
1474 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 13, NO. 3, SEPTEMBER 2012

A GPU-Based Parallel Genetic Algorithm
for Generating Daily Activity Plans

Kai Wang and Zhen Shen, Member, IEEE

Abstract—As computing technologies develop, there is a trend
in traffic simulation research in which the focus is moving from
macro- and meso-simulation to micro-simulation since micro-
simulation can provide more detailed quantitative results.
Moreover, the success of the Artificial societies-Computational
experiments-Parallel execution (ACP) approach indicates that
integrating other metropolitan systems such as logistic, infras-
tructure, legal and regulatory, and weather and environmental
systems to build an Artificial Transportation System (ATS) can be
helpful in solving Intelligent Transportation Systems (ITS) prob-
lems. However, the computational burden is very heavy as there
are many agents interacting in parallel in the ATS. Therefore, a
parallel computing tool is desirable. We think that we can employ
a Graphics Processing Unit (GPU), which has been applied in
many areas. In this paper, we use a GPU-adapted Parallel Genetic
Algorithm (PGA) to solve the problem of generating daily activity
plans for individual and household agents in the ATS, which is
important as the activity plans determine the traffic demand in
the ATS. Previous research has shown that GA is effective but that
the computational burden is heavy. We extend the work to GPU
and test our method on an NVIDIA Tesla C2050 GPU for two
scenarios of generating plans for 1000 individual agents and 1000
three-person household agents. Speedup factors of 23 and 32 are
obtained compared with implementations on a mainstream CPU.

Index Terms—Artificial societies–Computational experiments–
Parallel execution (ACP), artificial transportation system (ATS),
compute unified device architecture (CUDA), daily activity
plan, genetic algorithm (GA), graphics processing unit (GPU),
microsimulation.

Manuscript received February 27, 2012; revised June 8, 2012; accepted
June 13, 2012. Date of publication July 19, 2012; date of current version
August 28, 2012. This work was supported in part by the National Natural
Science Foundation of China under Grant 60921061, Grant 70890084, Grant
90920305, Grant 90924302, Grant 60904057, Grant 60974095, and Grant
31170670 and in part by the Chinese Academy of Sciences under Grant
2F09N05, Grant 2F09N06, Grant 2F10E08, Grant 2F12N02, Grant 2F11D03,
Grant 2F11E08, and Grant 2F10E10. The Associate Editor for this paper was
F.-Y. Wang.

K. Wang is with the Center for Military Computational Experiments and
Parallel Systems Technology, College of Mechatronics Engineering and Au-
tomation, National University of Defense Technology, Changsha 410073,
Hunan Province, China, and also with the State Key Laboratory of Management
and Control for Complex Systems, Beijing Engineering Research Center of
Intelligent Systems and Technology, Institute of Automation, Chinese Academy
of Sciences, Beijing 100190, China.

Z. Shen (Corresponding author) is with the State Key Laboratory of
Management and Control for Complex Systems, Beijing Engineering Re-
search Center of Intelligent Systems and Technology, Institute of Automation,
Chinese Academy of Sciences, Beijing 100190, China, and also with Dongguan
Research Institute of CASIA, Cloud Computing Center, Chinese Academy
of Sciences, Songshan Lake, Dongguan 523808, Guangdong Province, China
(e-mail: zhen.shen@ia.ac.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2012.2205147

I. INTRODUCTION

T RAFFIC simulation is important in intelligent transporta-
tion system (ITS) research [1]. As computing technologies

develop, the focus is changing from macro- and mesosimulation
to microsimulation. Among the microsimulation models, the
multiagent system is one of the most important in traffic system
modeling, analyzing, and forecasting [2]–[4]. In this model,
vehicles, bicycles, and pedestrians are modeled as agents that
are autonomous, collaborative, and reactive. The agents can
communicate, compete, and cooperate with each other, and
macroscopic traffic phenomena can be observed and analyzed
[5]. One main advantage of the model is that it can simulate the
impacts of traffic control and management methods of the ITS
on the agents’ daily travels in a quantitative way [6]. Moreover,
other metropolitan systems, such as logistic, infrastructure,
regulatory, and weather systems, can also be considered in
the microsimulation, which is the idea behind the artificial
transportation system (ATS) [1], [5]. Based on the ATS, the
ACP approach was proposed to model, analyze, and control the
transportation systems [1]. It consists of three steps: 1) model-
ing and representing using the ATS; 2) analyzing and evaluating
by Computational experiments; 3) controlling and managing
through Parallel execution of real and artificial systems. There
have been many successful applications of ACP in ITS [1], [4],
[5], [7]–[11].

Generating daily activity plans for the agents is an
elementary problem in the ATS as the plans determine the
traffic demands. In the real world, people tend to quickly and
easily make reasonable activity plans, which is not easy for
the computers. If there are ten activities, the number of choices
is a permutation of 10, which is 3 628 800, and the computer
has to judge which of them are reasonable. Recently, genetic
algorithm (GA) has been shown effective in solving this
problem, and previous research has tested it for an individual
[12] and a household agent [13], [14], respectively. However,
the computation burden is heavy when multiple agents’ plans
are simultaneously generated. In this paper, we employ a
graphics processing unit (GPU)-adapted parallel genetic
algorithm (PGA) to perform computational experiments to
generate activity plans in a parallel way.

II. LITERATURE REVIEW

A. Generating Daily Activity Plans and GA

When people make their daily activity plans, usually, they
first list all activities possibly to be done and then select
and order the activities according to location, starting time,

1524-9050/$31.00 © 2012 IEEE

WANG AND SHEN: GPU-BASED PGA FOR GENERATING DAILY ACTIVITY PLANS 1475

duration, as well as route and travel mode of the activities
and the influences of the subsystems in building an ATS. The
selections and assignments are all based on their knowledge on
whether a plan is “good” or not. People perform their activity
plans by travels, which form the traffic flow.

However, it is not an easy task for computers to generate the
plans as we need to make the computers understand which plans
are “good.” Usually, there are two main prerequisites for the
computers: the first one is to prepare activity lists of all possible
activities that the agents tend to do. The second one is to design
proper utility functions to evaluate the activity plans. Based on
the two prerequisites, different algorithms can be employed to
select activities from the list and make them scheduled. One
of the most mature and popular methods is the discrete choice
model (DCM), which is a statistical procedure that models
choices made by people among a finite set of alternatives by es-
timating the probability that a person chooses a particular alter-
native. However, it has to enumerate all possible plans, and even
unreasonable plans may be selected [6], [12]. Therefore, other
algorithms such as Monte Carlo chains [15], generic rules [16],
mental maps [17], and GAs [12], [18] are employed. Among the
new methods, GA has been shown to be effective in generating
daily activity plans for an individual or a household agent, and it
is flexible enough to easily change the utility function according
to different preferences of the agents and different conditions
of the subsystems in the ATS [12]–[14], [18]. The GA method
has already been used in MATSim, which is an open-source
software development project developing an agent-based traffic
microsimulation module [12]–[14], [18], [19].

However, there is a great challenge in computing that we
should not only evaluate a large number of plans for thousands
of generations for a single agent but also have to complete the
task of generating daily activity plans for all agents involved
in the ATS. It is almost impossible for conventional desktop
computers to complete the computing task within an acceptable
time [12]. To make matters worse, important urban events such
as hosting the Olympic Games, urban population migration,
traffic policy adjustments, and changes in traffic control and
management programs always result in different travel demands
[10]. Activity plans are necessary to be regenerated in different
computational experiments. Therefore, it is desirable to use
powerful computing tools to accelerate the GA method.

B. GPU and CUDA

As described in our previous papers [5] and [20], GPU is a
specialized circuit that has many cores working together. The
cores are called streaming processors, and several cores (8 or
32, typically) are organized into a streaming multiprocessor
(SM). Each SM has its own memory called shared memory,
in which all threads in it can simultaneously access, and all
SMs share the global memory, constant memory, and texture
memory of the GPU.

In software, a typical GPU program consists of two parts:
one part is the CPU codes that control the process of the
whole program and does the sequential work, and the other
is the GPU part that does the parallel work. With compute
unified device architecture (CUDA), the programmers can use

C-style codes to access the computing resources of the GPU,
and the programming on GPU does not have much difference
from using application programming interfaces. A function that
executes on the GPU is typically called a “kernel” [20]. When
a kernel is launched, multiple threads on the GPU organized
by two levels are activated. The top level is called “grid,” and
the other is called “block.” One grid can consist of at most
65 535 × 65 535 blocks, and each block can consist of up to
1024 threads in the Fermi architecture.

III. FORMULATION AND IMPLEMENTATION

A. Problem Formulation and Overall Implementation

For generating a daily activity plan, we need to decide
whether an activity is selected from the activity list and decide
the orders of the selected activities. For an activity, a person
may arrive early, leave early, arrive late, or leave late. The key
point is to give proper utility functions and maximize the total
utility. We consider two kinds of agents separately: One is the
individual agent, and the other is the household agent. For a
household agent, some activity may be performed by members
of the family together, and others may be done by specific
members of the family. To demonstrate the utility function, we
design a virtual city that consists of several kinds of activity
facilities with different opening times, and every facility is
distributed in several different locations. We follow the model
given in [12], [13], and [18] to set up the utility functions.

First, we describe how to formulate the problem of generat-
ing a daily activity plan for an individual agent. The utility of
the activity plan can be described as follows:

Utotal =
k∑

i=1

Udur,i + Uwait,i + Ulate.ar,i

+ Uearly.dp,i + Ushort.Dur,i + Utravel,i (1)

where Utotal is the total utility of an individual agent; k is
the total number of activities in the activity plan; Udur,i is the
utility of performing the ith activity in the plan; Uwait,i is the
(dis)utility of waiting for the facility of the ith activity to open;
Ulate.ar,i and Uearly.dp,i are the (dis)utilities of arriving late and
leaving early from the facility, respectively; Ushort.dur,i is the
(dis)utility of executing the activity for a duration that is too
short; and Utravel,i is the (dis)utility of the individuals traveling
from the location of the (i-1)th activity to the location of the ith
activity. We define

Udur,i =βdur · tW,i · ln
(
tdur,i
t0

)
(2)

t0 = tW,i · e−ci

/
(tW,i·pi·βdur) (3)

where tW,i is the typical duration of the ith activity, tdur.i is the
actual duration of the activity, pi is the priority of the activity
(which is a number from the set {1, 2, 3}, with “1” being the
highest priority), βdur is the marginal utility of an activity
at its typical duration (which can be verified by calculating
dUdur.i/dtdur.i), ci is the coefficient of the activity duration,
and Udur.i is logarithmic to the ratio of its actual duration tdur.i
and the breakeven duration t0. Udur.i increases when tdur.i is

1476 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 13, NO. 3, SEPTEMBER 2012

longer [12]. Equations (2) and (3) provide a heuristic way for
measuring the utility

Uwait,i=

{
βwait(tloc.open,i−tstart,i), if tloc.open,i>tstart,i
0, otherwise

(4)
where tstart,i is the starting time of the ith activity, tloc.open,i
is the open time of the facility of the activity, and βwait is the
coefficient of waiting.

Uarr_late,i

=

{
βlate.ar(tstart,i − tlatest.ar,i), if tstart,i > tlatest.ar,i
0, otherwise

(5)

where tlatest.ar,i is the latest starting time of the ith activity, and
βlate.ar is the coefficient of arriving late at the facility.

Uearly.dp,i

=

{
βearly.dp(tearliest.dp,i−tend,i), if tearliest.dp,i>tend,i
0, otherwise

(6)

where tearliest.dp,i is the earliest ending time of the ith activity,
tend,i is the actual ending time and βearly.dp is the coefficient of
leaving early from the facility.

Ushort.dur,i

=

{
βshort.dur(tshortest.dur,i−tdur.i), if tshortest.dur,i>tdur.i
0, otherwise

(7)

where tshortest.dur,i is the shortest duration of the ith activity,
and βshort.dur is the coefficient of short duration of the activity.

Utrav,i = βtrav · ttrav,i (8)

where ttrav,i is the time consumption from the facility of the
(i-1)th activity to the facility of the ith one, and βtrav is the
coefficient of traveling.
tW,i, pi, tloc.open,i, tlatest.ar,i, tearliest.dp,i, tshortest.dur,i, and

all the coefficients can be assigned with different values accord-
ing to different agents’ preferences and different conditions of
the subsystems of the ATS. ttrav,i can be calculated from the
length of the route and the travel speed of the agents.

Second, we take family relationship into consideration and
give the formulation for a household agent following [14]. It is
assumed in the model that household members may do some
specific activities together, and some activities can be allocated
to different household members to represent division of work.
To allow GA to generate plans for all household members, it is
necessary to extend the utility function to account for additional
utility derived from joint participation in certain activities. This
way, we take into account how household members interact
and synchronize with each other. The utility function of activity
generation for household agents can be described as follows:

F =

M∑
m=0

Utotal,m (9)

Fig. 1. Overall implementation with the GPU.

where F is the utility of a household agent, M is the number
of the members of the household, and Utotal,m is the utility of
the mth member of the household. If the ith activity is to be
performed by all the members of the households, Udur.i of the
activity of one member can be modified as follows:

Udur.i = Udur.i

(
1 + βjoint,i ·

tdur.share
tdur.i

)
(10)

where tdur.share is the overlapping parts of all members’ tdur.i.
βjoint,i is the coefficient of the joint activity. The more a person
is synchronized with other household members in the activity,
the closer tdur.share/tdur.i is to 1, and the higher the additional
utility is [14].

In a transportation system, an individual or a household is
relatively independent from others [12], [14]. Therefore, the
activity plans of multiple agents can be generated in parallel.
Moreover, for one individual or household agent, we tend to
use PGA to maximize (1) or (9) that a random population
of the agent’s activity plans is generated at the beginning
of the algorithm. One plan is independent from the others,
and the population of plans can be evaluated in parallel. Our
implementation contains a two-level parallelization: One is the
parallelization of different agents, and the other is paralleliza-
tion of one agent’s different plans. The overall implementation
is shown in Fig. 1.

B. PGA

The activity plans of one agent can be processed by multiple
threads of the GPU in parallel with operations of selection,
crossover, and mutation. Recently, there has been a growing
interest in implementing the PGA with GPU. We employ the
PGA, which has been proven to be effective in solving the
quadratic assignment problem [21] and the traffic signal timing
optimization problem [20]. In this PGA, two pools P and W
of the same size are used to store current and newly gener-
ated offspring individuals. The algorithm flow is described as
follows.

Step 1) Generate an initial population of individuals of P .
Step 2) Evaluate the individuals in P .
Step 3) For each individual Ii in P , randomly select another

individual Ij(i �= j) in P . Apply crossover to Ii and

WANG AND SHEN: GPU-BASED PGA FOR GENERATING DAILY ACTIVITY PLANS 1477

Fig. 2. Genetic representation.

Ij with probability Pc. If the crossover happens, put
the offspring I ′i into W ; otherwise, copy Ii into W .

Step 4) For each individual I ′i in W , apply the mutation with
probability Pm.

Step 5) Evaluate individuals in W .
Step 6) For each individual Ii in P and its corresponding

offspring or copy I ′i in W , compare the fitness
values. If I ′i has a higher fitness, replace Ii in P
with I ′i.

Step 7) If the termination criteria are met, terminate the
algorithm. Otherwise, go to Step 3.

Steps 2–6 all have the same operations on individuals. This
is why GA can be parallelized.

1) Genetic Representation: A daily activity plan is formed
by an ordered series of activities selected from the list of all
possible activities. We use an array to encode an agent’s activity
list as a chromosome of the PGA. For each activity, there are an
activity indicator, index number in the activity list, location, du-
ration, and type of the activity. The activity indicator is a binary
variable indicating whether the activity is included in a plan or
not. The location indicates the coordinate of the activity facility
in a city map. If the starting time of the first activity is given,
the orders, durations of the activities, and travel time determine
the starting time and ending time of all activities in the plan.
For a household agent, the type of an activity is used to indicate
whether the activity is jointly performed with other household
members or individually. There are usually several members in
a household, and we merge arrays of the plans of all household
members to form a longer array that is shown in Fig. 2.

2) Initial Settings: We generate an initial population of
plans for the agents by randomly selecting activities from the
activity list and setting their orders. For one plan, the indicators
of the selected activities are assigned with “true.” We further
assign the starting time of the first activity with a random
number that obeys U [0, 24, hour] and assign the durations of
all the activities of the plan with random numbers that obey
N(tW , σ2

tW
), with tW representing the typical duration time.

Locations are randomly selected from the location list. For the
household agents, the types are also assigned with different
values, which indicate whether they are jointly or individually
performed.

3) Crossover and Mutation: The operations of crossover,
mutation, and selection are only performed on a single mem-
ber’s array. Different members of a household exchange infor-
mation via evaluating Udur.i, which is the utility of performing

Fig. 3. Crossover operator.

Fig. 4. Mutation operator.

joint activities. We assume that there is no duplication of
activities in each plan. When we take the one-point crossover
operator on a pair of parent plans, the same activity may appear
twice in the offspring. To solve this problem, we take activities
before the crossover point of the first parent plan and directly
pass them to the offspring plan. Then, we fill up the remaining
elements of the offspring plan with the remaining activities in
the sequence that are in the second parent plan. The procedure
is shown in Fig. 3, in which the numbers are the index numbers
of the activities on the activity list.

Furthermore, we perform the mutation operation on the
offspring plan by exchanging two activities that are randomly
selected. Then, we randomly select activities in the plan and
reassign their properties such as the starting time and duration
in the same way of generating the initial population of activity
plans. The procedure is shown in Fig. 4.

C. Computing Resources Allocation

For both the individual and household agents, the data of
the activity plans are organized from top to bottom in two
levels, i.e., agents and their activity plans. The agents’ initial
population of plans is generated on the CPU side and allocated
to a grid with one dimension of blocks at the GPU side. As
shown in Fig. 5, one block handles one individual agent or
one member of a household agent, and one thread handles its
one activity plan. Before the kernel function on the GPU is
launched, the data of activity plans and parameters of the utility
function are copied from the CPU to the GPU. The data of
plans are copied to the global memory of the GPU and then
copied to the shared memory of the SMs as the access to the
shared memory is faster. The parameters of the utility function
are copied to the constant memory as we have assumed that all
agents share the same utility function to evaluate their plans and
that the constant memory can be read by all the threads in the
grid with lower memory access latency than the global memory.

1478 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 13, NO. 3, SEPTEMBER 2012

Fig. 5. Data structures and computing resource allocations.

TABLE I
FACILITY LIST

IV. EXPERIMENTS

In this section, we set the marginal utility of an activity at
its typical duration is βdur = 20; the coefficient of the activity
duration is c = 200; the coefficient of traveling is βtrav=− 12;
the coefficient of waiting is βwait = −6; the coefficients of ar-
riving late and leaving early are βlate.ar = −18 and βearly.dp =
−18, respectively; the coefficient of short duration of the ac-
tivity is βshort.dur = −6; and σ2

tW
= tW /10. The facility list

is given out in Table I, which contains the opening times and
locations of the facilities.

A. Generate Daily Activity Plans for Individual Agent

In this part, we generate daily activity plans for multiple
individual agents, and the activity lists are given in Table II.

As shown in Table II, p is the priority of an activity, tW is the
typical duration, tlatest.ar is the latest starting time, tearliest.dp
is the earliest ending time, and tshortest.dur is the shortest
duration. The time unit of the parameters is hour.

Among the activities, “Sleep,” “Breakfast,” “Lunch,” “Din-
ner,” “Early work,” “Late work,” “Buy food,” and “Leisure at

TABLE II
DAILY ACTIVITY LIST OF INDIVIDUAL AGENT

Fig. 6. Results of a typical run of the SGA and the PGA.

home” are definitely to be performed, whereas the others are
optional. For one agent, the locations of home and work are
randomly selected in the first generation and will not change in
the remaining generations, but the location of the other facilities
can be randomly selected in each generation.

In hardware, we use a personal computer with one AMD
Athlon 64 X2 dual-core processor 4000+ and an NVIDIA Tesla
C2050 GPU, and in software, we use a CUDA driver and SDK
with version 3.2. To illustrate the effectiveness of the PGA,
we use both the simple genetic algorithm (SGA) proposed by
Goldberg [22] and the PGA to generate the daily activity plans.
The population sizes of the two algorithms are set as 512,
which makes the grid of the GPU consist of 1000 blocks, and
one block consists of 512 threads. The number of generations
is set as 1000, and the probabilities of the crossover and the
mutation are set as Pc = 0.95 and Pm = 0.1, respectively. For
one typical run, the convergence processes of the SGA and
the PGA are shown in Fig. 6, and the details of the activity
plans after 1000 generations by the SGA and PGA are shown
in Table III. In Fig. 6, the PGA converges faster than the SGA.
We have done many experiments for the comparison of the two
algorithms. There is no obvious evidence which one is better.
This is reasonable as the two algorithms are based on the same
idea and mechanism.

To reveal the computing power of the GPU, the SGA pro-
gram is run on the CPU without activating the GPU. The
speedup results in Table IV are based on 30 runs for both the
PGA and the SGA. The whole process of the PGA takes about
98 s, and it is about 2312 s for the SGA. A speedup by a factor
of 23 is obtained.

Furthermore, we make a simple comparison of the SGA
model and DCM given in [4]. The result of DCM is shown in
Table V.

WANG AND SHEN: GPU-BASED PGA FOR GENERATING DAILY ACTIVITY PLANS 1479

TABLE III
DAILY ACTIVITY PLAN OF INDIVIDULE AGENT

TABLE IV
TIME CONSUMPTION

TABLE V
DAILY ACTIVITY PLAN GENERATED BY DCM MODEL

We use the utility function (1) to evaluate the plan, and its
utility is 1047.93, which is smaller than the utility of the plan
in Table III. DCM is a fast and effective heuristic. However,
its results are usually not as good as the GA. We further test
the DCM and the SGA for 30 independent runs. The mean
and standard deviation of the utility are 1060.01 and 79.96 for
the DCM, respectively, and are 1373.06 and 4.58 for the SGA,
respectively.

B. Generate Daily Activity Plans for Household Agents

In this part, we only use the PGA to generate activity plans
for multiple three-person household agents. An agent can be
described as a family with a husband, a wife, and a child. Their
activity lists are shown in Tables II, VI, and VII.

Among all activities in the lists, “Breakfast” and “Leisure at
home” are jointly performed by all the members of a household.
“Sleep,” “Breakfast,” “Lunch,” “Dinner,” “Early work,” “Late
work,” “Early school,” “Late school,” and “Leisure at home”
are definitely to be performed, whereas the others are optional.
“Buy food” is only performed by one member of a household.

TABLE VI
DAILY ACTIVITY LIST OF THE WIFE

TABLE VII
DAILY ACTIVITY LIST OF THE CHILD

Fig. 7. Results of a typical run of the PGA.

TABLE VIII
DAILY ACTIVITY PLAN OF THE HUSBAND

Members of one household agent have the same home location,
and one member’s home and work (or school) locations are
constant. For one specific agent, the locations of home and work
(or school) are randomly selected in the first generation and
will not change in the remaining generations, but the location of
the other facilities can be randomly selected in each generation.
The parameters are the same with the experiment in Section A.
For one typical household agent, the convergence process of the
PGA is shown in Fig. 7, and the details of the activity plan after
1000 generations are shown in Tables VIII–X.

1480 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 13, NO. 3, SEPTEMBER 2012

TABLE IX
DAILY ACTIVITY PLAN OF THE WIFE

TABLE X
DAILY ACTIVITY PLAN OF CHILD

TABLE XI
TIME CONSUMPTION

The speedup results in Table XI are based on 30 runs for both
the PGA and SGA. The whole process of the PGA takes about
383 s and is about 12,593 s for the SGA. A speedup by a factor
of 32 is obtained.

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we have extended the previous work of using
GA to generate daily activity plans to a parallel GA version.
Contrary to the previous work of testing GA for a single
individual and a single household, we have used the GPU-based
PGA to generate activity plans for multiple individual and
household agents. We have implemented our algorithm on
an NVIDIA Tesla C2050 GPU and have obtained speedup
factors of 23 and 32 for 1000 individual and household agents,
respectively, compared to the CPU-only implementations. The
problem of generating daily activity plans is elementary for the
ATSs. In the future, we will go on the research in the three
directions.

1) Employ GPU clusters to generate daily activity plans for
more agents in parallel.

2) Get more residents’ travel data and direct and indirect
traffic-related information from real traffic systems to
design more reasonable utility functions for the agents.

3) Consider influences of other social relationships such
as friends and colleagues and other subsystems such as
the weather and legal subsystems on agents’ activity
planning.

ACKNOWLEDGMENT

The authors would like to thank Dr. F.-H. Zhu for helpful
discussions.

REFERENCES

[1] F.-Y. Wang, “Parallel control and management for intelligent transporta-
tion systems: Concepts, architectures, and applications,” IEEE Trans.
Intell. Transp. Syst., vol. 11, no. 3, pp. 630–638, Sep. 2010.

[2] F.-Y. Wang, “Toward a paradigm shift in social computing: The ACP
approach,” IEEE Intell. Syst., vol. 22, no. 5, pp. 65–67, Sep./Oct. 2007.

[3] F.-Y. Wang, “Toward a revolution in transportation operations: AI
for complex systems,” IEEE Intell. Syst., vol. 23, no. 6, pp. 8–13,
Nov./Dec. 2008.

[4] F.-H. Zhu, F.-Y. Wang, D. Fan, R. Li, Y. Lv, and S. Chen, “Modeling
and analysis of transportation systems using ACP approach,” in Proc.
14th Int. IEEE Annu. Conf. Intell. Transp. Syst., Washington, DC, 2011,
pp. 2136–2141.

[5] K. Wang and Z. Shen, “Artificial societies and GPU-based cloud comput-
ing for intelligent transportation management,” IEEE Intell. Syst., vol. 26,
no. 4, pp. 22–28, Jul/Aug. 2011.

[6] W. Davidson, R. Donnelly, P. Vovsha, J. Freedman, S. Ruegg,
J. Hicks, J. Castiglione, and R. Picado, “Synthesis of first practices and
operational research approaches in activity-based travel demand model-
ing,” Transp. Res. Part A, Policy Pract., vol. 41, no. 5, pp. 464–488,
Jun. 2007.

[7] F.-Y. Wang and S. Tang, “Concept and framework of artificial trans-
portation system,” J. Complex Syst. Complexity Sci., vol. 1, pp. 52–57,
Feb. 2004.

[8] G. Xiong and K.-F. Wang, “Parallel traffic management for the 2010 Asian
games,” IEEE Intell. Syst., vol. 25, no. 3, pp. 81–85, May/Jun. 2010.

[9] N. Zhang and F.-Y. Wang, “DynaCAS: Computational experiments and
decision support for ITS,” IEEE Intell. Syst., vol. 23, no. 6, pp. 19–23,
Nov./Dec. 2008.

[10] H.-X. Zhao, S.-M. Tang, and Y.-S. Lv, “Generating artificial populations
for traffic microsimulation,” IEEE Intell. Transp. Syst. Mag., vol. 1, no. 3,
pp. 22–28, Fall 2009.

[11] F.-H. Zhu, “A case study of evaluating traffic signal control systems using
computational experiments,” IEEE Trans. Intell. Transp. Syst., vol. 12,
no. 4, pp. 1220–1226, Dec. 2011.

[12] D. Charypar and K. Nagel, “Generating complete all-day activity
plans with genetic algorithms,” Transp., vol. 32, no. 4, pp. 369–397,
2005.

[13] K. Meister, M. Frick, and K. W. Axhausen, “Generating daily activity
schedules for households using genetic algorithms,” in Proc. 5th Swiss
Transp. Res. Conf., Monte Verità, Ascona, Switzerland, 2005, pp. 1–25.

[14] K. Meister, M. Frick, and K. W. Axhausen, “A GA-based household
scheduler,” Transp., vol. 32, no. 5, pp. 473–494, Sep. 2005.

[15] R. Kitamura, “Applications of models of activity behavior for activity
based demand forecasting,” in Proc. TMIP Activity-Based Travel Fore-
cast. Conf., 1996, pp. 119–150.

[16] T. Arentze, F. Hofman, H. V. Mourik, and H. Timmermans,
“ALBATROSS: A multi-agent rule-based model of activity pattern
decisions,” in Proc. Transp. Res. Board Annu. Meeting, Washington, DC,
2000, pp. 136–144.

[17] T. Arentze and H. J. P. Timmermans, “Representing mental maps and
cognitive learning in micro simulation models of activity-travel choice
dynamics,” Transp., vol. 32, no. 4, pp. 321–340, Jul. 2005.

[18] K. Nagel and G. Flötteröd, “Agent-based traffic assignment: going from
trips to behavioral travelers,” in Proc. 12th Int. Conf. Travel Behav. Res.
Jaipur, 2009, pp. 1–26.

[19] M. Balmer, N. Cetin, K. Nagel, and B. Raney, “Towards truly agent-based
traffic and mobility simulations,” in Proc. 3rd Int. Joint Conf. AAMAS,
New York, 2004, pp. 60–67.

[20] Z. Shen, K. Wang, and F.-H. Zhu, “Agent-based traffic simulation and
traffic signal timing optimization with GPU,” in Proc. 14th Int. IEEE
Conf. Intell. Transp. Syst., 2011, pp. 145–150.

[21] S. Tsutsui and N. Fujimoto, “Solving quadratic assignment problems by
genetic algorithms with GPU computation: A case study,” in Proc. 11th
Annu. Conf. Companion Genetic Evol. Comput. Conf., Montreal, QC,
Canada, 2009, pp. 2523–2530.

[22] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning. Reading, MA: Addison-Wesley, 1989.

