detection performance. The main
contributions of this paper lie in the following. First, novel
methods are proposed to localize vehicle parts. We localize the
Chinese license plate and the rear lamp using their distinctive
color, texture, and region features. Second, we propose a part-
based vehicle detection model using the MRF. Detected vehicle
parts are combined into a vehicle using an MRF model in which
parts are treated as graph nodes. Our method can adapt to partial
occlusion and various lighting conditions. The details of the
system will be discussed in later sections.
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The remainder of this paper is organized as follows. In
Section II, we provide an overview of the latest research related
to vehicle detection and tracking. Section III presents how
to localize vehicle parts and combine them into a vehicle.
Section IV describes the vehicle tracking process and a
detection-by-tracking strategy. Section V provides extensive
and detailed experiments to analyze the system performance.
Section VI concludes this paper and discusses future work.

II. RELATED WORKS

In good and stable lighting conditions, moving object detec-
tion methods are widely used for vehicle detection in ITSs.
These methods can be classified into background modeling,
frame differencing, and optical flow [3], [4]. They can handle
illumination change and apply to multimode and slight back-
ground change. However, there are some drawbacks in that
they are unable to detect a stationary vehicle and the detected
moving object is not necessarily a vehicle. Therefore, much
research utilizes the visual features of the vehicle to detect it
in a still image [5], [6]. Features such as Gabor, color, edge,
and corner are usually used to represent the vehicle. Then, they
are fed into a deterministic classifier and a generative model to
identify vehicles. In addition, researchers usually employ a two-
step method, including hypothesis generation and hypothesis
verification [7], to locate the vehicle. This method works well
during the sunny daytime but may fail during poor lighting
conditions such as nighttime.

Many recent studies on part-based models have been de-
veloped to recognize vehicles. According to a human cog-
nitive study [8], a vehicle is considered to be composed of
a window, a roof, wheels, and other parts. These parts are
usually learned and detected by using their appearance, edge,
and shape features [9], [10]. After part detection, the spatial
relationship, motion cues, and multiple models are usually used
to detect vehicles. Winn er al. [11] decomposed an object
into several local regions to detect them. The relationships
between them were used to improve detection performance by
a layout conditional random field model. Hoiem et al. [12]
further expanded this method by using 3-D models to mark the
learning samples. In addition, vehicle parts can be selected and
learned automatically in a deformable part-based model [13].
Niknejad et al. [14] employed this model composed of five
components, including the front, back, side, front truncated,
and back truncated. Each component contained a root filter
and six part filters, which were learned using a latent support
vector machine and a histogram of oriented gradients features.
To use the part-based model in parameter transfer learning,
Xu and Sun [15] proposed a basic learning framework named
part-based transfer learning (PBTL). All the complex tasks
are regarded as a collection of constituent parts, and each
task can be divided into several parts, respectively. Transfer
learning between two complex tasks can be accomplished by
subtransfer learning tasks between their parts. To avoid negative
transfer and improve the effectiveness of transfer learning,
Sun et al. [16] extended PBTL into an effective learning
framework named multisource PBTL. By this, it is possible to
focus on the parts that contribute more to the target task. The

inference method is critical for a probabilistic graph model. In
[17], Sun gave a comprehensive introduction of loopy belief
propagation (LBP). The pros and cons of LBP were listed, and
the improved methods were analyzed in detail with a sufficient
survey of the literatures.

Vehicle detection at nighttime is a dramatic challenge for
traffic surveillance. Generally, vehicle headlights and taillights
are used to represent the vehicle [18]. Robert [18] detected
bright blobs as candidate headlights. To filter out false detec-
tion, they assumed that two headlights were aligned horizon-
tally. Inspired by [18], Wang et al. [19] proposed a two-layer
nighttime detection method. In the first layer, the headlight
detection process was the same as in [18]. In the second layer,
Haar features based on the AdaBoost cascade method were
employed to recognize vehicle frontal views. Zhang et al. [20]
modeled the reflection intensity map, the reflection suppressed
map, and image intensity into an MRF model to distinguish
light pixels from reflection pixels. For taillight detection, its
color information is mostly utilized. O’Malley et al. [21]
proposed a system to detect and track vehicle taillight pairs.
Taillight candidates were extracted with a hue—saturation—value
(HSV) color threshold and paired by their symmetry features.
To detect nighttime brake lights, Chen et al. [22] modeled
taillights using the Nakagami distribution.

Vehicle tracking is used to obtain trajectories of moving
vehicles, enabling higher level tasks such as traffic incident
detection and behavior understanding. A detailed survey about
object tracking is shown in [23]. Vehicle tracking can be classi-
fied into four categories: model-based tracking, region-based
tracking, deformable template-based tracking, and feature-
based tracking. Various filtering algorithms are used in tracking
tasks, such as the Bayesian filter, the KF, and the particle filter
[14], [18]. Object tracking based on the mean-shift algorithm
is an appearance-based tracking method and performs well in
tracking moving objects even in dense traffic [24]. However,
this method needs manual initialization of a target model. In
[25], kinematic variables including position, speed, and size of
the vehicle were estimated with a projective KF to initialize the
mean-shift tracker.

Different from the aforementioned methods, we treat the ve-
hicle as an object composed of multiple salient parts, including
the license plate and rear lamps. With the advance of the MRF
model, the visual features and structure of the parts are modeled
into probability distributions. Hence, the method proposed in
this paper can adapt to partial occlusions and various lighting
conditions.

III. PART-BASED VEHICLE DETECTION
A. Outline of Vehicle Detection

For practical urban traffic surveillance, reliable and robust
vehicle detection is a fundamental component. Occlusions be-
tween vehicles occurs frequently so that it is unreasonable to
treat the vehicle as a whole. In this paper, we treat the vehicle
as an object composed of multiple salient parts, including the li-
cense plate and rear lamps, which usually exist on each vehicle.
These parts are localized using their distinctive color, texture,
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Fig. 1. Flowchart depicting the vehicle detection pipeline.

and region features. Then, an MRF model is constructed to
model the spatial relationships among these parts to infer and
localize the vehicle. Even if some parts are occluded, vehicles
can be correctly detected. Meanwhile, our method can cope
with several weather and lighting conditions. An illustration of
the vehicle detection pipeline is shown in Fig. 1.

B. License Plate Localization

License plate localization is a critical technology in ITS
applications for traffic management and analysis. In this
section, we localize the Chinese license plates with a coarse-
to-fine strategy. It has its unique texture features that are dis-
tinguished from the other vehicle parts. The Chinese license
plates include a blue background/white character plate, a yellow
background/black character plate, a white background/black-
and-red character plate, and a black background and white
character plate.

Our license plate localization process is shown in Fig. 1.
Here, we take a white—blue pair as an example. This type of
plate is the most common in China. To get the width of the plate
for each image coordinate, we utilized the calibration toolbox
in the OpenCYV library for traffic scene calibration.

1) Deriving Plate Color Converting Model: We mainly uti-
lized the color difference between plate characters and plate
background. The vast majority of plate characters are white
or black, whose values are not certain in HSV space. Con-
sequently, we chose the red—green-blue (RGB) color space.
A database of 50 license plate images were created for the
blue—white pair. The color distributions of plate pixels are
shown in Fig. 2. As observed, the plate background and plate
characters have some unique characteristics. For the plate back-
ground pixel, its value of the blue channel is far greater than
those of the other two channels. Moreover, the values of the
green and red channels are both relatively small. For the plate
character pixel, the values of all three channels are relatively
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Fig. 2. RGB scatter plot of pixels from a database of license plate images for
a blue background/white character plate.

(©

Fig. 3. Example of the license plate location process. (a) Input image.
(b) Converted license plate color image. (c) Score image obtained by gradient
statistics. (d) License plate localization results.

large. The characteristics were analyzed to find the appropriate
color conversion for the plate.

According to these observations, we converted the image into
a specific color space as in

Cy,y = Bg,y —min{R; ,, Gy 4} (1

where C, , is the converted color of pixel (z, ¥), and R, ,,
Gy, y» Bs,y are the red, green, and blue channel values. The
converted color image is shown in Fig. 3(b), which is also
called the plate color image. The conversion can enhance
the difference between the plate background and characters.
Furthermore, it suppresses the values of the nonplate pixels.
Comparing with a grayscale image, the gradient of the plate
region is significantly enhanced, whereas the gradient of the
other regions is suppressed. For the yellow—black pair, a similar
process was taken to obtain the corresponding plate color
image. For the white—black pair and black—white pair, we did
not perform color conversion and use the grayscale image
immediately.

2) Plate Hypothesis Score Calculation: After color conver-
sion, the image gradient was calculated for the plate color
image. We calculated the image gradient by computing the
difference between the maximum and minimum of the neigh-
boring pixels, as calculated in

Grad, , = max{Nb, ,} — min{Nb, ,} (2)
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where Grad, , is the gradient of the pixel (z y) and Nb,, ,, is
the neighboring pixels. Then, we scanned the gradient image
with a sliding window to compute the average gradient. Using
the previous calibration result, we could get the plate size and
scan with a plate-size window, as in

z+pw/2 y+ph/2

> > Grady . /(pwph)  (3)

r'=x—pw/2 y'=y—ph/2

Smyy =

where S, , is the plate score at pixel (x, y). pw and ph
are the plate width and height, respectively. Considering the
processing speed, we scanned the gradient sparsely. As a result,
we obtained a score image, as shown in Fig. 3(c).

Finally, we used a nonmaxima suppression (NMS) [26]
strategy to seek local maximums in the score image. If a
local maximum is greater than a predefined threshold «, it is
recognized as a candidate plate region.

3) Cascade Plate Refining: Except for the plate regions,
there may be some plate-like regions on the vehicle. They have
strong gradient and meet the color feature, which may lead to
false detection. As we observed, the gradient of a plate region
is not only strong but also evenly distributed. Consequently, we
further used the consistency of textures on the gradient image
to improve algorithm efficiency. We chose texture consistency
for texture measurement as computed in

U= ZPQ(Z” (4)

where U is the consistency of an image region. L indicates the
possible gray levels. p(z) is the histogram of the gray level
in an image region. The consistency of the real plate region
is relatively consistent (0.7 in this paper). We scanned the
candidate plate regions to obtain refined localization results, as
shown in Fig. 3(d).

C. Vehicle Rear-Lamp Localization

A vehicle rear lamp is an obvious feature of the vehicle.
According to the Chinese national standard, the color of the
vehicle rear lamp is red and falls within a specified range.
We adopted the multithreshold segmentation and connected
component analysis to extract as many candidate rear lamps
as possible. In this section, we focus on candidate rear-lamp
localization without pairing them. The localization process is
shown in Fig. 1.

1) Deriving the Color Converting Model: Similar to license
plate localization, we operated rear-lamp localization under the
RGB color space. As observed, a rear-lamp pixel satisfies some
unique properties. The value of the red channel is large. The
values of the green and blue channels are small. The differences
between the values of the green and blue channels are small.
The characteristics were analyzed to find the appropriate color
conversion for the rear lamp. The conversion can suppress the
values of the nonrear-lamp pixels.

(@ (b) (©)
(@ (e) ®

Fig. 4. Example of the rear-lamp localization process. (a) Input image.
(b) Converted rear-lamp color image. (c)—(e) Binary images obtained by three
thresholds (o1 = 20, o2 = 40, o3 = 80). (f) Rear-lamp localization results.

The RGB image was converted into a color grayscale image,
which is called the rear-lamp color image, as calculated in

Co,y=Ry y—max{Gy y, By y} —2% |Gy, y—Ba || ()

where C, , is the converted color of pixel (z, y), whereas R, ,,
Gy, y, B,y are the red, green, and blue channel values. The
converted rear-lamp color image is shown in Fig. 4(b).

2) Rear-Lamp Candidate Generation by Multithreshold
Segmentation: Motivated by the maximally stable extremal
region detector [27], we adopted a multithreshold segmentation
method to segment the rear-lamp color image. To adapt to
relatively dark and bright lamps, we used three thresholds to
execute binarization. Three binary images were obtained, as
shown in Fig. 4(c)—(e).

Finally, a connected component analysis was used to extract
candidate rear lamps on the binary images as follows.

Step 1) Get the connected regions by multithreshold seg-

mentation: Q1, Q2, Q3 (Q; C Qi11).
Step 2) Select the rear-lamp regions with appropriate areas
in the threshold ascending order, i.e., Area(Q;) €
(1,72

Step 3) Clear the remaining regions Q. (k < ¢) and analyze
the next connected region to Step 1.

An NMS strategy was used to remove overlaid rear lamps.
The final localization results are shown in Fig. 4(f).

D. Vehicle Detection Using MRF

Earlier, we localized the vehicle parts, including the license
plate and rear lamps. Then, it became a challenge how to
efficiently combine these parts into a vehicle. In this section,
to make better use of the relationships among vehicle parts, we
adopted an MRF model to localize the vehicle.

1) Probability Model Representation: At first, we con-
structed an MRF graph model and defined its model parameters.
Vehicle parts were treated as the graph nodes, and the rela-
tionships among them were the graph edges. First, we selected
one detected license plate as a graph node in the current frame.
Then, neighboring vehicle rear lamps were added into the graph
if they were close enough to the license plate. In Section IV-C,
we will mention that tracking results are used to improve the
detection results by adding predictions of vehicle location into
the graph.
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(b)

Fig. 5.

© ' @

MREF graph construction and inference process. (a) Treat vehicle parts with green rectangles as inputs. (b) Construct MRF graphs. Red points and lines

denote nodes and links in MREF, respectively. (c) Infer these on the graphs. (d) Vehicle detection results. Detected vehicles are labeled with green rectangles.

Graph G = {V, E} was constructed with one license plate
and multiple rear-lamp candidates, where V ={vy, va,...,v,}
are nodes denoting vehicle parts and E = {ey, €a,..., e}
are edges denoting relationships among neighboring nodes.
G is a complete graph and each pair of nodes is connected by
an edge. Each node in G corresponds to a random variable F;.
Order f = {f1, fa,..., fn}isaconfiguration of F. f; belongs
to @ = {1, 2, 3, 0}. In our MRF graph, there are four types
of nodes:

e ¢ = 1, license plate node;

e q = 2, left rear-lamp node;

e ¢ = 3, right rear-lamp node;

e ¢ = 0, false detection node.

Our MRF model is a pairwise model with the distribution in

P) = [Tetid=5 TTetr) II 60 f) ©

ceC eV (i,j)eE

node potential edge potential

z2=> 1lets II o 1) ™)

F i€V (i,5)€E

where Z is a partition function. ¢(f;) is the node potential,
representing detection confidence of each node. ¢(f;, f;) is
the edge potential, representing the relationship between each
pair of nodes. The model is shown in Fig. 5(b). Then, we will
determine the node potentials and edge potentials.

a) Node potentials: The node potential ¢(f; = p) indi-
cates the probability of node 7 to be part p without considering
other nodes. It depends on the scores of part detectors S;. To
integrate the discriminative detectors into the MRF model, it
is necessary to give a probabilistic meaning to the outputs. We
introduce the sigmoid function to normalize the scores of the
vehicle parts. The final node potential is

1 ..
W, Node 7 is detected as p
— ) — 1 —
o(fi=p)= I—W, p=0
A, otherwise.

®)

The probability of the node to be false detection is obtained by
computing the complementary probability of the detection. If
node ¢ is not detected as ¢, its probability is set to be a small
constant A (1072 in this paper).

The parameters A, and B, for each part were learned by the
sigmoid fitting method introduced in [28]. For the rear lamps,
there are no discriminative features, except their color. There-
fore, its detection score was set to be a constant 0.8 by careful

LR; RR,

d(LR;,RR;) O(LR;,RR;)
(]

d(LB,LR))
d,(LE.LR))

d.(LP,LR;) B(LP:LR,)

LP,

Fig. 6. Spatial relationship among vehicle parts.

selection and cross validation. The corresponding sigmoid pa-
rameters were set to be A, = —1 and B, = 0.

b) Edge potentials: The edge potential ¢(f;=p, f;=¢q)
evaluates the compatibility between the neighboring nodes. It
represents the relationship between the node pairs connected
by an edge. A vehicle model is defined to model the edge
potentials, as shown in Fig. 6. In the model, there are two main
spatial relationships between vehicle parts, i.e., the relationship
between the plate and a rear lamp, and the other one between
both rear lamps as follows:

1) The distance between vehicle parts, i.e., d(LP;, LR;) and
d(LR;, RRy);
2) Theangle between vehicle parts, i.e., tan ™! (d, (LP;, LR;)/
dy(LP;,LR;))and tan ! (d,(LR;,RRy)/d, (LR;,RRg)).
Since the poses of vehicles on the road vary greatly, we
chose the Gaussian to model the spatial relationship between
parts. In addition, since a variety of types of vehicles ex-
ists, the relationships between nodes might be multimodal.
Based on the two considerations, the Gaussian mixture model
(GMM) was selected to model the part relationships. The edge
potential is

o(fi=nfi=q

M

kZ agpr(v|0), (p# 0and g # 0)

=1
and p # q

NV i(1- S o), e=oog—0

2 = kPE\T|0k B p=vorq=
andp # ¢

A, p=q.

The relationships between the part nodes are represented by the
GMM. Because the left and right rear lamps are horizontally
symmetrical on both sides of the license plate, we learned the
relationship model of the plate and the left rear lamp and ob-
tained that of the plate and the right rear lamp by symmetry. The
relationship between the false detection node and the part node
(p = 0 or ¢ = 0) is difficult to be represented by a probability
distribution; hence, they are modeled using the complementary
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Fig. 7. Part relationships modeled by GMMs. The left column provides
the statistical histograms of the part relationships including distance and
angle. The right column shows the learned models of the part relationships.
(a) Relationship between the plate and the rear lamp. (b) Relationship between
the both rear-lamps.

probabilities of part relationships. In this paper, the probability
of the pairwise part relationship is Zﬁil apr(x]0k), and the
complementary probability of the node pair with a false detec-
tion node is supposed to be (1/2)(1 — S0, cpr(]6%)). For
the case where two nodes share the same labels (p = ¢), the
probability takes a small constant \ (10~ in this paper).

For the parameter learning process, we used the expectation—
maximization (EM) algorithm to estimate the parameters of the
GMM using the maximum-likelihood estimation. The weights
ag, mean, and covariance 6;, for each Gaussian component
were the parameters for the GMM. The vehicle parts were
carefully labeled artificially. As shown in Fig. 7, the relation-
ship between the plate and the rear lamp is modeled to be a
GMM with two components. The relationship between both
rear lamps is modeled to be one Gaussian component.

2) Inference: Node potentials ¢(f;) of variables and edge
potentials ¢(f;, f;) between the graph nodes determine the
probabilistic assumptions of the MRF model. Here, we perform
probabilistic inference to estimate each f; € F, to satisty the
maximum a posteriori (MAP) in

Q" = arg max P(F)

= arg max Hcp(f@) H o(fis f7)-

i€V (i,5)€E

(10)

Pearl et al. [29] proposed belief propagation inference, which
is a probabilistic inference method. For the acyclic graph, it can
provide the exact solution. For a loopy graph, it can provide an
approximate solution, which is called LBP. Here, we initialize
all messages m;;(f;) to 1. After certain updating steps, all of
the messages tend to converge. Then, the marginal probability
of each variable, which is called beliefs, are read out. Beliefs are
normalized so that they approximate the marginal probability.

(@) (b)

Fig. 8. Example of a detection result improved by tracking. (a) License
plate with the dashed rectangle is lost localized. The rear lamps are localized
correctly with red rectangles. (b) Vehicle parts are correctly inferred using the
prediction of the tracker as a graph node.

After vehicle inference, optimal labels are assigned for all of
the MRF nodes, as shown in Fig. 5(c). The vehicle detection
results are shown in Fig. 5(d). During the vehicle detection
process, if more than two parts are correctly inferred, we
recognize it as a vehicle. In case some parts are not detected
or are wrongly detected, our method can still localize them,
as in Fig. 9.

IV. VEHICLE TRACKING

Vehicle detection has been described in the earlier sections.
In this section, detected vehicles are tracked to obtain vehicle
trajectories. A simple detection-by-tracking strategy was used
to improve vehicle detection accuracy.

A. Outline of the Tracking Process

Vehicle tracking is used to predict vehicle positions in sub-
sequent frames, match vehicles between adjacent frames, and
ultimately obtain the trajectory of the vehicle. In our system,
we used the KF to track vehicles. In statistics, the KF [30] is
a minimum variance estimation of linear movement. Each KF
corresponds to a tracked object, which is called a tracker. It
estimates the true values of observations with noise.

B. KF

In our system, we treated the center of the vehicle license
plate and the speed of the vehicle as the state vector, which is
shown as

€T = [pl’v Py, Sz, Sy]t

where p, and p, are x and y coordinates of the vehicle,
respectively. s, and s, are the speeds of the z-axis and y-axis
directions. KF is a recursive estimation method and can be split
into two steps, i.e., prediction and update.

1) Prediction: In the prediction step, we predicted state vec-
tor x and state error covariance matrix P at the current time k,
as in

T =Fri

P, =FP,_1F'+Q (11)
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Fig. 9. Vehicle detection results for different scenarios. For each scenario, the left side is the vehicle part detection result, and the right side is the vehicle
detection result. The license plates are marked with yellow rectangles. The rear lamps are labeled with red rectangles. Green boxes are bounding boxes of the
detected vehicles. (a) Sunny daytime. (b) Rainy daytime. (c) Cloudy. (d) Dusk. (¢) Nighttime. (f) Rainy nighttime.

where xj_ is the state of previous time k& — 1; F' is the state
t£ansition matrix; 7, is the state of current time; P,_; and
Py are error covariance matrices of the previous time k — 1
and current time k, respectively; and () is the process noise
covariance matrix.

2) Update: We selected the closest vehicle around the pre-
diction location. If the distance between them was below the
threshold, it was considered the observation y;. If an obser-
vation was unavailable, the update step would be skipped,
and multiple prediction steps were performed. To perform the
update, the Kalman gain K, is computed in

Ky, = P,H'(HP H' + R)™* (12)
where H is the measurement matrix and R is the measurement
noise covariance matrix. Then, we updated the state vector and
the error covariance matrix

T =2k + Kk(yk - Hik)

P, =(I — K H)P,. (13)

After vehicle tracking, the vehicles corresponded between
adjacent frames and vehicle trajectories were estimated, as
shown in Fig. 12.

C. Improved Detection by Tracking

The camera view is for rear-facing vehicles. When the vehi-
cle enters the camera field of view, the vehicle parts can be seen
without any occlusion. With the vehicle moving forward, the
camera perspective is lower, which may cause severe occlusion
of the license plate. Coupled with lower resolution in the
distance, the plate is easily lost. However, the rear lamps are
usually localized. We wish to detect the vehicle robustly in
this case.

We added the prediction of the tracker into the MRF graph as
a license plate node. In case that the plate was not localized, as
shown in Fig. 8(a), the MRF model was constructed using the
predictions and rear lamps. The vehicle parts are then correctly
inferred, as in Fig. 8(b). Finally, according to the node marginal
probabilities, we used the NMS method to eliminate repeated

inferences. In addition, in poor lighting conditions, the license
plate is difficult to see, particularly due to the limited scope
of the supplemental lighting equipment at night. On the other
hand, rear lamps are a more prominent vehicle feature. This
technique performs more effectively at night.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. Data

To test and evaluate our method, we applied it to the urban
traffic road for vehicle detection and tracking. We selected a
busy traffic intersection in China as the actual testing environ-
ment. The intersection included four lanes and one crosswalk.
We collected image sequences using a high-resolution charge-
coupled device camera.

We selected six scenarios including sunny daytime, rainy
daytime, cloudy, dusk, nighttime, and rainy nighttime, as shown
in Fig. 9. Each data set is a continuous video recording. The
frame rate is 8.3 frames/s, except for the nighttime data set,
which is 11.1 frames/s. For each data set, there were sedan
vehicles, sports utility vehicles (SUVs), and buses, and we
labeled them with ground-truth rectangles manually. In each
environment, vehicles were occluded at different levels, and
their pose transformations ranged from about —45° to 45°.
Traffic congestion was divided into three levels: heavy traffic
corresponding to frequent vehicle occlusion; moderate traffic,
which means usual vehicle adhesion; and slight traffic with no
vehicle occlusion. In particular, in the night condition, stro-
boscopic supplemental lighting equipment was used. Detailed
information for all data sets is listed in Table I.

B. Performance

Recall and precision of our method were evaluated for both
the vehicle and its parts detection performance, as shown in
Table II. The performance of the part detection is highly related
to that of the vehicle detection. We tried to ensure high recall
rates of the vehicle parts since they determine the upper limits
of the vehicle detection rate. As in Table II, the average recall
rate of the license plate is higher than 98%, and the recall



604 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 15, NO. 2, APRIL 2014

TABLE 1
TEST DATA SET DESCRIPTION

TABLE 1I
SYSTEM PERFORMANCE

Scenarios Resolution  Frames Vehicles Congestion Datasets Vehicle Part Detection. - Deacking
Pass  Total Recall  Precision MT
Sunny daytime 2592*1936 500 48 1777  Heavy License Plate  95.0% 85.7%
Rainy daytime 2592*1936 330 24 595  Moderate Sunny daytime Rear-lamp 91.4% 73.5% 89.6%
Cloudy 2592*%1936 500 18 2265 Heavy Vehicle 94.3% 96.5%
Dusk 2592%1936 500 44 1844  Heavy License Plate  99.8% 82.3%
Nighttime 1920%1072 257 17 312 Moderate Rainy daytime ~ Rear-lamp 90.2% 76.6% 91.7%
Rainy nighttime ~ 2592%1936 417 10 550  Slight Vehicle 93.8% 95.2%
License Plate  99.1% 84.7%
Cloudy Rear-lamp 88.3% 75.8% 94.4%
Vehicle 97.9% 90.9%
License Plate  98.8% 78.2%
Dusk Rear-lamp 87.8% 74.5% 90.9%
Vehicle 94.5% 97.5%
License Plate  98.0% 92.0%
Nighttime Rear-lamp 91.8% 90.9% 88.2%
Vehicle 95.2% 90.5%
License Plate  99.3% 97.7%
Rainy nighttime  Rear-lamp 90.3% 88.7% 90.0%
Vehicle 95.8% 85.7%

(f) Poor Lighting

(d) Different Types

(e) Different Poses

Fig. 10. Vehicle detection results in some challenging cases. Green boxes
are bounding boxes of the detected vehicles. (a) Occlusion by a pedestrian.
(b) Occlusion by a bus. (c) Cluttered background with several pedestrians and
bicyclists. (d) Different vehicle types including sedan vehicles, vans, and SUVs.
(e) Different vehicle poses. (f) Poor lighting condition during nighttime.

rate of the rear lamp is higher than 89%. The final detection
performance of the vehicle is highly superior to those of the
parts. Our method achieved an average vehicle recall rate of
95% with an average precision rate of 92% for all the scenarios.

Fig. 9 shows some detection results of the vehicle and its
parts in various scenarios. For each scenario, the left side
is the part detection result, and the right side is the vehicle
detection result. The detected plates are indicated by yellow
rectangles, and rear lamps are indicated by red rectangles. Most
of the vehicle parts were detected. A few false positives of the
rear lamps were caused by red cars in Fig. 9(c) and vehicle
reflection on a rainy day and nighttime in Fig. 9(b), (e), and (f).
However, they did not affect the final vehicle detection because
we also utilized the license plate part in the MRF model. The
detected vehicles are indicated by green rectangles. As shown
in Fig. 9(a)—(f), the proposed method could detect vehicles in
various weather and lighting conditions. Even in some chal-
lenging situations, the method can robustly detect vehicles, as
shown in Fig. 10. The main challenges included occlusion,
background clutter, different vehicle types, different vehicle
poses, and poor lighting. Since our vehicle detection method is
based on detection of multiple salient parts and the probability
model, it can deal with the challenging cases.

The receiver operating characteristic (ROC) curve of vehicle
detection is drawn by adjusting the scoring thresholds in the
license plate localization. We tested all data sets in different
scenarios to get the summary ROC curve. As shown in Fig. 11,
the true positive (TP) rate of vehicle detection increased with

ROC curve for vehicle detection

[—=—ROC for all scenarios

0.95

Q
©

0.85}

e
®

True Positive Rate

0.75¢

0.7}

0.65

0 0.05 0.1 0.15 0.2
False Positive Rate

0.25 0.3

Fig. 11.  ROC curve for vehicle detection.

the false positive (FP) rate at the beginning. When the FP rate
of the plate increased, vehicle detection was degraded because
of using incorrectly detected plates. Therefore, the TP rate
decreased when the FP rate exceeded a certain limit. With the
ROC curve, we can choose a relatively good scoring threshold
for all scenarios.

We evaluated the tracking performance using the indicator
of mostly tracked trajectories (MT). If more than 80% of a
ground-truth trajectory is correctly tracked, it is called an MT.
The tracking results are listed in Table II. It is shown that our
tracking method achieved an average tracking rate of 90%.
Tracking results are better during nighttime in slight traffic
congestion than those during sunny daytime for heavy traffic.
Fig. 12 shows the tracking results of an intersection during
sunny daytime. The proposed method could robustly detect
preceding vehicles that change its direction. It can robustly
track the vehicle even with pedestrian occlusion, as shown by
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Fig. 12. Tracking example during sunny daytime. The vehicles are marked
with green rectangles. Each vehicle is assigned with a yellow number.
The trajectories are drawn with yellow lines. (a) Frame 299. (b) Frame 307.
(c) Frame 315.

TABLE 1II
CRITICAL PARAMETERS OF THE ALGORITHM

Parameter Selection
Empirical Value, [10, 60]
Depending on Traffic

Parameters
Score Threshold «
Area Threshold

Processes

License Plate

Rear-lamp

~1 and 2 Scenes, [10 * 10, 150 * 150]

i id P Maxi Likelih

Node Potential Sigmoid Parameters, a'mml‘lm ikelihood

Ap and By, Estimation

GMM P ters, . N
Edge Potential arameters Expectation Maximization

af and 9k

TABLE IV

AVERAGE RUN TIME PER FRAME BY PROCESS

Processes Sub-processes Run-time
Color Conversion 5 ms
License Plate Image Gradient Computation 17 ms
Localization Plate Score Calculation 37 ms
Refinement with Consistency 3 ms
Color Conversion 3 ms
Rear-lamp Localization ~ Multi-threshold Segmentation 13 ms
Connected Component Analysis 9 ms
Vehicle Inference - 5 ms
Vehicle Tracking - 3 ms
Total Run-time - 95 ms

the vehicle labeled as number 16. As discussed in Section IV,
we introduced the vehicle predictions of the previous frame
for vehicle detection. Therefore, the distant vehicles can be
correctly tracked even if their plates are not detected.

The learning of critical parameters for the vehicle detection
algorithm is an important issue in practice. Here, we list the
critical parameters of the algorithm and their learning methods,
as shown in Table III.

C. Computational Cost

Our algorithm was mainly implemented with C++ and
OpenCV libraries. The platform was configured with a 2.5-GHz
Intel Core i5 3210M processor and a 4-GB memory device.
To evaluate the running time of our algorithm, we divided it
into the following steps: 1) license plate localization; 2) rear-
lamp localization; 3) vehicle inference; and 4) vehicle tracking.
Detailed computation time of each step is listed in Table IV.
Our algorithm only processed the region of interest (ROI),
which was about two million pixels. The running time per

(b)

Fig. 13. Failure of detection cases. (a) and (b) Two false negative examples.
(c) False positive example.

frame was no more than 100 ms, and this satisfied real-time
performance on this processing platform.

D. Detection Error Analysis

Some of the failure results of the proposed method are shown
in Fig. 13. False negatives tend to occur in the case of vehicle
parts missing detection. For example, the license plate of the
vehicle is blurred or there is no plate, as in Fig. 13(a). Rear
lamps may not be detected if they are repainted with other
colors, as in Fig. 13(b). These false negatives can be reduced
by only utilizing detected parts. However, this causes a tradeoff
by increasing false positives. An example of a false positive
is shown in Fig. 13(c). There are some plate-like and lamp-
like regions on the vehicle. False positives tend to occur on
long vehicles and repainted vehicles. They can be eliminated
by introducing more vehicle parts.

VI. CONCLUSION

In this paper, we have proposed a rear-view vehicle detection
and tracking method based on a high-resolution camera. First,
we localized the salient parts of the vehicle, including the
license plate and rear lamps. Then, we constructed an MRF
model by treating vehicle parts as graph nodes. LBP was used
to infer the MRF graph to obtain the vehicle locations. After
vehicle detection, we implemented vehicle tracking using KF.
We realized a detection-by-tracking technique in which the
prediction locations of KF were added into the MRF model
as graph nodes. We carried out experiments in practical urban
scenarios. Our method could adapt to partial occlusion and
various weather conditions. The experiments showed that the
proposed method could achieve real-time performance. This
method could provide good results even in complex scenarios
such as in a busy traffic intersection.

In the future, we will localize more salient parts, such as
the windshield and front cover, aiming to deal with more
severe occlusion and vehicle posture variation. The inference
process will also be improved for better inference performance
according to the comprehensive description in [17]. In addition,
the vehicle detection and tracking process can be integrated into
an embedded camera platform as a low-cost implementation.
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