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Abstract—Budget optimization is one of the primary decision-
making issues faced by advertisers in search auctions. A quality
budget optimization strategy can significantly improve the effec-
tiveness of search advertising campaigns, thus helping advertisers
to succeed in the fierce competition of online marketing. This
paper investigates budget optimization problems in search adver-
tisements and proposes a novel hierarchical budget optimization
framework (BOF), with consideration of the entire life cycle of
advertising campaigns. Then, we formulated our BOF framework,
made some mathematical analysis on some desirable properties,
and presented an effective solution algorithm. Moreover, we es-
tablished a simple but illustrative instantiation of our BOF frame-
work which can help advertisers to allocate and adjust the budget
of search advertising campaigns. Our BOF framework provides an
open testbed environment for various strategies of budget alloca-
tion and adjustment across search advertising markets. With field
reports and logs from real-world search advertising campaigns,
we designed some experiments to evaluate the effectiveness of our
BOF framework and instantiated strategies. Experimental results
are quite promising, where our BOF framework and instanti-
ated strategies perform better than two baseline budget strategies
commonly used in practical advertising campaigns.

Index Terms—Budget optimization, optimal strategy, search
auctions, search engine marketing, sponsored search.

I. INTRODUCTION

R ECENT YEARS have witnessed a booming growth of
search auctions when “economics meet search” [22].

Specifically, there is an emerging tendency to increasingly
integrate Web information retrieval and online marketing tech-
niques, leading to a targeting advertising form with some
either explicit or implicit “long-tail” effects. Search auctions
have now become a primary online advertising format being
acknowledged as a promising business model. This is approved

Manuscript received March 3, 2011; revised June 14, 2011; accepted
August 10, 2011. Date of publication December 6, 2011; date of current
version August 15, 2012. This work was supported in part by the National
Natural Science Foundation of China under Contracts 71071152, 70890084,
60875049, and 60921061 and in part by the Chinese Academy of Sciences
under Grant 2F08N03. The work of Y. Yang was supported by the Scientific
Research Foundation for the Returned Overseas Chinese Scholars. This paper
was recommended by Associate Editor M. Zhou.

Y. Yang, J. Zhang, R. Qin, J. Li, and F.-Y. Wang are with the State
Key Laboratory of Intelligent Control and Management of Complex Systems,
Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
(e-mail: yangyanwu.isec@gmail.com; jie.zhang@ia.ac.cn; qinrui.isec@gmail.
com; lijuanjuan.isec@gmail.com; feiyue@ieee.org).

W. Qi is with the School of Management, Harbin Institute of Technology,
Harbin 150006, China (e-mail: qiwei@hit.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCA.2011.2172418

by the fact that it serves as the primary revenue source for major
search engine companies. For example, Google [1] reported the
total revenue of $8.44 billion in the fourth quarter of 2010, with
the revenue via search auctions comprising about 97% of the
total. According to statistics from IAB [2], more than 47% of
the U.S. online advertising revenue comes from search auctions
in the first half of 2010, followed by the second largest format
of display advertisements (36%).

The growing prosperity of search advertising markets is
vastly driven by the influx of millions of advertisers. However,
most search engine companies currently provide limited num-
ber of advertising slots (e.g., 8–10) on the search engine result
pages (SERPs). More and more advertisers have to advertise
their products or services simultaneously across several search
engines, in order to increase impressions of their advertisements
and expected profits, thus to survive from the fierce competi-
tion. Consequently, many advertisements compete for space on
SERPs in any given scheduling horizon [4], such that how to
rationally allocate the limited advertising budget is a critical
issue in search auctions, even before conducting advertising
campaigns.

Search auctions fall into the category of complex systems
capable of evolving with feeds from outside environments
and intrainteractions [34] due to some factors, namely, the
diversity of search auction mechanisms [3], the unprecedented
complexity and dynamics of bidding processes [27], and the
strong coupling and unpredictability of markets under con-
ditions of imperfect information [10]. Moreover, there are
plenty of uncertainties in the mapping from the budget into
the advertising performance [30]. Thus, search advertisers have
to face tremendous difficulties and challenges while making
budget decisions. First, advertisers should take competitors’
budget strategies into consideration in order to choose the
best response. Second, limited advertising budgets should be
wisely allocated at different levels of abstractions, in different
time granularities, and ideally be adjusted in real time. Third,
budget strategies heavily rely on other advertising strategies
that are relevant to keyword portfolio, bids, and the prediction
on advertising targets. Therefore, it is crucial to explore an
integrated framework for optimal strategies of budget allocation
and adjustment in search auctions. To the best of our knowl-
edge, this is the first research effort in this direction.

This paper proposes a novel hierarchical budget optimiza-
tion framework (BOF) for advertisers to allocate and adjust
their advertising budgets throughout the entire life cycle of
advertising campaigns in search auctions. Our BOF frame-
work provides a basic infrastructure for various optimal budget
strategies. We formulated our BOF framework and approved its
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theoretical soundness through mathematical analysis of relevant
properties. Furthermore, we established a simple but illustrative
instantiation of our framework and designed some experiments
to evaluate our framework and instantiated strategies, with field
data from real-world search advertising campaigns. Experi-
mental results showed that our proposed BOF framework and
instantiated strategies can effectively decrease the loss of ef-
fective clicks by comparing with two baseline budget strategies
commonly used in real advertising campaigns.

The contributions of our work can be summarized as
follows.

1) We proposed a novel hierarchical framework for bud-
get optimization in search advertisements across several
markets, with consideration of the entire life cycle of
advertising campaigns.

2) We formulated our BOF framework, studied some desir-
able properties, and then provided an effective solution
algorithm. The formulated BOF framework can inte-
grate different optimal algorithms for budget decisions
in search auctions, without adding the computational
complexity.

3) We also established a simple but illustrative instantiation
of our BOF framework and designed some experiments to
validate its effectiveness with real-world data from search
advertising campaigns.

The rest of this paper is organized as follows. The next
section reviews some relevant literature. Section III analyzes
the whole scenario and relevant problems related to budget
decisions in search advertisements and then presents modeling
details of the BOF. Section IV formulates the BOF frame-
work, analyzes its properties, and presents a solution algorithm.
Section V provides an instantiation of the BOF framework.
Section VI reports some experimental settings and results
to validate the BOF framework and instantiated strategies.
Section VIII concludes this work.

II. LITERATURE REVIEW

Budget decisions such as allocation and adjustment have
long been important subjects in marketing and advertisements,
attracting plenty of well-established and continuing research
efforts. The pioneering work of Vidale and Wolfe [33] took
the initiative to define the concept of advertising effective-
ness and equations of sales response dynamics and provided
a solution for optimal allocation of limited budgets. Another
important concept is the advertising goodwill introduced by
Nerlove and Arrow [31], which can be considered as the current
aggregated advertising effectiveness that can influence budget
decisions later on. Based on this concept, a dynamic adjustment
framework was proposed for optimal advertising strategies and
price policies in their work, which was further generalized by
Sethi [32] into the case with limited budgets. Krishnan and
Jain [25] investigated the optimal advertising policy for new
products under the influence of the diffusion phenomenon and
concluded that optimal advertising strategies are determined
by the advertising effectiveness, discount rate, and the ratio of
advertisement to profits.

Due to the dynamic nature of search auction markets, various
optimal programming algorithms have been used to improve
advertising budget strategies. Integer programming and non-
linear programming are effective to find optimal solutions for
budget allocation over keywords [24], [36]. Results from Zluk
and Cholette [36] showed that price elasticities of the click-
through rate (CTR) and response functions are key factors
for budget decisions, and investing on more keywords under
a certain threshold can help improve advertisers’ profits. The
search process for optimal budget allocation strategies can be
modeled as an optimal control problem, and the optimal control
theory was used to study the optimal budget allocation problem
among Web portals [15]. They used dynamic programming
to derive the analytical solution to the optimal budget allo-
cation problem, and their conclusions indicated that budget
allocation strategies rely nonlinearly on the targeted audiences,
average CTRs, and adverting effectiveness of websites. Thus,
advertisers are advised to switch more budgets into special-
ized Web portals in order to maximize click volumes in the
long term.

In search auctions, how to rationally allocate the limited
budget is a significant issue, because results of budget decisions
are important inputs to other advertising strategies such as
keyword portfolio and bidding determination. Building effec-
tive allocation strategies amid so many parameters is quite
a challenge. Thus, turning to pursue best response becomes
a feasible issue, i.e., to find the best strategy while fixing
other competitors’. The best response can be abstracted as a
stochastic budget optimization problem: how to spread a given
budget over keywords to maximize the expected profits [16],
which can be depicted as a Markov decision process (MDP)
[6], [12]. Three stochastic versions of budget optimization
model (including proportional, independent, and scenario) were
presented in [13] and [30], where some special cases identified
were solvable in polynomial time or with improved approxima-
tive ratios. Their approximation and complexity results showed
that simple prefix strategies that bid on all cheap keywords up to
some level were either optimal or good approximation for many
cases. Archak et al. [6] formulated the budget allocation as a
constrained optimal control problem for an MDP. Their main
results showed that, under a reasonable assumption that the on-
line advertising has positive carryover effects on the propensity
and the form of user interactions with the same advertiser in
the future, there exists a simple greedy algorithm for the budget
allocation with the worst case running time cubic in the number
of model states (e.g., keywords). The budget optimization prob-
lem can also be cast as an online (multiple-choice) knapsack
problem to achieve a provably optimal competitive ratio for
advertisers [8], [11].

Cooptimization of keyword bid prices and budget allocation
strategies is an emerging interesting topic. Zhou et al. [35]
modeled the noncooperative dynamic keyword auction game
with limited budgets as an online multiple-choice knapsack
problem and designed some deterministic and randomized al-
gorithms that can achieve a provably optimal competitive ratio.
Feldman et al. [16], [17] proposed a two-bid uniform bidding
strategy with limited budgets, by which advertisers can obtain
at least 1-1/e fraction of the maximum clicks possible.
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Fig. 1. Multilevel framework of budget decisions in search advertisements.

The current research efforts on search advertising budget de-
cisions mainly focus on the keyword level, except for Fruchter
and Dou [15] with attention to the website/system level. Many
researches [13], [16], [30] took keywords as first-class objects
to distribute advertising budgets. However, these works can-
not directly fit to practical scenarios in search auctions, as
currently provided by major search engine companies. On the
contrary, these works fall into the category of bidding strategies.
Therefore, we argue that it is of necessity to propose a novel
framework for budget optimization in search auctions, taking
into account the entire life cycle of advertising campaigns. This
framework should, in the meanwhile, provide an open environ-
ment for various research proposals about budget allocation and
adjustment, with flexible designs of complementary models,
strategies, and algorithms. This intuition directly motivates our
research on budget optimization.

III. BUDGET ALLOCATION FOR SEARCH ADVERTISEMENT

A. Problem Statement

A bidding is triggered once an information request is sub-
mitted. High volume of search demands makes the bidding
a continuous infinite process. The ranking results and prices
will be different when any advertiser changes his/her keywords
and/or bids at any time, such that an efficient advertising strat-
egy, e.g., for budget allocation, should be capable of dynam-
ically allocating and adjusting advertising budgets on the fly
according to states of the marketing environment. In the entire
life cycle of advertising campaigns in search auctions, there
mainly exist three different budget decision scenarios, as shown
in Fig. 1.

First, an advertiser has to allocate his/her search advertising
budgets across several markets, supposing that the overall bud-
get for search auctions is determined.

Second, an advertiser has to set budget constraints for a series
of temporal slots (e.g., daily budgets) during a certain promo-
tion period of search advertising campaigns, supposing that the
budget allocated in a search market is determined. If necessary,
the advertiser should coarsely tune budget constraints for the
coming slots according to the advertising performance in his-
torical slots.

Third, in an ongoing slot of advertising campaigns, an ad-
vertiser has to dynamically adjust the remaining budget, in
order to avoid either too quickly wasting his/her budgets or
missing golden opportunities in the future, according to real-
time advertising effects. For example, when search demands
are relatively higher than usual but lead to a lot of invalid clicks
as detected, carefully keeping lower the remaining budget is a
reasonable strategy.

Correspondingly, it is of necessity to explore an integrated
framework for budget optimization with consideration of the
entire life cycle of search advertising campaigns. Such frame-
work should be capable of dealing with such structured budget
problems in search auctions.

B. Definition

The following gives a definition to formally specify budget
optimization problems in search auctions.

Definition 1 (Budget Optimization): Input: Given an over-
all search advertising budget B to an advertiser, a set of
search markets SE, n1 = |SE|, a series of temporal slots in
a promotion period TS, n2 = |TS|, and a series of real-time
adjustments of the remaining budget in a temporal slot RA,
n3 = |RA|.

Output: A distribution structure for search advertis-
ing budgets A = (A1,A2,A3) with A1 over market-budget
vectors x ∈ Rn1 , A2 over interval-budget vectors y ∈
Rn2 , and A3 over real-time-budget vectors z ∈ Rn3 , such
that expenditure(A1,A2,A3) ≤ B and loss(A1,A2,A3) is
minimized.

C. BOF

This paper provides a hierarchical BOF, with consideration
of the entire life cycle of advertising campaigns in search
auctions (Fig. 1). The BOF framework consists of three lev-
els, corresponding to these three budget decision scenarios
discussed in Section III-A, with attentions to advertising sys-
tem, campaign, and keyword, respectively. Specifically, the
system/account level concerns budget allocation across several
search advertising markets in medium/long term (e.g., over
half year). The campaign level focuses on budget distribution
over a series of temporal slots (e.g., day or month) during a
promotion period. The keyword level aims to adaptively adjust
the remaining budget during a temporal slot of advertising
campaigns in order to keep valuable expenditure for potential
clicks in the future. Budget strategies at these three levels com-
plement each other, thus forming an integrated chain of budget
optimization in search auctions. That is, results of higher levels
constrain activities at lower levels, and inversely, operational
results at lower levels create feedbacks to activities at higher
levels.

The notations used in this paper are listed in Table I.
1) System Level: Generally, budget decisions across several

advertising markets are the first issue faced by an advertiser
in search auctions. Letting Bl denote the overall budget for
search advertisements for an advertiser l, l = 1, 2, . . . , r, across
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TABLE I
LIST OF NOTATIONS

n1 markets, then budget allocation at the system level can be
given as

ξ : Bl → xl
1, . . . , x

l
i, . . . , x

l
s, i ∈ {1, 2, . . . , n1}

where xl
i denotes the budget allocated to a given search adver-

tising market i. Advertising costs are positively proportional to
the sum of budgets allocated to a search advertising market by
all advertisers. That is, the more budget is allocated to a market,
the more is the competitive bidding and then the higher are the
advertising costs. For a given type of competitive advertisers
(e.g., a group of advertisers with similar advertising targets),
search demands from relevant keywords are finite. Therefore,
from the point of view of the marketing efficiency, the search
advertising efficiency of a market is not a rigid monotonically
increasing function of the allocated budget. Although all ad-
vertisers have common knowledge that the budget allocated
to a market should not exceed a certain amount in order to
keep the marketing efficiency at a certain degree, no advertiser
knows exactly his/her competitors’ budget strategies, e.g., the
amount of these competitors’ budget allocated, while manipu-
lating his/her budget at the system level. In this sense, budget
allocation across search advertising markets can be viewed as a
game with incomplete information.

2) Campaign Level: Budget decisions at the campaign level
aim to distribute xl

i over a series of temporal slots (e.g., day)
during an advertising period, which can be given as

τ : xl
i → yli,1, . . . , y

l
i,j , . . . , y

l
i,n2

, j ∈ {1, 2, . . . , n2}

where yli,j represents the budget allocated to the jth slot during
a period in search advertising market i by an advertiser l,
which acts as constraints for relevant bidding strategies. Bud-
get decisions at the campaign level should consider various
performance indicators, including the distribution of search
demands, total clicks, ineffective clicks, cost per click, bids, the
conversion rate, and revenue per click. At this level, advertisers
are also supposed to make some coarse adjustment for budgets
in future slots according to historical advertising effects (partic-
ularly in the immediately previous temporal slot). An advertiser
makes budget decisions at the campaign level with the outcome
from the system level as constraints. Apparently, the former will
also provides valuable feedbacks to the latter.

3) Keyword Level: Budget decisions at keyword level aim to
dynamically adjust the remaining budget (with the initial value
as yli,j) for advertising campaigns, during a given temporal slot,
which can be given as

γ : yli,j(t) → yli,j(t+ 1)

where yli,j(t+ 1) represents the remaining budget (through
some possible adjustments on yli,j(t)) at time t+ 1 in the jth
slot in search advertising market i by an advertiser l. Budget
adjustment at the keyword level is made mainly according to
some performance indicators of keywords, and bidding strate-
gies as well. Most works discussed in Section II were done at
this level, focusing on the bidding determination but ignoring
the adjustment of the remaining budget of a temporal slot.
Again, the adjustment at this level takes the budget allocated to
a temporal slot as constraints. Meanwhile, the former provides
valuable feedbacks to the latter.

IV. MATHEMATICS OF THE BOF

A. Formulation

We formulate the BOF framework as a hierarchical pro-
gramming model. In related literatures, various hierarchical
optimization techniques were developed to model decentralized
planning problems with multiple decision makers in a hierarchi-
cal organization [5], [26]. In this section, we establish a three-
level programming model for budget optimization throughout
the entire life cycle of advertising campaigns in search auctions.

Model 1 (System Level Model): Letting h(1) : Rn1+p → R

be the loss function at the system level, f (1) : Rn1 → R
m1

be the budget constraints at the system level, and g(1) : S1 →
R

p be the optimal loss function at the campaign level, S1 ⊂
R

n1 , then the budget optimization at the system level can be
modeled as

g(0) := min
x

h(1)
(
x, g(1)(x)

)
s.t. f (1)(x) ≤ 0,

x ∈ X ⊂ R
n1 . (1)
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Model 2 (Campaign Level Model): Letting h
(2)
i : Rn2+q →

R be the loss function at the campaign level, f (2)
i : Rn1+n2 →

R
m2 be the budget constraints at the campaign level, and

g
(2)
i : S2 → R

q be the optimal loss function at the keyword
level, where i ∈ {1, . . . , p} and x ∈ S1 = {x ∈ X,f (1)(x) ≤
0}, S2 ⊂ R

n2 , then the budget optimization at the campaign
level can be modeled as

g
(1)
i (x) := ḡ

(1)
i

(
x, g

(2)
i

)
= min

yi

h
(2)
i

(
yi, g

(2)
i (yi)

)

s.t. f
(2)
i (x,yi) ≤ 0,

yi ∈ Y ⊂ R
n2 . (2)

Model 3 (Keyword Level Model): Letting h
(3)
ij : Rn3 → R be

the loss function at the keyword level and f
(3)
ij : Rn2+n3 →

R
m3 be the budget constraints at the keyword level, where i ∈

{1, . . . , p}, j ∈ {1, . . . , q}, and y ∈ S2 = {y ∈ Y,f(x,y) ≤
0 for x ∈ S1}, then the budget optimization at the keyword
level can be modeled as

g
(2)
ij (y) := min

z
h
(3)
ij (zij)

s.t. f
(3)
ij (y, zij) ≤ 0,

zij ∈ Z ⊂ R
n3 . (3)

These three models consider budget decision problems at
three interactive levels together in a hierarchical way, taking
into account the entire life cycle of search advertising cam-
paigns. System Level Model, Campaign Level Model, and
Keyword Level Model form the overall formulated structure of
our BOF framework, i.e., an integrated closed-loop chain model
of budget optimization in search auctions. Our BOF framework
considers not only budget decision problems at each of the three
levels but also interactive relationships between these levels.
Feasible regions of upper models constrain lower models. Con-
versely, solutions of lower models also affect optimal solutions
of upper models. Furthermore, notice that our framework will
not degenerate even if considering more complicated situations
in search auctions.

B. Properties

In the following, we discuss some convex properties of our
BOF framework.

Theorem 1: If h(z) and f(y, z) are convex functions,
g(y) = minz{h(z) : f(y, z) ≤ 0}, then g(y) is also a convex
function.

Proof: Let S = {(y, z)|f(y, z) ≤ 0}. Since f(y, z) is a
convex function, it can be deduced that S is a convex set.

Define IS(t) as

IS(t) =

{
0, if t ∈ S
∞, else.

We can prove that IS(t) is a convex function.

Define ĥ(y, z) = h(z) + IS(y, z). Because h(z) and IS(t)

are convex functions, ĥ(y, z) is also a convex function. Hence,
we have minz ĥ(y, z) convex and

ĥ(y, z) =

{
h(z), if (y, z) ∈ S
∞, otherwise.

Thus, minz h(z) = minz ĥ(y, z) for (y, z) ∈ S. Therefore,
g(y) is convex. �

Theorem 2: If h(y, ŷ), g(y), and f(x,y) are convex
functions, h(y, ŷ) is nondecreasing on ŷ, and ḡ(x) =
miny{h(y, g(y)) : f(x,y) ≤ 0}, then ḡ(x) is also a convex
function.

Proof: Let S = {(x,y)|f(x,y) ≤ 0}. Since f(x,y) is a
convex function, it can be deduced that S is a convex set. Hence,
IS is a convex function.

Define ĥ(x,y) = h(y, g(y)) + IS(x,y). Because h(y, ŷ)

is convex and nondecreasing on ŷ, ĥ(y, z) is also a convex
function. Hence, we have miny ĥ(x,y) convex and

ĥ(x,y) =

{
h (y, g(y)) , if (x,y) ∈ S
∞, otherwise.

Thus, miny h(y, g(y)) = miny ĥ(x,y) for (x,y) ∈ S. There-
fore, ḡ(x) is convex. �

From Theorems 1 and 2, we can obtain the following
corollaries.

Corollary 1: If h(3)(z) and f (3)(y, z) are convex functions,
then the optimization problem (3) is a convex programming
problem.

Corollary 2: If h(3)(z), f (3)(y, z), h(2)(y, ŷ), and
f (2)(x,y) are convex functions and h(2)(y, ŷ) is
nondecreasing on ŷ, then the optimization problem (2) is
a convex programming problem.

Corollary 3: If h(3)(z), f (3)(y, z), h(2)(y, ŷ), f (2)(x,y),
h(1)(x, x̂), and f (1)(x) are convex functions, h(2) is nonde-
creasing on ŷ, and h(1) is nondecreasing on x̂, then model (1)
is a convex programming problem.

C. Solution

Here, we provide a general solution process for our BOF
framework, described as follows.

Step 1) Solve each Keyword Level Model, and in-
terpolate g(2)(y) (e.g., 1-D interpolation for a
piecewise linear objective function h(3)), denoted
by η(y).

Step 2) Substitute g(2)(y) with η(y), solve each Campaign
Level Model, and interpolate g(1)(x), denoted by
φ(x).

Step 3) Substitute g(1)(x) with φ(x), and minimize
h(1)(x, φ(x)) under constraints from model (1).

Finally, it comes to a solution for our framework, namely,
optimal budget decisions in search auctions.
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V. FRAMEWORK INSTANTIATION

A. Basis

In this section, we propose a simple but illustrative instan-
tiation for our BOF framework. In search auctions, a click is
an action initiating a visit to a website via a sponsored link. If
a click is an intentional click that has a realistic probability of
generating values once the visitor arrives at the website, then
it is a valid click; otherwise, it is invalid [21]. In this paper,
we consider the generated value obtained through some kinds
of user behaviors, including purchase, registration, staying on
the landing page for more than 5 s, surf more than two links,
bookmarking, and downloading relevant pages. Then, we give
a concept of effective CTR as follows.

Definition 2 (Effective CTR): Effective CTR is the ratio of
valid clicks and total clicks, i.e.,

Effective CTR =
valid clicks
total clicks

.

In the objective function, we consider to minimize the loss in
terms of effective clicks. In this paper, we make the following
assumptions.

1) If the budget allocated is less than the optimal budget, the
effective CTR is denoted by a constant pi,j,k.

2) If the budget allocated is larger than the optimal budget,
the exceeded section (the allocated budget minus the
optimal budget) will be used up. The effective CTR of the
exceeded section is denoted by a constant p′i,j,k, which
is smaller than pi,j,k. This can be justified by the law
of diminishing marginal utility [28]. Specifically, when
advertisers invest more and more budgets to a search
market, total effective clicks increase in high rates until
the total budget arrives at a certain amount (e.g., the
optimal budget); when it exceeds a certain amount, total
effective clicks increase in comparatively lower rates.

For each i and j, where i=1, 2, . . . , n1 and j=1, 2, . . . , n2,
the loss of the kth real-time adjustment contains the following
three parts.

1) If I+i,j,k = I−i,j,k = 0, then the loss concerns ineffective
clicks generated from zi,j,k, i.e.,

ci,j,kzi,j,k(1− pi,j,k).

2) If I+i,j,k > 0, then the loss includes ineffective clicks

generated from zi,j,k − I+i,j,k and from I+i,j,k, i.e.,

ci,j,k

(
zi,j,k − I+i,j,k

)
(1− pi,j,k) + ci,j,kI

+
i,j,k

(
1− p′i,j,k

)

− ci,j,kI
+
i,j,kp

′
i,j,k

= ci,j,kzi,j,k(1− pi,j,k) + ci,j,kI
+
i,j,k

(
pi,j,k − 2p′i,j,k

)
.

3) If I−i,j,k > 0, then the loss is the ineffective clicks gener-
ated from zi,j,k and the lost effective clicks by I−i,j,k, i.e.,

ci,j,kzi,j,k(1− pi,j,k) + ci,j,kI
−
i,j,kpi,j,k.

B. Model

We establish a model with the notations in Table I as follows.
The system level concerns minimizing the total loss in terms

of effective clicks across n1 search markets

min

n1∑
i=1

g
(1)
i (x)

s.t.
n1∑
i=1

xi −B ≤ 0

x ≥ 0 (4)

where g
(1)
i is the minimum of the loss in terms of effective

clicks in the ith search market at the campaign level, given as

g
(1)
i (x) := min

n2∑
j=1

g
(2)
i,j (y)

s.t.
n2∑
j=1

yi,j − xi ≤ 0

y ≥ 0 (5)

where g
(2)
i,j is the minimum of the loss in terms of effective

clicks in the jth temporal slot in the ith search market at the
keyword level, given as

g
(2)
i,j (y) := min

n3∑
k=1

ci,j,k

[
zi,j,k(1− pi,j,k) + I−i,j,kpi,j,k

+I+i,j,k
(
pi,j,k − 2p′i,j,k

)]

s.t.
n3∑
k=1

zi,j,k − yi,j ≤ 0

I+i,j,k = [zi,j,k − di,j,k] ∨ 0

I−i,j,k = [di,j,k − zi,j,k] ∨ 0

zi,j,k ≥ 0, k = 1, 2, . . . , n3. (6)

VI. EXPERIMENTS AND VALIDATION

A. Data Description

We collected field reports and logs from practical search
advertising campaigns by several enterprises and organizations
in two search markets during the period from Sep. 2008 to
Aug. 2010 and designed experiments to validate the proposed
BOF and instantiated strategies. In addition, we also did some
approximate treatments on the statistical data in order to sup-
port intelligible experimental settings. We made independent
budget optimization experiments in different temporal granular-
ities (year/month/week/day). This paper reports experimental
settings and some relevant results following the framework
instantiation and solutions given in the previous section. We
also compare optimal values with the performance of two base-
line budget strategies commonly used in practical advertising
campaigns.
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TABLE II
VALUES OF ci,j FROM PROMOTION REPORTS OF AN ADVERTISER

TABLE III
VALUES OF pi,j AND p′

i,j FROM PROMOTION

REPORTS OF AN ADVERTISER

B. Experimental Design

We have conducted preliminary computational evaluations
of our approach. For comparison purposes, we implemented
two baseline search strategies that are commonly applied in
practical search advertising campaigns. The first benchmark,
called BASE1-Fixed, represents the budget strategy from a
type of advertisers who set a fixed daily budget according
to experiential or survey knowledge, however without any
adjustments on the remaining budget. The second benchmark
is called BASE2-Heuristics with some necessary adjustments
based on the fixed strategy. In other words, the middle-term
(e.g., monthly) budget is equally distributed over a series of
short-term temporal slots (e.g., daily). Then, the advertiser
adjusts the daily budget through some heuristic rules: If the loss
of effective clicks for the current day is less than the average
loss computed from the historical data, then the daily budget
for the next day is increased proportionally; if the loss for
the current day is more than the average loss, then the daily
budget for the next day is decreased proportionally; otherwise,
the daily budget is kept unchanged.

The evaluation focuses on two-fold purposes. The first pur-
pose is to prove some properties of the BOF framework as
analyzed in Section IV-B. The second is to evaluate the per-
formance of the framework instantiation in the crisp case given
in Section V-B and instantiated strategies given in Section V.
In the following, we provide details about our experimental
evaluation results.

The experimental scene is described as follows. An adver-
tiser takes an advertising schedule of 8 h (e.g., 9:00–17:00) to
participate in search auctions each day; then, he/she plans to
adjust the remaining budget four times, e.g., once every 2 h.
Clicks per unit cost and the effective CTR given in Tables II
and III are collected from field logs of practical advertising
campaigns during five days, where ci,j,1 = · · · = ci,j,4 (ci,j

TABLE IV
OPTIMAL BUDGET REFERENCE di,j (UNIT: $)

TABLE V
OPTIMAL SOLUTIONS AT THE CAMPAIGN LEVEL (UNIT: $)

for short) reflects that these four segments of real-time ad-
justment have the same clicks per unit cost in the jth day
in the ith search market, and pi,j = (pi,j,1, pi,j,2, pi,j,3, pi,j,4)
and p′

i,j = (p′i,j,1, p
′
i,j,2, p

′
i,j,3, p

′
i,j,4). Suppose that the overall

budget during five days is B = $500.000. The optimal bud-
get di,j,k of every 2 h can be obtained through statistical
analysis from historical logs of advertising campaigns, di,j =
(di,j,1, di,j,2, di,j,3, di,j,4), as shown in Table IV. Notice that
these optimal budgets somewhat reflect budget constraints in
historical campaigns, which can be viewed as the reference for
the optimal procedure for budget manipulation for advertising
campaigns in the future, since they are independent to budget
constraints of the coming days.

C. Experimental Results

The optimal solutions are obtained through the BOF frame-
work instantiation and solution proposed in Section IV-C. We
employed the sequential least square quadratic programming
method to solve the budget optimization model (as described
in Section V-B) embedded in our BOF framework. The main
experimental results are described as follows.

1) At the system level, the optimal budget allocated to search
market-1 is $247.00, and that allocated to search market-2
is $253.00.

2) At the campaign level, optimal budgets for each day in
these two markets are shown in Table V.

3) At the keyword level, optimal budgets for every 2 h in
each day in these two markets are shown in Table VI.

4) The overall optimal value (e.g., the cumulative loss of
effective clicks) for this case by our BOF framework and
instantiated strategies is 106.032.

5) As shown in Figs. 2 and 3, budget decisions abstracted at
all these three levels in our BOF framework are convex
programming problems. Therefore, the overall budget
optimization problem in the hierarchical BOF framework
is convex.
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TABLE VI
OPTIMAL SOLUTIONS AT THE KEYWORD LEVEL (UNIT: $)

Fig. 2. Loss–budget curve at the campaign level by the BOF strategy.

Fig. 3. Loss–budget curve at the keyword level by the BOF strategy.

In typical scenarios of budget manipulation with the fixed
strategy, most advertisers evenly divide the overall budget in
the two search markets (i.e., $250.00 in each), keep budgets dis-
tributed in a series of temporal slots (e.g., five days) unchanged
(i.e., $50.00 as daily budget), and ignore the necessity for real-
time adjustments of (remaining) daily budgets but just allocate
the same amount of budget for every 2 h (i.e., $12.50). Some
cautious advertisers would like to take chances to adjust the
daily budget (e.g., either increase or decrease), but without con-
sideration of real-time adjustments probably due to the fact that
the latter is time consuming and sophisticatedly complex. The

Fig. 4. Comparison of budget distribution over time in market-1.

Fig. 5. Comparison of budget distribution over time in market-2.

Fig. 6. Comparison of the accumulated loss of effective clicks in market-1.

cumulative losses of effective clicks are 134.567 and 133.729
for the fixed strategy and the heuristics strategy, respectively.
Figs. 4 and 5 show the budget distribution over time in these two
search advertising markets, respectively. Figs. 6 and 7 show the
loss of effective clicks over time in these two search advertising
markets, respectively. Several interesting findings are given
as follows.

1) From Figs. 4 and 5, we note that the amplitude vari-
ation of budget adjustment by our BOF framework is
larger than those of the other two BASE strategies. This
indicates that our BOF framework is more sensitive to
dynamics of advertising markets.
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Fig. 7. Comparison of the accumulated loss of effective clicks in market-2.

2) We also notice that the budget allocated initially to the
search market-1 by our BOF framework is much less than
those by the other two BASE strategies; then, the loss of
effective clicks is higher. The cumulative loss of effective
clicks by our BOF framework gradually decreases and
then becomes less than those by the other two BASE
strategies.

3) In the search market-2, we observe that our BOF frame-
work always performs better than the other two BASE
strategies in terms of the loss of effective clicks.

4) From Figs. 6 and 7, we note that our BOF framework
performs better than the other two BASE strategies in
these two search markets in terms of the cumulative loss
of effective clicks. In detail, our BOF framework and
instantiated strategies can effectively decrease the loss of
effective clicks (about 21.21% and 20.71%, respectively)
over the performance of the fixed strategy and the heuris-
tics strategy in practical search advertising campaigns.

5) We also notice that the heuristic strategy outperforms the
fixed one. The possible reason might be that it adapts
to dynamics of the advertising environment through
considering the historical knowledge of advertising
performance.

VII. DISCUSSION

From the budget point of view, limited resource capacity
significantly influences perceptions of the environment and,
thus, the marketing performance of small businesses because
marketing exercises and expenses tend to have lesser priority
over other elements [14]. For small businesses, budget con-
straints and lack of time and expertise may lead to limited
and often ad hoc or irrational promotional decisions. On the
one hand, budget constraints limit the feasible space of var-
ious optimal strategies (e.g., bidding and keyword strategies)
and thus complicate operational situations in different contexts
(e.g., search auctions). On the other hand, budget constraints
naturally lead to an important problem: how to allocate and
adjust the limited budget in a rational way to maximize the
expected profit.

The state-of-the-art budget-related work, in the context of
search auctions, usually takes the budget as constraints to

determine bids over keywords (see, e.g., [13], [16], and [30]).
We categorize such work under the term of budget-constrained
bidding strategies. To the best of our knowledge, there are few,
if any, research efforts on budget optimization in an integrated
way in search auctions. Moreover, we argue that the budget in
search auctions is structured as we analyzed in Section III-A.
Our work is the first initiative to consider budget decision prob-
lems in various decision-making situations of search auctions
as a whole and to propose a novel integrated framework that
could be viewed as an environment/testbed for various budget
optimization strategies.

Our research provides key managerial insights for advertisers
in search auctions. Advertisers usually take the budget as simple
constraints and put a lot of efforts to find more effective ways
for possible operations as defined by various kinds of mar-
kets (e.g., search auctions). This work indicates that a simple
strategy for budget allocation and adjustment can significantly
minimize the loss in terms of effective clicks in search auctions.
Note that we do not expect that our BOF framework is the only
way to deal with budget-related problems in search auctions.
We hope that our work could raise peers’ interests in budget
decision problems at different levels, in different situations
(e.g., goals and schedules), with different settings of various
parameters (e.g., auction mechanisms and processes).

VIII. CONCLUSION

In this paper, we have proposed a novel hierarchical BOF
with consideration of the entire life cycle of advertising cam-
paigns in search auctions. We formulated our BOF framework,
made mathematical analysis on some desirable properties, and
presented an effective solution algorithm. Furthermore, we
provided a simple but illustrative instantiation of our BOF
framework and made some experiments to validate our work
with real-world data from advertising campaigns. Experimental
results are quite promising, where our BOF framework and
instantiated strategies perform better than two other typical
budget strategies commonly used in practical search advertising
campaigns.

This paper has reported some preliminary research on our
BOF framework. It not only provides an open context for
possible efforts on budget strategies but also is valuable to help
advertisers in real practices in search auctions. In an ongoing
work, we extend the BOF framework to more complicated sit-
uations with uncertainties in search auctions. Another interest-
ing but challenging perspective is to explore game-theoretical
budget decisions at the system level and to study optimal
social efficiency. Third, we also intended to extend our BOF
framework in the direction of cooptimization with various ad-
vertising strategies (e.g., bidding and keyword strategies), thus
to facilitate advertising performance in an omnibearing way.
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