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As a technique for granular computing, rough sets deal with the vagueness and granularity
in information systems. Covering-based rough sets have been proposed to generalize this
theory for wider application. Three types of covering-based rough sets have been studied
for different situations. To make the theory more complete, this paper proposes a fourth
type of covering-based rough sets. Compared with the existing ones, the new type shows
its special characteristic in the interdependency between its lower and upper approxima-
tions. We carry out a systematical study of this new theory. First, we discuss basic proper-
ties such as normality, contraction, and monotone. Then we investigate the conditions for
this type of covering-based rough sets to satisfy the properties of Pawlak’s rough sets and
study the interdependency between the lower and upper approximation operations. In
addition, axiomatic systems for the lower and upper approximation operations are estab-
lished. Lastly, we address the relationships between this type of covering-based rough sets
and the three existing ones.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Data from a wide variety of fields are being collected and accumulated at a dramatic pace, facilitated by the availability of
the Internet. Although much useful information is hidden in the accumulated voluminous data, it is very difficult to obtain.
To mine knowledge from the rapidly growing volumes of digital data, researchers have proposed many methods besides
classical logic, such as fuzzy set theory [44], rough set theory [21,22,24], computing with words [36,45], granular computing
[1,14,15,42], computational theory for linguistic dynamic systems [37], and so on.

Rough set theory, originally proposed by Pawlak [20], provides a systematic approach for the classification of objects
through an indiscernibility relation. An equivalence relation is the simplest formulization of an indiscernibility. Examples
of applications of the rough set method in process control, economics, medical diagnosis, biochemistry, environmental sci-
ence, biology, chemistry, psychology, conflict analysis, and other fields abound in [6,9,11–13,25–27,49].

However, the classical rough set theory cannot deal with some granularity problems in real information systems, and thus
extensions including tolerance relations [5,31], similarity relations [33], coverings [3,46], and fuzzy rough sets [29,30,38,39]
have been proposed. The work on generalized rough sets based on coverings is fruitful in both theory [2–
4,19,28,34,35,43,46,48,50–52,55–60,62,63] and application [8]. A good case study can be found in [32].

Three types of covering-based rough set models already exist [3,4,34,60]. Zakowski extended Pawlak’s rough set theory
by using a covering of the domain, rather than a partition [46]. The new model is often referred to as the first type of cov-
ering-based rough sets. Bonikowski et al. studied this type of covering-based rough sets from the viewpoint of formal
concepts [3]. Based on the mutual correspondence of the concepts of extension and intension, they formulated necessary
. All rights reserved.
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and sufficient conditions for the existence of operations on rough sets, which are analogous to classical operations on sets.
Zhu and Wang studied the redundancy issue in covering-based rough sets [50]. They also investigated the interdependency
between the lower and upper approximation operations. An axiomatic system for the lower approximation operations was
presented in the same work. Extensive research on this can be found in [7,10,17,18,51,55,60]. Pomykala studied the second
type of covering rough set model [28]. His main method included interior and closure operators from topology. Extensive
research on this topic can also be found in [4,51,56,60]. The third type of covering-based rough set model was first proposed
in [34], with detailed properties of this type presented in [51]. The latter work also investigated the interdependency be-
tween the lower and upper approximation operations in this type of generalized rough sets. The difference between the third
type of covering-based rough sets and Pawlak’s rough sets was explored in [58]. This work also studied the conditions of
coverings under which the common properties of classical rough sets hold for the third type of covering-based rough sets.
Zhu and Wang studied the relationships between these three types of covering-based rough set models [51]. Tsang et al. [35]
investigated the application aspect of covering-based rough sets. They studied an attribute reduct for covering generalized
rough sets and presented an algorithm using a discernibility matrix to compute all the attribute reducts for covering general-
ized rough sets. Zhu and Wang also presented an example application of covering-based rough sets in [52]. A comprehensive
study of these three types of covering-based rough sets was undertaken in [60].

This paper systematically studies the fourth type of covering-based rough set model proposed in [54,57]. The main con-
tributions of the paper are 3-fold. First, we present the basic properties of this type of rough sets, and investigate the con-
ditions under which these properties are also satisfied for this new type of generalized rough sets. Second, we introduce
reducible and exact-reducible elements of a covering to investigate the conditions under which two coverings generate
an identical lower or upper approximation operation. Third, we study the relationships between this type of covering-based
rough sets and the three existing ones.

The remainder of this paper is organized as follows. In Section 2, we present the fundamental concepts and properties of
Pawlak’s rough set theory, which forms the basis of our subsequent discussion. We also define the basic concepts of cover-
ings used in this paper. Section 3 defines the new type of covering-based rough sets. We present basic properties of this new
model, and investigate the conditions under which certain properties of classical rough sets hold. In Section 4, we study the
dependency of the lower and upper approximation operations by introducing reducible and exact-reducible elements of a
covering. Section 5 discusses axiomatic systems for the lower and upper approximation operations and presents an axiom-
atic system for the lower approximation operation. We investigate the relationships between this type of covering-based
rough sets and the three existing ones in Section 6. In Section 7, we present a summary of the four types of covering-based
rough sets and highlight potential applications of covering rough sets and future research topics.

2. Background

2.1. Pawlak’s rough sets

Let U be a finite set, the domain of discourse, and R an equivalence relation on U. R will generate a partition
U/R = {Y1,Y2, . . . ,Ym} on U, where Y1, Y2, . . . , Ym are the equivalence classes induced by the equivalence relation R. For any
X # U, we can describe X by the equivalence classes of R, where the following two sets,
R�ðXÞ ¼ [fYi 2 U=RjYi # Xg;
R�ðXÞ ¼ [fYi 2 U=RjYi \ X – ;g;
are called lower and upper approximations of X, respectively.
Let ; be the empty set, and �X the complement of X in U. From the definitions of the approximation sets, the following

hold.

Proposition 1. The properties of Pawlak’s rough sets:

(1L) R⁄(U) = U (Co � normality)
(1H) R⁄(U) = U (Co � normality)
(2L) R⁄(;) = ; (Normality)
(2H) R⁄(;) = ; (Normality)
(3L) R⁄(X) # X (Contraction)
(3H) X # R⁄(X) (Extension)
(4L) R⁄(X \ Y) = R⁄(X) \ R⁄(Y) (Multiplication)
(4H) R⁄(X [ Y) = R⁄(X) [ R⁄(Y) (Addition)
(5L) R⁄(R⁄(X)) = R⁄(X) (Idempotency)
(5H) R⁄(R⁄(X)) = R⁄(X) (Idempotency)
(6L) X # Y) R⁄(X) # R⁄(Y) (Monotone)
(6H) X # Y) R⁄(X) # R⁄(Y) (Monotone)
(7L) R⁄(�R⁄(X)) = �R⁄(X) (Lower complement relation)
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(7H) R⁄(�R⁄(X)) = �R⁄(X) (Upper complement relation)
(8LH) R⁄(�X) = �R⁄(X) (Duality)
(9LH) R⁄(X) # R⁄(X) (Appropriateness)

(3L), (4L), and (7L) are characteristic properties of the lower approximation operations [16,53] i.e., all other properties of
the lower approximation can be deduced from these three properties. Similarly, (3H), (4H), and (7H) are characteristic prop-
erties of the upper approximation.

2.2. Covering and minimal description

In this subsection, we present the basic concepts of a covering and the covering approximation space. Further details of
these can be found in [3,50,51,54].

Definition 1. Let U be the domain of discourse and C a family of subsets of U. If none of the subsets in C is empty, and [ C = U,
C is called a covering of U.

Since it is clear that a partition is definitely a covering, the concept of coverings is an extension of the concept of
partitions.

In the following discussion, unless stated to the contrary, coverings are considered to be finite, i.e., they consist of a finite
number of sets.

Definition 2 (Covering approximation space). Let U be a non-empty set and C be a covering of U. We call the ordered pair
hU,Ci a covering approximation space.
Definition 3 (Minimal description). Let hU,Ci be a covering approximation space. If x 2 U, the minimal description of x is
defined as
MdðxÞ ¼ fKjx 2 K 2 C ^ ð8S 2 C ^ x 2 S # K ) K ¼ SÞg:
Definition 4 (Close friends). Let hU,Ci be a covering approximation space. If x 2 U,
S

K2Md(x)K is called the close friends of x
and is denoted as CFriends(x).
Definition 5 (Unary). Let C be a covering of set U. C is called unary if "x 2 U, jMd(x)j = 1.
Definition 6 (Pointwise-covered). Let C be a covering of U. If "K 2 C and x 2 K, K # CFriends(x), we call C a pointwise-covered
covering.

Three types of covering-based rough sets were studied in [3,4,28,34,50,60]. They are all related with respect to the min-
imal description. We present the definitions and basic properties of these types as follows. The lower approximations are
identical for the three types of generalized rough sets based on covering, but their upper approximations differ.

Let hU,Ci be a covering approximation space and X # U.

Definition 7 (Lower approximation). The covering lower approximation operation CL:P(U)) P(U) is defined as CL(X) =S
K2C^K # XK.
Definition 8 (First type of covering-based upper approximation). The first type of covering-based upper approximation oper-
ation FH:P(U)) P(U) is defined as FH(X) = CL(X) [ (

S
x2X � CL(X) CFriends(x)).

The second type of covering-based rough sets was first defined in [28].

Definition 9 (Second type of covering-based upper approximation). Let C be a covering of U. The second type of covering upper
approximation operation, SH, is defined as: "X # U, SH(X) = [K2C^K\X–/K.

The third type of covering-based rough sets was first defined in [34].

Definition 10 (Third type of covering-based upper approximation). Let C be a covering of U. The third type of covering upper
approximation operation, TH, is defined as TH(X) =

S
x2X CFriends(x).

In the remaining part of this section, we present the basic properties of these three types of covering-based rough sets
compared with Pawlak’s rough sets.

Proposition 2. [50] CL has properties (1L), (2L), (3L), (5L), and (6L) in Proposition 1. But, properties (4L) and (7L) in Proposition 1
do not hold for CL.
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Proposition 3. [50] FH has properties (1H), (2H), (3H), and (5H) in Proposition 1. But, properties (4H), (6H), and (7H) in Prop-
osition 1 do not hold for FH.
Proposition 4. [56] SH has properties (1H), (2H), (3H), (4H), and (6H) in Proposition 1. But, properties (5H) and (7H) in Propo-
sition 1 do not hold for SH.
Proposition 5. [58] TH has properties (1H), (2H), (3H), (4H), and (6H) in Proposition 1. But, properties (5H) and (7H) in Propo-
sition 1 do not hold for TH.

3. The fourth type of covering generalized rough sets

In this section, we define the fourth type of covering rough sets and investigate its properties.

3.1. Concepts and properties

Based on the definitions of the three types of covering rough sets in [3,46,60], we define a new type of covering rough set
model as follows [54]. In this type of generalized rough set model, the lower approximation is identical to that in the three
types of covering-based rough sets presented in Section 2, but the upper approximation differs from those presented.

Definition 11 (Fourth type of covering-based upper approximation). Let C be a covering of U and P(U) be the power set of U.
The operation RHC: P(U) ? P(U) is defined as follows: "X 2 P(U),
RHCðXÞ ¼ CLðXÞ [
[

ðK2CÞ^ðK\ðX�CLðXÞÞ–;Þ
K

 !
:

We call RH the fourth type of covering upper approximation operation, coupled with covering C. If the covering is obvious,
we omit the lowercase C for the two operations.
Proposition 6. If C is a partition of U, RH(X) is the upper approximation operation as specified in Pawlak’s original definitions.
Proposition 7. RH(X) = X, if and only if X is the union of elements in C.
Based on the properties of Pawlak’s rough sets listed in Section 2, we begin the study on the properties of the fourth type

of covering-based rough sets.

Proposition 8. The fourth type of upper approximation has the following properties:

(1H) RH(U) = U (Co � normality)
(2H) RH(;) = ; (Normality)
(3H) X # RH(X) (Extension)
(5H) RH(RH(X)) = RH(X) (Idempotency)

However, the following properties do not generally hold for the fourth type of covering-based rough sets.

(4H) RH(X [ Y) = RH(X) [ RH(Y) (Addition)
(6H) X # Y) RH(X) # RH(Y) (Monotone)
(7H) RH(�RH(X)) = �RH(X) (Upper complement relation)
Example 1 (Counterexample for properties (4H), (6H), and (7H)). Let U = {a,b,c,d}, K1 = {a,b}, K2 = {a,b,c}, K3 = {c,d}, and
C = {K1,K2,K3}. C is a covering of U.

(4H) Let X = {c} and Y = {d}, then we have RH(X) = {a,b,c,d} and RH(Y) = {c,d}. But, RH(X [ Y) = RH({c,d}) = {c,d}, and thus
RH(X [ Y) – RH(X) [ RH(Y).

(6H) Let X = {c} and Y = {c,d}, then we have RH(X) = {a,b,c,d} and RH(Y) = {c,d}. Although X # Y, RH(X) 6 # RH(Y).

(7H) If X = {a,b,c}, RH(X) = {a,b,c}, �RH(X) = {d}, and RH(�RH(X)) = RH({d}) = {c,d}, and therefore, RH(�RH(X)) – �RH(X).

3.2. Conditions under which covering-based rough sets satisfy certain classical properties

For the fourth type of covering-based rough sets, some of the properties of classical rough sets listed in Section 2 are no
longer valid. Here we address the issues when these properties do hold for this type of covering-based rough sets. First, we
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investigate what conditions a covering should have so that the corresponding lower approximation operation generated by
such a covering will satisfy property (4L) in Proposition 1.

Theorem 1 [60]. CL satisfies
ð4LÞ CLðX \ YÞ ¼ CLðXÞ \ CLðYÞ;
if and only if C satisfies the following properties: "K1, K2 2 C, K1 \ K2 is the union of a finite number of elements in C.
Then we consider the similar issue for property (6H) in Proposition 1.

Proposition 9. If RH satisfies
ð6HÞ X # Y ) RHðXÞ# RHðYÞ;
then C satisfies the following properties: "K1, K2 2 C, K1 \ K2 is the union of a finite number of elements in C.
Proof. ): RH(K1 \ K2) # RH(K1) = K1 and RH(K1 \ K2) # RH(K2) = K2, so RH(K1 \ K2) # K1 \ K2. By property (3H) in Proposi-
tion 8, K1 \ K2 # RH(K1 \ K2), so K1 \ K2 = RH(K1 \ K2). By Proposition 7, K1 \ K2 is the union of a finite number of elements in
C. h

Before we investigate the issue of property (4H) in Proposition 1, we prove a lemma to show that property (4H) is equiv-
alent to property (6H).

Lemma 1. RH satisfies
ð6HÞ X # Y ) RHðXÞ# RHðYÞ;
if and only if RH satisfies
ð4HÞ RHðX [ YÞ ¼ RHðXÞ [ RHðYÞ:
Proof. ): By (6H), RH(X) # RH(X [ Y) and RH(Y) # RH(X [ Y), so RH(X) [ RH(Y) # RH(X [ Y). On the other hand, by property
(3H) in Proposition 8, X [ Y # RH(X) [ RH(Y). By (6H), RH(X [ Y) # RH(RH(X) [ RH(Y)). By Proposition 7, RH(RH(X)
[ RH(Y)) = RH(X) [ RH(Y), so RH(X [ Y) # RH(X) [ RH(Y). Therefore, RH(X [ Y) = RH(X) [ RH(Y).

�: If X # Y, RH(Y) = RH(X [ Y) = RH(X) [ RH(Y), so RH(X) # RH(Y). h
Proposition 10. If RH satisfies
ð4HÞ RHðX [ YÞ ¼ RHðXÞ [ RHðYÞ;
then C satisfies the following properties: "K1, K2 2 C, K1 \ K2 is the union of a finite number of elements in C.
Proof. Straightforwardly by Proposition 9 and Lemma 1. h

From the above three theorems, we have the following two results.

Corollary 1. If RH satisfies
ð4HÞ RHðX [ YÞ ¼ RHðXÞ [ RHðYÞ;
then CL satisfies
ð4LÞ CLðX \ YÞ ¼ CLðXÞ \ CLðYÞ:
Corollary 2. If RH satisfies
ð6HÞ X # Y ) RHðXÞ# RHðYÞ;
then CL satisfies
ð4LÞ CLðX \ YÞ ¼ CLðXÞ \ CLðYÞ:

Next, we consider properties (7L) and (7H).
Theorem 2 [60]. CL satisfies
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ð7LÞ CLð�CLðXÞÞ ¼ �CLðXÞ;
if and only if "K1, . . . , Km 2 C, � (K1[, . . . ,[Km) is the union of a finite number of elements in C.
Theorem 3. RH satisfies (7H) RH(�RH(X)) = �RH(X), if and only if "K1, . . . , Km 2 C,�(K1[, . . . [ Km) is the union of a finite number
of elements in C.
Proof. The proof is similar to that of the above Theorem. h
Corollary 3. CL satisfies
ð7LÞ CLð�CLðXÞÞ ¼ �CLðXÞ;
if and only if RH satisfies
ð7HÞ RHð�RHðXÞÞ ¼ �RHðXÞ:
Proof. Directly from Theorems 2 and 3. h

As for property (8LH), we obtain only partial solutions. First, we present a necessary condition for property (8LH) to hold.

Theorem 4. If CL and RH satisfy
ð8LHÞ RHð�XÞ ¼ �CLðXÞ;
then "K1, . . . , Km 2 C, �(K1[, . . . ,[Km) is the union of finite elements in C.
Proof. "K1, . . . , Km 2 C, RH(�(K1[, . . . ,[Km)) = �CL(K1[, . . . ,[Km) = �(K1[, . . . ,[Km), and thus, by Proposition 7,� (K1[, . . . ,[Km)
is the union of a finite number of elements in C. h

Combining Theorems 2–4, we have the following corollary.

Corollary 4. If CL and RH satisfy
ð8LHÞRHð�XÞ ¼ �CLðXÞ;
then CL satisfies
ð7LÞCLð�CLðXÞÞ ¼ �CLðXÞ
and RH satisfies
ð7HÞRHð�RHðXÞÞ ¼ �RHðXÞ:
4. Dependency of lower and upper approximation operations

For Pawlak’s rough sets, lower and upper approximation operations are dual, so the lower approximation operation un-
iquely determines the upper approximation operation, and vice versa. As shown in (8LH) in Remark 1, lower and upper
approximation operations of the fourth type of covering-based rough sets are not dual. It is an interesting question whether
the lower approximation operation uniquely determines the upper approximation operation, or the upper approximation
operation uniquely determines the lower approximation operation for this type of generalized rough sets. In this section,
we explore the interdependency of the lower and upper approximation operations in this fourth type of covering-based
rough sets. To achieve this goal, we also investigate the conditions under which two coverings generate the same lower
approximation operation or the same upper approximation operation.

Example 2 (Two different coverings generate an identical lower approximation operation and an identical upper approximation
operation). Let U = {a,b,c,d}, K1 = {a}, K2 = {b}, K3 = {a,b}, K4 = {c,d}, and K5 = {a,b,c}, then C = {K1,K2,K4,K5} and C0 = {K1,K2,K3,
K4,K5} are two coverings of U. It is easy to see that they generate the same lower approximation operation and the same
upper approximation operation.
Example 3 (Two coverings generate the same lower approximation of the fourth type and two different upper approximations of
the fourth type). Let U = {a,b,c}, K1 = {a}, K2 = {b,c}, K3 = {a,b,c}, and C1 = {K1,K2},C2 = {K1,K2,K3}. C1 and C2 generate the same
lower approximation, but they generate different upper approximations. In fact, under C1:
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RH({a}) = {a}, RH({b}) = {b,c}, RH({c}) = {b,c}, RH({a,b}) = {a,b,c}, RH({a,c}) = {a,b,c}, RH({b,c}) = {a,b,c}, and RH({a,b,c}) =
{a,b,c}.

However, under C2:

RH({a}) = {a}, RH({b}) = {a,b,c}, RH({c}) = {a,b,c}, RH({a,b}) = {a,b,c}, RH({a,c}) = {a,b,c}, RH({b,c}) = {a,b,c}, and
RH({a,b,c}) = {a,b,c}.
4.1. Conditions for two coverings to generate the same lower approximation operation

To explore the conditions under which two coverings generate the same lower approximation operation, we introduce
the key concept defined in [50] – the reduct of a covering.

Definition 12 (A reducible element of a covering). Let C be a covering of domain U and K 2 C. If K is the union of some sets in
C � {K}, we say K is reducible in C, otherwise K is irreducible.
Definition 13 (A reducible covering 50). Let C be a covering of U. If every element in C is irreducible, we say C is irreducible;
otherwise C is reducible.
Proposition 11 [50]. Let C be a covering of domain U. If K is reducible in C, C � {K} is still a covering of U and "x 2 U.
Proposition 12 [50]. Let C be a covering of U, K 2 C, K be reducible in C, and K1 2 C � {K}. K1 is reducible in C, if and only if it is
reducible in C � {K}.

Proposition 11 guarantees that after deleting a reducible subset in a covering, it is still a covering, while Proposition 12
shows that deleting a reducible subset in a covering will not generate any new reducible elements or make other previously
reducible elements irreducible. Consequently, we can compute the reduct of a covering of a domain by deleting all reducible
elements. The remainder still consists of a covering of the domain and is irreducible.

Definition 14 (Reduct of a covering 50). For a covering C of domain U, the new irreducible covering through the above
reduction is called the reduct of C and is denoted by reduct(C).

By Proposition 12 and the definition of the reduct, it is clear that reduct(C) is unique for a covering C of U.
The following theorem on the condition under which two coverings generate the same lower approximation comes from

Ref. [50].

Theorem 5 (Condition under which two coverings generate the same lower approximation). C1 and C2 generate the same
lower approximation, if and only if reduct(C1) = reduct(C2).
4.2. Conditions for two coverings to generate the same upper approximation operation

For upper approximation operations in the fourth type of covering rough sets, we are still faced with the question of when
two coverings will generate the same upper approximation operation. We propose an alternative concept, the exact-reduct,
as a means to solving this problem.

Definition 15 (An exact-reducible element of a covering). Let C be a covering of domain U and K 2 C. If there exist
K1, . . . ,Km 2 C � {K} such that K = K1[, . . . ,[Km, and "x 2 K and {x} not a singleton element of C, K # [ {K0jx 2 K0 2 C � {K}}, K is
called an exact-reducible element of C.
Example 4 (An exact-reducible element of a covering). Let U = {a,b,c,d}, K1 = {a,b}, K2 = {a,c,d}, K3 = {b,c}, K4 = {b,d}, K5 = {c,d},
K6 = {a,b,c,d}, and C = {K1,K2,K3,K4,K5,K6}. K6 is an exact-reducible element of C.
Proposition 13. Let C be a covering of domain U. If K is exact-reducible in C, then K is reducible in C.
Definition 16 (An exact-reducible covering). Let C be a covering of U. If every element in C is exact-irreducible, we say C is
exact-irreducible; otherwise C is exact-reducible.
Proposition 14. Let C be a covering of domain U. If K is exact-reducible in C, C � {K} is still a covering of U.
Similar to Proposition 12 for the reduct of a covering, the exact-reduct has the following properties.
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Proposition 15. Let C be a covering of U, K 2 C, K be reducible in C, and K1 2 C � {K}. K1 is reducible in C, if and only if it is
reducible in C � {K}.

Proposition 14 guarantees that after deleting a reducible subset in a covering, it is still a covering, while Proposition 15
shows that deleting a reducible subset in a covering will not generate any new reducible elements or make other previously
reducible elements irreducible. Consequently, we can compute the reduct of a covering of a domain by deleting all reducible
elements. The remainder still consists of a covering of the domain and is irreducible.

Definition 17 (Exact-reduct of a covering). For a covering C of domain U, the new irreducible covering through the above
reduction is called the exact-reduct of C and is denoted by exact-reduct(C).

Like reduct(C), exact-reduct(C) is unique for a covering C of U.

Proposition 16. Suppose C is a covering of U, K 2 C. The upper approximations of the fourth type of covering generated by
coverings C and C � {K}, respectively, are the same if and only if K is exact-reducible in C.
Proof. RHðXÞ ¼ CLðXÞ [ ð
S

K 00\ðX�CLðXÞÞ–;K
00Þ. The fact that K is the union of elements in C � {K} guarantees keeping the lower

approximation CL(X) of X unchanged, while the condition that "x 2 K and fxg R C; K #
S

x2K 02C�fKggK
0 keepsS

K 00\ðX�CLðXÞÞ–;K
00 unchanged. As a result, RH(X) remains unchanged in C � {K}, if and only if K is exact-reducible in C. h

Now we reach an important conclusion on the exact-reduct and the fourth type of the upper approximation operation.

Theorem 6 (Condition under which two coverings generate the same fourth type of upper approximation). Two coverings C1

and C2 of U generate the same fourth type of upper approximation operation, if and only if exact-reduct(C1) = exact-reduct(C2).
4.3. Interdependency of approximation operations

Proposition 17. Let C1, C2 be two coverings of U. If C1 and C2 generate the same upper approximation of the fourth type of
covering, then reduct(C1) = reduct(C2).
Proof. Let RH1 and RH2 be upper approximations of the fourth type of covering generated by coverings C1 and C2, respec-
tively. If RH1 and RH2 are identical, then for any irreducible element K of C1, by Proposition 8 (9H), RH1(K) = K, and thus
RH2(K) = K. By Proposition 7, there exist K1, . . . ,Km in C2 such that K = K1[, . . . ,[Km. If m = 1, we have proved that
K = K1 2 C2. Otherwise, K1, . . . ,Km � K. In the same way, for any 1 6 i 6m, there exist J1; . . . ; Jni

2 C1 such that

Ki ¼ Ji
1 [ . . . [ Ji

ni
. Therefore, K ¼ K1 [ . . . [ Km ¼ [m

i¼1[
ni
j¼1Ji

1 [ . . . [ Ji
ni

. This means that K is a reducible element in C1. This con-
tradiction proves that K 2 C2.

In the same way, we can prove that any irreducible element K of C2 is an element of C1. Therefore,
reduct(C1) = reduct(C1). h

From Proposition 17 and the above proposition, the resulting relationship between reduct and exact-reduct follows.

Corollary 5. Let C1, C2 be two coverings of U. If exact-reduct(C1) = exact-reduct(C2), then reduct(C1) = reduct(C1).
Based on Theorem 5 and Proposition 17, we reach the following conclusions about the lower and upper approximation

operations.

Theorem 7. Let C1, C2 be two coverings of U. If C1 and C2 generate the same fourth type of covering upper approximations, they
generate the same fourth type of covering lower approximations.
Proof. Straightforwardly from Proposition 17 and Theorem 5. h

The interdependency between the lower and the upper approximation operations is summarized as follows.

Theorem 8. The fourth type of covering upper approximation uniquely determines the fourth type of covering lower
approximation, but the fourth type of covering lower approximation does not uniquely determine the fourth type of covering
upper approximation.
Proof. This comes from Example 3 and Theorem 7. h
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5. Axiomatic system for approximation operations

Pawlak’s lower and upper approximation operations have been axiomatized [16]. Now, it is important to ascertain which
are the characteristic properties for the covering lower and upper approximation operations. Below we present an axiom of
the covering lower approximation operations. The axiomatization of covering upper approximation operations can be found
in [48].

5.1. An axiomatic system for lower approximation operations

An axiomatic system for the covering lower approximation operations is given below.

Theorem 9. [50] Let U be a non-empty set. If an operation L:P(U) ? P(U) satisfies the following properties: for any X, Y # U,

(1) L(U) = U,
(2) X # Y) L(U) # L(U),
(3) L(X) # X,
(4) L(L(X)) = L(X),

then there exists a covering C of U such that the covering lower approximation operation generated by C equals L.
The above four properties for a covering lower approximation operation are independent.
5.2. The axiomatic issue for the upper approximation operations

We have as yet not found an axiomatic system for the fourth type of upper approximation operations. In fact, the popular
properties listed in Proposition 8 are not sufficient to characterize the fourth type of upper approximation operations as
shown in the following example.

Example 5. Let U = {a,b,c}, K1 = {a,b}, K2 = {b,c}, and C = {K1,K2}. Define H:P(U) ? P(U) as
H(;) = ;, H(K1) = K1, H(K2) = K2, H({a}) = {a,c}, and H(X) = U for other X # U.
It is apparent that H satisfies (1H), (2H), (3H), (5H), and (9H), but H is not a fourth type of upper approximation operation

for any covering of U.
6. Relationships between the upper approximations of the four types of coverings

For a covering C of U, there are four types of covering rough sets. These have the same lower approximation operation, but
different upper approximation operations. Then, the first question to be asked is: What are the relationships among these?

Since TH(X) =
S

x2X^K2Md(x)K = (
S

x2CL(X)^K2Md(x)K) [ (
S

x2X�CL(X)^K2Md(x)K) and "x 2 X we have x 2Md(x) and Md(x) \ X – /,
from the definitions of the four types of upper approximation operations, the following two rules hold in general. For a cov-
ering C of U and X # U,
FHðXÞ# THðXÞ# SHðXÞ; ð1Þ
FHðXÞ# RHðXÞ# SHðXÞ: ð2Þ
Generally, however, the above equalities do not hold, as can be seen from the following examples.

Example 6. Let U = {a,b,c,d}, K1 = {a,b}, K2 = {a,b,c}, K3 = {c,d}, and C = {K1,K2,K3}. C is a covering of U.

� Let X = {a}, then we have TH(X) = {a,b} and SH(X) = {a,b,c}, so TH(X) � SH(X).
� Let X = {c,d}, then we have FH(X) = {c,d} and TH(X) = {a,b,c}, so FH(X) � TH(X).
Example 7. Let U = {a,b,c,d}, K1 = {a,b}, K2 = {a,c}, K3 = {c,d}, and X = {a,b}, then RH(X) = {a,b} and TH(X) = {a,b,c}, so
RHðXÞ � THðXÞ:
Example 8. Let U = {a,b,c,d}, K1 = {a,b}, K2 = {a,c}, K3 = {c,d}, K4 = {a,b,c}, and X = {c}, then RH(X) = {a,b,c,d} and
TH(X) = {a,c,d}, so
THðXÞ � RHðXÞ:
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Example 9. Let U = {a,b,c,d}, K1 = {a,b}, K2 = {c,d}, K3 = {a,b,c}, and X = {a}, then FH(X) = {a,b} and RH(X) = {a,b,c}, so
FHðXÞ � RHðXÞ:
Example 10. Let U = {a,b,c,d}, K1 = {a,b}, K2 = {c,d}, K3 = {a,b,c}, and X = {a,b}, then RH(X) = {a,b} and SH(X) = {a,b,c}, so
RHðXÞ � SHðXÞ:

Now, another question arises: When are these upper approximation operations equal?
6.1. Results for FH, SH, and TH

From the above discussion, for a covering C of U and X # U, we have FH(X) # TH(X) # SH(X) and the equality does not
generally hold. In the following three theorems, we present sufficient and necessary conditions under which the above
equalities hold. As for the proofs, please refer to paper [51].

Theorem 10. [51]

(1) FH = TH, if and only if C is unary.
(2) TH = SH, if and only if C is pointwise-covered.
(3) FH = SH, if and only if C is a partition.

6.2. Conditions under which FH and RH are identical

Theorem 11 (Condition under which FH = RH). Let C be a covering of U, and FH and RH be the first and fourth types of upper
approximation operations, respectively. FH = RH, if and only if C satisfies the following condition:
8x 2 U; if fxg R C; then 8K 2 C and x 2 K; K # CFriendsðxÞ:
Proof. Suppose FH = RH. "x 2 U, if {x} R C, then CL({x}) = /. Since FH({x}) = RH({x}), "K 2 C and x 2 K, K # CFriends(x).

On the contrary, suppose the above condition holds. "X # U, if K 2 C and K \ (X � CL(X)) – /, there exists x 2 X � CL(X)
such that x 2 K. Since x 2 X � CL(X), so {x} R C. By the condition, K # CFriends(x), so K 2 FH(X). Therefore, RH(X) # FH(X).
Combining FH(X) # RH(X), we get the result that FH = RH. h
6.3. Conditions under which RH and SH are identical

Theorem 12 (Condition under which RH = SH). Let C be a covering of U, and RH and SH be the fourth and second types of upper
approximation operations, respectively. RH = SH, if and only if C is a partition.
Proof. If C is a partition, it is obvious that RH = SH.
On the contrary, suppose RH = SH. "K,K0 2 C and K – K0, if K \ K0 – /. By Proposition 7, RH(K) = K, so SH(K) = K. From the

definition of SH, K0 # SH(K), so K0 # K. Since K – K0, K0 � K. Again, by Proposition 7, RH(K0) = K0 while by the definition of SH,
K # SH(K0). Thus RH(K0) = K0 � K # SH(K0), which contradicts RH = SH. h
6.4. Conditions under which TH and RH are identical

Lemma 2 (Necessary condition under which TH = RH). Let C be a covering of U, and TH and RH be the third and fourth types of
upper approximation operations, respectively. If TH = RH, then "K, K0 2 C and K – K0, K \ K0 is the union of a finite number of
elements in C.
Proof. Let TH = RH, K \ K0 – /, and K0 is not a subset of K. By the definition, RH(K) = K, so TH(K) = K. By the definition of the
third type of covering upper approximation, " x 2 K \ K0, K0 R Md(x); otherwise K0 # TH(K) = K. As a result, "x 2 K \ K0, there
is a Kx 2 C such that Kx 2Md(x) and Kx # K0. Kx must be a subset of K for Kx # TH(K). This means that K \ K 0 ¼

S
x2K\K 0Kx. We

prove that K \ K0 is the union of a finite number of elements in C. h
Corollary 6 (Necessary condition under which TH = RH). Let C be a covering of U, and TH = RH, where TH and RH are the third
and fourth types of upper approximation operations, respectively. If K, K0 2 C, x 2 K, and K0 2Md(x), then K0 # K.
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Proof. If K0 # K does not hold, then K \ K0 � K0. According to Lemma 3, K \ K0 is a reducible element in C, so there exists
K00 2 C such that x 2 K00 # K \ K0 � K0. This contradicts K0 2Md(x). h
Corollary 7 (Necessary condition under which TH = RH). Let C be a covering of U, and TH and RH be the third and fourth types of
upper approximation operations, respectively. If TH = RH, then C is unary.
Lemma 3. Let C be a covering of U, and TH be the third type of upper approximation operation. If for K, K0 2 C and K – K0, K \ K0 is
the union of a finite number of elements in C, then for any K1 2 C, TH(K1) = K1.
Corollary 8. Let C be a covering of U, and TH be the third type of upper approximation operation. If for K, K0 2 C and K – K0, K \ K0

is the union of a finite number of elements in C, then for any K1, K2, . . . , Kn 2 C, TH(K1 [ K2[, . . . ,[Kn) = K1 [ K2[, . . . ,[Kn.
Theorem 13 (Condition under which TH = RH). Let C be a covering of U, and TH and RH be the third and fourth types of upper
approximation operations, respectively. TH = RH, if and only if, for K, K0 2 C, K – K0, and x 2 K \ K0, {x} 2 C.
Proof. Let TH = RH and there exists K, K0 2 C such that K – K0, x 2 K \ K0 and {x} R C. By Lemma 3, there exists K1 2 C such that
K1 # K \ K0 and x 2 K1. By the definitions of RH, K � RH({x}) and K0 � RH({x}). By Corollary 7, Md(x) has only one element, herein
Kx. Since x 2 K1, and C is unary, it is easy to see that Kx # K1. Thus, by the definition of TH, TH({x}) = Kx # K \ K0 � RH({x}). This
contradicts TH = RH.

Suppose that for K, K0 2 C, K – K0, and x 2 K \ K0, {x} 2 C. "X # U, X = CL(X) [ (X � CL(X)) and there exist K1, K2, . . . , Kn 2 C such
that CL(X) = K1 [ K2[, . . . ,[Kn. Thus, by (4H) in Proposition 5 and Corollary 6, TH(X) = TH(CL(X)) [ TH(X � CL(X)) = TH(K1 [
K2 [, . . . ,[Kn) [ TH(X � CL(X)) = K1 [ K2[, . . . ,[Kn [ TH(X � CL(X)) = CL(X) [ TH(X � CL(X)). "x 2 X � CL(X), there is only Kx 2 C
such that x 2 Kx; otherwise, {x} 2 C, then x 2 CL(X). This contradicts x 2 X � CL(X). Therefore, TH(X � CL(X)) =S

K2Md(x)^x2X�CL(X)K =
S

x2K2C^x2X�CL(X)K. This proves TH(X) = CL(X) [ TH(X � CL(X)) = CL(X) [ (
S

x2K2C^x2X�CL(X)K) = RH(X). h
7. Conclusions and future work

We have presented a new type of covering-based generalized rough sets, discussed its properties, and proposed concepts
to study the interdependency of the lower and upper approximation operations. We have also considered the axiomatic is-
sue for this type of rough sets and its relationship with the three existing ones. As a summary, we present the properties of
these four types of covering-based rough sets in Table 1.

Combined with the results given in [50,51,60], we summarize the results on the interdependency of the lower and upper
approximations in Table 2.

Application of rough set theory to real problems is an important and challenging issue for rough set research. We have
also worked on applying covering rough set theory to conflict analysis and the Chinese Wall security policy [52]. It seems
Table 1
Properties of upper approximation operations.

Satisfied Not satisfied

CL (1L), (2L), (3L), (5L), (6L) (4L), (7L)
FH (1H), (2H), (3H), (5H) (4H), (6H), (7H)
SH (1H), (2H), (3H), (4H), (6H) (5H), (7H)
TH (1H), (2H), (3H), (4H), (6H) (5H), (7H)
SH (1H), (2H), (3H), (5H), (4H), (6H), (7H)

Table 2
Interdependency of lower and upper approximation operations.

Uniquely determines Does not uniquely determine

CL FH
FH CL
CL SH
SH CL
CL TH
TH CL
CL RH
RH CL
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that a covering based granular computing is more appropriate than a binary relation based one [14]. Furthermore, possibil-
ities exist for applying the covering generalized rough set theory to computational theory for linguistic dynamic systems
[36]. The relationships between covering rough sets and binary relation based rough sets [40,41,47,61] is a future topic to
be explored [23,62].
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