
 

 
Volume 13    Issue 2 

Jo
ur

na
l o

f t
he

 A
ss

oc
ia

tio
n 

fo
r I

nf
or

m
at

io
n 

 

Abstract 

Research Article 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Linjing Li 
State Key Laboratory of Management and Control for Complex Systems, China 
linjing.li@ia.ac.cn 
 
Daniel Zeng 
State Key Laboratory of Management and Control for Complex Systems, China 
dajun.zeng@ia.ac.cn 
 
Huimin Zhao 
University of Wisconsin-Milwaukee 
hzhao@uwm.edu 

Despite the tremendous commercial success of generalized second-price (GSP) keyword auctions, it still 
remains a big challenge for an advertiser to formulate an effective bidding strategy. In this paper, we strive to 
bridge this gap by proposing a framework for studying pure-strategy Nash equilibria in GSP auctions. We first 
analyze the equilibrium bidding behaviors by investigating the properties and distribution of all pure-strategy 
Nash equilibria. Our analysis shows that the set of all pure-strategy Nash equilibria of a GSP auction can be 
partitioned into separate convex polyhedra based on the order of bids if the valuations of all advertisers are 
distinct. We further show that only the polyhedron that allocates slots efficiently is weakly stable, thus allowing all 
inefficient equilibria to be weeded out. We then propose a novel refinement method for identifying a set of 
equilibria named the stable Nash equilibrium set (STNE) and prove that STNE is either the same as or a proper 
subset of the set of the well-known symmetrical Nash equilibria. These findings free both auctioneers and 
advertisers from complicated strategic thinking. The revenue of a GSP auction on STNE is at least the same as 
that of the classical Vickrey-Clarke-Groves mechanism and can be used as a benchmark for evaluating other 
mechanisms. At the same time, STNE provides advertisers a simple yet effective and stable bidding strategy. 
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1. Introduction 
Keyword advertising (also known as sponsored search advertising (SSA) or paid search) is currently the 
most prevailing online advertising instrument search engines provide. Advertisers submit 
advertisements (sponsored links) to a search engine and buy some keywords related to their 
advertisements. If one of these keywords matches a query of a search engine user, the search engine 
will show the corresponding advertisements along with the standard search result (also referred to as 
organic result or algorithmic result), usually in the right region of the search result page. If the user clicks 
on a link, the advertiser should pay a certain fee to the search engine for bringing this potential 
customer. This payment mode is called pay-per-click, while some traditional Internet advertisements, 
such as banner ads, are sold by pay-per-impression. 
 
Keyword advertising is more targeted than traditional advertising forms such as television, radio, and 
newspaper because the click of a sponsored link exposes potential interest of the search engine user in 
the advertised products or services. Keyword advertising is now the fastest-growing sector in the 
Internet advertising market. In the US, keyword advertising constitutes the largest share of the entire 
Internet advertising market. The total revenue of the whole Internet advertising market in 2008 was 
$23.4 billion, 45 percent of which came from keyword advertising; this percentage increased to 47 
percent in 2009, according to IAB (2010). Keyword advertising also constituted the largest revenue 
share (56.9 percent) in China’s Internet advertising market in 2009, with a 38 percent increase over 
2008, and reached RMB 7.01 billion in total (about $1 billion), according to DCCI (2010). Meanwhile, 
keyword advertising is also currently the most important and fastest-growing revenue source for search 
engines. According to a Google financial report, keyword advertising took up about 97 percent of its total 
revenue in both 2008 and 2009 (Google, 2010a). In 2009, Baidu, the largest Chinese search engine, 
reported a total revenue of $651.6 million, $651.2 million of which came from keyword advertising 
(Baidu, 2010). 
 
Keywords are sold through automatically conducted auctions. Two major keyword auction mechanisms 
have been used in the industry. Generalized first-price (GFP) is the original mechanism introduced by 
Goto.com in 1994 (renamed Overture in 1997 and then sold to Yahoo! in 2003). In a GFP auction, a 
bidder must pay the amount it has bid if its links are clicked. As the GFP mechanism is intrinsically 
unstable, bidders need to adjust their bids constantly (Edelman & Ostrovsky, 2007; Zhang & Feng, 
2005). Now, generalized second-price (GSP) has become the dominant auction mechanism used by 
search engines, as well as some other types of IT companies. In a GSP auction, a bidder pays the bid 
of the bidder allocated just below it, rather than its own bid. However, almost all practical systems use a 
slightly modified GSP auction model. For example, Google uses the product of bid and quality score 
(Google, 2010b), while Yahoo! uses the product of bid and quality index (Yahoo!, 2010), to determine 
the allocation and payment. For more information about the history of SSA and GSP, please refer to 
Ghose and Yang (2009), Jansen and Mullen (2008), and Muthukrishnan (2008). 
 
Despite the tremendous commercial success of the GSP auction, formulating an effective bidding 
strategy still poses serious challenges from the point of view of advertisers. In a static environment, an 
effective bidding strategy must form an equilibrium because, otherwise, bidders may have incentive to 
revise their bids. In a dynamic environment, while bidders can adjust their bids frequently to gain more 
profit, the space of dynamic strategies is too complex to assess the optimality or effectiveness of 
strategies in it. As a result, a typically used effective strategy-generating approach is to build dynamic 
strategy using static pure-strategy, such as the forward-looking strategy (myopic strategy or greedy 
strategy) studied in Bu, Deng, and Qi (2007, 2008), Cary et al. (2007), and Vorobeychik and Reeves 
(2008). At the same time, auctioneers find it difficult to evaluate the performance of the GSP mechanism 
because the revenue generated from the auction is evaluated at the equilibrium state in auction theory. 
In particular, if an auction mechanism has a dominant strategy equilibrium, the revenue at this dominant 
equilibrium can be used for revenue comparison with other mechanisms. 
 
In a GSP auction, these challenges largely stem from the existence of an infinite number of pure-
strategy equilibria. Although several auctioneers and third-party companies (e.g., Keyword Country and 
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adSage) provide various services and software tools to help advertisers make bidding decisions, most 
of these services or tools heavily rely on ad-hoc heuristics and human intelligence without a proper 
theoretical or computational foundation (Kitts & LeBlanc, 2004). In this paper, we address these 
challenges by analyzing all the pure-strategy Nash equilibria (PSNE) of a GSP auction with complete 
information and by proposing two dynamic refinements to weed out useless equilibria. We first 
characterize and identify all pure-strategy Nash equilibria of a GSP auction and analyze their distribution 
in the pure-strategy space. Our analysis shows that the set of all these equilibria can be partitioned into 
several distinct classes, each of which forms a convex polyhedron. Furthermore, these polyhedra are 
separately distributed in the pure-strategy space, if the valuations of all bidders are distinct. 
 
Next, we propose a refinement concept, named “weak stability”, to weed out the inefficient equilibria. 
We find that only the polyhedron that allocates slots efficiently is weakly stable in repeated GSP 
auctions. We also propose a measure for quantifying the degree of instability of each equilibrium 
polyhedron. 
 
Finally, we propose another powerful refinement concept, named “stability”, on the weakly stable 
polyhedron to further exclude remaining efficient but risk-dominated equilibria. We provide a method for 
finding the stable Nash equilibrium set (STNE) of a given GSP auction and relate STNE to the well-
known locally envy-free (LEF) and symmetric Nash equilibrium (SNE) (Edelman, Ostrovsky, & Schwarz, 
2007; Varian, 2007, 2009). We show that STNE is either the same as or a proper subset of SNE/LEF. 
The revenue of a GSP auction on STNE is at least the same as that of the classical Vickrey-Clarke-
Groves (VCG) mechanism (Clarke, 1971; Groves, 1973; Vickrey, 1961) and can be used as a 
benchmark for evaluating other mechanisms. At the same time, STNE provides advertisers with a 
simple yet effective and stable strategy. 
 
The remainder of this paper is organized as follows. We first provide a review of related work in Section 
2. We then lay out a formal specification of the GSP auction mechanism in Section 3. In the next three 
sections, we present our proposed analysis methodologies and discoveries: In Section 4, we show how 
to find and partition the set of all Nash equilibria; in Section 5, we describe how to weed out inefficient 
Nash equilibria; and in Section 6, we present our method for finding STNE. In Section 7, we discuss 
some implications of STNE for both auctioneers and bidders and the relationships between our 
proposed equilibrium refinements and major existing refinements. Finally, in Section 8, we summarize 
our major contributions and discuss some future research directions. Major proofs of theorems and 
propositions are available in the Appendix A. 

2. Related Work 
In general, there are two main lines of research on GSP auction. One focuses on designing bidding 
strategies for bidders. The other concentrates on designing optimal auction mechanisms (in terms of 
various criteria) for auctioneers. As our work is along the former line, we provide a review of related 
work below. Readers interested in the latter line are referred to the following papers. Iyengar  (2006) 
discusses the conditions that an optimal keyword auction needs to satisfy. Garg, Narahari, and Reddy 
(2007) proposes the optimal auction mechanism for keyword selling. Feng, Shen, and Zhan  (2007) and 
Feng (2008) format advertisement slots as ranked items and design mechanisms for auctioning them. 
Liu, Chen, and Whinston (2010) study the weighting mechanism. Athey and Nekipelov (2010) propose a 
structure model for SSA. Chen, Liu, and Whinston (2009) discuss the optimal share structure problem 
to maximize the revenue of search engines. See also Aggarwal, Goel, and Motwani (2006), Aggarwal 
and Hartline (2006), Animesh, Ramachandran, and Viswanathan (2010), and Goel and Munagala 
(2009) for other related studies along this line. 
 
Through analyzing practical ranking data, Edelman and Ostrovsky (2007) find that strategic bidding 
behaviors exist in GSP auction. However, Edelman et al. (2007) proves that GSP auction has no 
dominant strategy and that “truth-telling” is not always a Nash equilibrium. Thus, advertisers do not have 
simple yet effective strategies (e.g., truth-telling or dominant strategy). 
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In the pure-strategy space, Milgrom (2010) proves that GSP auction is a tight simplification (with limited 
message space) of some second-price auctions. In order to reduce the complexity of analysis, LEF 
(Edelman et al., 2007) and SNE (Varian, 2007, 2009) have been proposed as refinements of Nash 
equilibrium. LEF and SNE are equivalent, easy to compute, and can explain certain bidding behaviors 
observed in Google’s AdWords system (Varian, 2007). Further, Börgers, Cox, Pesendorfer, and Petricek 
(2007) provide the existence conditions for SNE in a non-separated model and showed through a 
numerical example that inefficient Nash equilibrium exists in GSP auction. Thompson and Leyton-Brown 
(2008, 2009) consider the equilibrium-finding problem from the point of view of computing. They 
discretize the bids and view GSP auction as an action-graph game (AGG). With the help of this AGG, 
one can compare GSP auction with other auction mechanisms such as GFP (Jansen & Mullen, 2008) 
and VCG (Clarke, 1971; Groves, 1973; Leonard, 1983; Shapley & Shubik, 1972; Vickrey, 1961). 
 
These studies address the existence of Nash equilibrium in GSP auction and provide some elementary 
refinements on the set of Nash equilibria. However, they have not yet found the entire set of Nash 
equilibria. 
 
Animesh et al. (2010) study differentiation strategies in this competitive market. Bu et al. (2007, 2008), 
Cary et al. (2007), and Vorobeychik and Reeves (2008) study myopic strategy in repeated GSP auction, 
in which they assume a perfect information structure (i.e., the bidding vector is announced after each 
stage auction such that the optimal bid of an advertiser for the next round of auction can be calculated 
by fixing other advertisers’ bids). In parallel to these analyses of pure-strategy Nash equilibria (PSNE), 
some researchers analyze the Bayes Nash equilibrium (BNE) of GSP auction. Leme and Tardos (2010) 
studiy the price of anarchy for GSP auction under both PSNE and BNE. Lahaie (2006) and Varian 
(2007) provide some elementary treatments and note that it is difficult to obtain an analytical solution. 
Gomes and Sweeney (2009) provide an integral equation, which efficient symmetric BNEs need to 
satisfy. However, obtaining a close-form solution to this equation is difficult even in the simplest case 
(i.e., GSP auction with only two slots and two bidders). 

3. Model Specification 
In this section, we provide a formal specification of GSP auction. We formulate GSP auction as a static 
game with complete information. We then illustrate how to unify GSP auctions with and without quality 
score into a single mathematical model. 

3.1. GSP Mechanism 
There are 𝑁  bidders competing for a keyword. Let 𝒩 =  {1,2,⋯ ,𝑁} denote the bidder set. The 
auctioneer provides 𝐾  advertising slots. Let 𝒦 =  {1,2,⋯ ,𝐾} denote the slot set. We consider the 
problem of allocating the 𝐾  slots to the 𝑁  bidders. In practice, this problem is addressed by 
automatically conducted auctions, such as the keyword advertising systems of Google, Yahoo!, MS-
Bing, and Baidu. 
 
Let 𝑏𝑖 denote the bid that bidder 𝑖 has submitted and 𝒃 =  (𝑏1, 𝑏2,⋯ , 𝑏𝑁) denote the bidding vector of the 
𝑁 bidders. All possible bidding vectors form a set ℬ, referred to as the pure-strategy space. Without any 
constraint, ℬ is identical to ℝ+

𝑁. However, in the real world, each bidder may have an upper bound on its 
bid. 
 
The allocation of slots is based on the bidding vector 𝒃. The most widely used auction mechanism is 
GSP, which is a multi-item extension of Vickrey’s second-price auction (Vickrey, 1961). Following 
conventions in the mechanism literature, we use ℳ = (𝜋, 𝑝) to denote the GSP mechanism, where 
𝜋 ∶ 𝒦 → 𝑁 is the allocation rule and 𝑝 ∶ 𝒦 → ℝ+ is the payment rule. In GSP, a bidder who submits a 
larger bid is allocated to a higher slot; formally, ∀𝛼,𝛽 ∈ 𝒦,𝛼 < 𝛽 → 𝑏𝜋𝛼 ≥ 𝑏𝜋𝛽, where 𝜋𝛼 is a shorthand 
for 𝜋(𝛼). The price of slot 𝛼 is just the bid of the bidder allocated to slot 𝛼 + 1, thus 𝑝𝛼 = 𝑏𝜋𝛼+1, where 𝑝𝛼 
is a shorthand for 𝑝(𝛼). 
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For the sake of convenience in subsequent discussions, let 𝜓(∙) denote the inverse of 𝜋(∙); that is, 𝜓𝑖, a 
shorthand for 𝜓(𝑖), is the slot allocated to bidder 𝑖. Let 𝜋(𝒦) denote the set of bidders who get a slot. All 
bidders in 𝒩/𝜋(𝒦) are lost in the auction. ∀𝛽 > 𝐾, 𝑝𝛽 = 0, since bidders who do not get a slot do not 
need to pay. 𝜋𝐾+1 is the bidder who loses in the auction with the highest lost bid, 𝑏𝜋𝐾+1. 

3.2. Payoff Function 
There are two types of valuation models of advertisers in the literature: slot-independent and slot-
dependent (Börgers et al., 2007). In this paper, we adopt the widely applied (e.g., Edelman et al., 2007; 
Lahaie, 2006; Varian, 2007, 2009) slot-independent valuation model for the following reasons. First, the 
potential profit to a specific advertiser is due to the action that a user takes on this advertiser’s webpage 
after clicking a sponsored link, rather than the click per se. Second, slot-independence leads to a quasi-
linear payoff function (see Equation 1 later), which makes the partitioning of the entire equilibrium space 
(discussed in Section 4) possible. 
 
Let 𝑣𝑖  denote the average value of a single click on the sponsored link of bidder 𝑖. Without loss of 
generality, we let 𝑣1 > 𝑣2 > ⋯ > 𝑣𝑁  (if this does not hold, just re-index the bidders). Let 
𝒗 = (𝑣1, 𝑣2,⋯ , 𝑣𝑁) denote the valuation vector of all bidders. We consider 𝒗 to be common knowledge, 
as bidders can estimate it from collected historical data (see, e.g., Börgers et al., 2007; Varian, 2007). 
 
Let 𝒸𝑖𝛼  denote the click-through rate of bidder 𝑖  if its advertisement is allocated to slot 𝛼 , and 𝐶 =
{�𝑐𝑖𝛼|𝑖 ∈ 𝒩,𝛼 ∈ 𝒦} denote the set of all click-throughs. There are three kinds of click-through models –  
separated, non-separated, and cascade – in the literature. The most widely used is the separated model 
(Edelman et al., 2007; Lahaie, 2006; Varian, 2007), in which click-through is factorized into two 
independent components; that is, 𝑐𝑖𝛼 = 𝜇𝑖𝜈𝛼, where 𝜇𝑖 is the click-through of bidder 𝑖’s advertisement 
and 𝜈𝛼 is the click-through of slot 𝛼. In the non-separated model, click-through does not have any form 
of factor decomposition (Börgers et al., 2007). In the cascade model, the click-through of an 
advertisement also depends on other advertisements (Aggarwal, Feldman, Muthukrishnan, & Pal 2008; 
Craswell,  Zoeter, Taylor, & Ramsey, 2008; Kempe & Mahdian, 2008). In this paper, we adopt the widely 
used separated click-through model.  
 
Since a higher slot tends to induce more clicks than a lower slot, we assume that 𝜈1 ≥ 𝜈2 ≥ ⋯ ≥ 𝜈𝐾. 
This assumption can be found in many related studies, such as Edelman et al. (2007), Jansen and 
Mullen (2008), and Varian (2009). Some studies even enforce further restrictions on the model of click-
through. For example, Feng, Bhargava, and Pennock (2007) use an exponential decay model, 
assuming 𝜈𝛼 = 𝜈1

𝛿𝛼−1
,∀𝛼 ∈ 𝒦, with the constraint 𝛿 > 1, and suggested 𝛿 = 1.428 based on actual data 

from Yahoo!, MSN, and AltaVista. 
 
Let 𝑐𝑖

𝛼

𝑐𝑖
𝛼+1 = 𝜇𝑖𝜈𝛼

𝜇𝑖𝜈𝛼+1
= 𝜈𝛼

𝜈𝛼+1
= 𝛾𝛼, ∀𝛼 = 1,2,⋯ ,𝐾 − 1, and 𝑖 ∈ 𝒩. The payoff of bidder 𝑖, given the bidding 

vector 𝒃, is: 
 

𝑢𝑖(𝒃) = 𝑐𝑖
𝜓𝑖�𝑣𝑖 − 𝑝𝜓𝑖� = 𝑐𝑖

𝜓𝑖 �𝑣𝑖 − 𝑏𝜋𝜓𝑖+1� = 𝜇𝑖𝜈𝜓𝑖 �𝑣𝑖 − 𝑏𝜋𝜓𝑖+1�  (1). 
 
Further, let 𝒖 = (𝑢1,𝑢2,⋯ ,𝑢𝑁) denote the payoff vector of all bidders. 

3.3. GSP Auction 
With elements defined above, we specify GSP auction as the following tuple: 
 

(𝒩,𝒦,ℬ,ℳ,𝒞,𝒗,𝒖)   (2). 
 
As typical in existing GSP models (e.g., Edelman et al., 2007 and Varian, 2009), we assume that the 
reserve price is zero and that bidders are rational, risk neutral, and have no budget constraint. 
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Note that, in practical auctions, advertisers can specify and modify their daily budgets in this keyword 
advertising market. The existence of budget constraints may affect the bidding behaviors of advertisers 
and break the quasi-linear form of the payoff function, causing difficulty in the analysis of bidding 
strategy. To simplify analysis, we do not consider budget constraints in this paper. Despite this limitation, 
our analysis sheds light on further extensions accommodating such constraints. Also note that budget is 
also a major issue in the general auction theory (Krishna, 2002). In the context of keyword auctions, 
Aggarwal, Muthukrishnan, Pal, and Pal (2009) and Ashlagi, Braverman, Hassidim, Lavi, and 
Tennenholtz (2010) designed auction mechanisms to address this budget issue, as the design of the 
GSP mechanism does not take budget into consideration. 
 
While we restrict our analysis to this specified GSP auction, it can be shown that the GSP auction with 
quality score, typically used in practical systems, can be transformed into this model. In the modified 
GSP auction with quality score, bidders are ranked according to 𝑤𝑖𝑏𝑖, where 𝑤𝑖 is the quality score of 
bidder 𝑖. We use the term “quality score” to refer to Google’s quality score (Google, 2010b) and Yahoo!’s 
quality index (Yahoo!, 2010), or any quantity of the same nature used by other search engines. Note 
that the quantity 𝑤𝑖𝑏𝑖 is called bidder 𝑖’s revenue by Lahaie (2006) and Liu, Chen, and Whinston (2009), 
whereas the quality score they used is the click-through of bidder 𝑖’s advertisement. Although, search 
engines may consider additional factors, such as account performance and the quality of the landing 
page, when calculating the quality score (see, for example, Google, 2010b and Yahoo!, 2010). The 
modified allocation rule is 𝜋� ∶ 𝒦 → 𝒩 , such that ∀𝛼,𝛽 ∈ 𝒦,𝛼 < 𝛽 → 𝑤𝜋�𝛼𝑏𝜋�𝛼 ≥ 𝑤𝜋�𝛼𝑏𝜋�𝛽 . The modified 
payment rule is �̅�𝛼 = 𝑤𝜋�𝛼+1

𝑤𝜋�𝛼
𝑏𝜋�𝛼+1 . The modified GSP mechanism is ℳ� = (𝜋� , �̅�) . The assumption 

𝑣1 ≥ 𝑣2 ≥ ⋯ ≥ 𝑣𝐾, which means that a higher slot tends to induce more clicks than a lower slot, is still 
valid. 
 
The changes of allocation and payment will affect the payoffs of bidders. In the modified GSP auction, 
the payoff of bidder 𝑖, given the bidding vector 𝒃, is: 
 

𝑢�𝑖(𝒃) = 𝑐𝑖𝛼(𝑣𝑖 − 𝑝𝛼) 
 

= 𝑐𝑖𝛼 �𝑣𝑖 −
𝑤𝜋�𝛼+1
𝑤𝜋�𝛼

𝑏𝜋�𝛼+1� =
𝑐𝑖𝛼

𝑤𝜋�𝛼
�𝑤𝜋�𝛼𝑣𝑖 − 𝑤𝜋�𝛼+1𝑏𝜋�𝛼+1� 

 
= 𝑐𝑖

𝛼

𝑤𝑖
�𝑤𝑖𝑣𝑖 − 𝑤𝜋�𝛼+1𝑏𝜋�𝛼+1�  (3), 

 
where 𝛼 = 𝜓�𝑖 (𝜓� is the inverse of 𝜋�) is the slot allocated to bidder 𝑖. Let 𝑐�̅�𝛼 = 𝑐𝑖

𝛼

𝑤𝑖
 denote the modified 

click-through, 𝐶̅ = {� 𝑐�̅�𝛼|𝑖 ∈ 𝒩,𝛼 ∈ 𝒦} denote the modified set of all click-throughs, �̅�𝑖 = 𝑤𝑖𝑣𝑖 denote the 
modified value, 𝒗� = (�̅�1, �̅�2,⋯ , �̅�𝑁) denote the modified valuation vector of all bidders, 𝑏�𝑖 = 𝑤𝑖𝑏𝑖 denote 
the modified bid, 𝒃� = �𝑏�1, 𝑏�2,⋯ , 𝑏�𝑁� denote the modified bidding vector of all bidders, and ℬ� denote the 
modified bidding space. The payoff (3) can then be written as: 
 

𝑢�𝑖(𝒃) = 𝑐�̅�
𝜓�𝑖 ��̅�𝑖 − 𝑏�𝜋�𝜓�𝑖+1

�  (4). 
 
As this has the same form as Equation 1, the original GSP auction with quality score can be 
reformulated as the following new GSP auction without quality score. 
 

(𝒩,𝒦,ℬ�,ℳ� ,𝒞̅,𝒗�,𝒖�). 
 
With this reformulation, it is easy to extend our subsequent results obtained in GSP auction without 
quality score to GSP auction with quality score. However, this does not mean that these two kinds of 
auctions are equivalent in all aspects. Generally, search engines use “quality score” to increase their 
total revenues and improve user experiences (Balachander, Kannan, & Schwartz, 2009; Feng, 
Bhargava, et al., 2007; Lahaie, 2006; Liu et al., 2009). 
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4. Existence and Partitioning of Nash Equilibria 
In this section, we first show the existence of Nash equilibria in the GSP auction. We then provide a 
method for finding and partitioning all Nash equilibria. 

4.1. Existence of Nash Equilibrium 
A bidding vector 𝒃⋆ is a Nash equilibrium of the GSP auction (Model 2) if it satisfies the following 
conditions (Fudenberg & Tirole, 1991; Nash, 1950; Osborne & Rubinstein, 1994): 
 

𝒃𝑖⋆ ∈ arg𝑏𝑖 max 𝑢𝑖(𝒃),   ∀𝑖 ∈ 𝒩   (5). 
 
At a Nash equilibrium, no bidder in 𝜋(𝒦) has incentive to raise or lower its slot, while no bidder in 
𝒩\𝜋(𝒦) has incentive to raise its bid to get a slot. These intuitions can be formulated as several 
inequalities. 
 
First, the payoff of every bidder in 𝜋(𝒦) must be nonnegative, as otherwise it would be better off if it 
deviates to 𝒩\𝜋(𝒦); that is: 
 

𝑣𝑖 − 𝑏𝜋𝜓𝑖+1 ≥ 0,   ∀𝑖 ∈ 𝜋(𝒦)   (6). 
 
Second, every bidder in 𝜋(𝒦) has no incentive to get a higher slot; that is: 
 

𝑐𝑖
𝜓𝑖 �𝑣𝑖 − 𝑏𝜋𝜓𝑖+1� ≥ 𝑐𝑖𝛼�𝑣𝑖 − 𝑏𝜋𝛼�,   ∀𝑖 ∈ 𝜋(𝒦),1 ≤ 𝛼 ≤ 𝜓𝑖   (7). 

 
Third, every bidder in 𝜋(𝒦) has no incentive to lower its slot; that is: 
 

𝑐𝑖
𝜓𝑖 �𝑣𝑖 − 𝑏𝜋𝜓𝑖+1� ≥ 𝑐𝑖

𝛽 �𝑣𝑖 − 𝑏𝜋𝛽+1�,   ∀𝑖 ∈ 𝜋(𝒦),𝜓𝑖 < 𝛽 ≤ 𝐾   (8). 
 
Finally, for every bidder in 𝒩\𝜋(𝒦), payoff would be negative or still zero if it deviates to get a slot; that is: 
 

𝑣𝑗 − 𝑏𝜋𝛼 ≤ 0,    ∀𝑖 ∈ 𝒩\𝜋(𝒦),𝛼 ∈ 𝒦   (9). 
 
Inequality 9 is not needed if 𝑁 ≤ 𝐾. 
 
In terms of mechanism design, Inequalities 6 and 9 are individual rational conditions. With these 
inequalities, the existence of Nash equilibrium of Model 2 is equivalent to the existence of a solution to 
the above inequalities. The following lemma guarantees the existence of at least one Nash equilibrium 
of Model 2. 
 
Lemma 4.1. GSP auction (2) has at least one pure-strategy Nash equilibrium. 
 
The proof of this lemma is straightforward. Model 2 satisfies the first assumption of Börgers et al. 
(2007), which guarantees the existence of at least one symmetric Nash equilibrium, while any 
symmetric Nash equilibrium is also a Nash equilibrium (Börgers et al., 2007; Varian, 2007, 2009). 
 
In fact, the existence of at least one Nash equilibrium guaranteed by Lemma 4.1 is a weak statement, 
since the analyses of SNE by Varian (2007) and LEF by Edelman et al. (2007) shows that there exist an 
infinite number of Nash equilibria in GSP auction (see also Lahaie, 2006). 

4.2. Partitioning of Equilibria 
Model 2 defines a static game with complete information. In this section, we shall find all PSNE by 
partitioning the set of all pure-strategy Nash equilibria, denoted ℰ, into a finite number of equivalence 
classes. 
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All Inequalities 6–9 that a Nash equilibrium needs to satisfy are in the linear form. However, the problem 
of finding all Nash equilibria cannot be solved by employing solvers of linear inequalities, such as those 
described by Solodovnikov (1980), because the implicit allocation rule 𝜋 is nonlinear. The same reason 
prevents the use of linear programming to find some special equilibria (e.g., the optimal bids). 
 
In practical systems, the GSP allocation rule is typically realized through the following two steps: 
 

1) Sort the bidders according to their bids in descending order. 
 

2) Allocate the first slot to the first bidder, the second slot to the second bidder, and so on. 
 
When there are ties among the bids, a tie-breaking mechanism is needed. Fortunately, tie breaking 
does not need to be considered in equilibrium bidding analysis if the valuations of all bidders are 
distinct, as stated in the following theorem. 
 
Theorem 4.1. Suppose 𝑣1 > 𝑣2 > ⋯ > 𝑣𝑁 ,∀𝒃 ∈ ℬ. A necessary condition for b to be a Nash equilibrium 
in GSP auction (2) is: 
 

• if 𝑁 ≤ 𝐾, 𝑏𝜋1 > 𝑏𝜋2 > ⋯ > 𝑏𝜋𝑁; 
 

• if 𝑁 > 𝐾, 𝑏𝜋1 > 𝑏𝜋2 > ⋯ > 𝑏𝜋𝐾 > 𝑏𝜋𝐾+1. 
 
Theorem 4.1 indicates that a bidding vector with a tie in GSP auction is not a Nash equilibrium. With ties 
safely ignored, we can find all Nash equilibria in two steps. First, we define an equivalence relation on ℰ 
and partition ℰ into a finite number of equivalence classes according to this relation. Second, if each 
equivalence class happens to determine a unique allocation, we can substitute this allocation into 
Inequalities 6–9 and transform them into linear inequalities on bids (given that the allocation rule 𝜋 is 
fixed). The inequality methods described by Solodovnikov (1980) can then be employed to compute all 
solutions. Note that linear programming techniques can be used to quickly determine whether feasible 
solutions exist. We now define one such equivalence relation, which provides a simple yet surprisingly 
powerful framework for both theoretical analysis and computation with respect to GSP auction. 
 
Definition 4.1. ≅ is a relation (also referred to as the “same-slot” relation) on ℰ  such that ∀𝒃1,𝒃2 ∈
ℰ,𝒃1 ≅ 𝒃2 ↔ ∀𝑖 ∈ 𝒦,𝜋1(𝑖) = 𝜋2(𝑖), where 𝜋1  and 𝜋2  denote the allocations corresponding to 𝒃1  and 
𝒃2, respectively. 
 
Figure 1 illustrates this relation and ties in a two-bidder case. Intuitively, this “same-slot” relation groups 
bidding vectors together as long as they deliver the same allocation. It is easy to show that this relation 
is an equivalence relation, as stated in the following proposition (proof is trivial and hence omitted). 
 
Proposition 4.1. ≅ is an equivalence relation on ℰ. 
 
Because an equivalence relation on a set can determine a unique partitioning of the set, we can 
partition ℰ into distinct equivalence classes based on ≅. For 𝒃 ∈ ℰ, the equivalence class generated by 
𝒃 is: 
 

ℰ𝒃 = ��𝒃��𝒃� ≅ 𝒃,𝒃� ∈ ℰ�   (10). 
 
All equivalence classes of ℰ form the factor (quotient) set: 
 

ℰ ≅⁄ = { �ℰ𝒃|𝒃 ∈ ℰ} = {ℰ0,ℰ1,⋯ ,ℰ𝑀−1}   (11), 
 
where 𝑀 is the number of equivalence classes. ℰ0 is a special and the most important equivalence 
class, in which the allocation is the identity mapping, i.e., 𝜋0(𝑖) = 𝑖,∀𝑖 ∈ 𝒦. It is obvious that only the 
Nash equilibria in ℰ0 are efficient and all others are inefficient. 
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Figure 1. An Illustration of the “Same-Slot” Relation 

 
Note that we define the efficiency of an equilibrium in the sense that a bidder with a higher valuation is 
allocated to a higher slot. This is slightly different from the efficiency used in other papers, which 
maximizes the social welfare. However, in a GSP auction with quality score (Section 3.3), our definition 
is equivalent to the social welfare maximization definition, if click-through is employed as the quality 
score. In such a situation, the modified valuation of a bidder, say 𝑖, is 𝑣𝑖′ = 𝜇𝑖𝑣𝑖, and equivalence class 
ℰ0 includes all equilibria that allocate bidders according to the modified valuations (i.e., all equilibria that 
maximize the social welfare). 
 
Consider an equivalence class ℰ𝑚. If a bidder, say 𝑖, revises its bid (provided there is no change from 
other bidders) but the revised bidding vector is still in the same equivalence class ℰ𝑚, this bid revision 
has no impact on the allocation and its payoff. As such, all equilibria in the same equivalence class are 
indifferent from this bidder’s point of view (unless other factors, such as risk, are considered). However, 
bidder 𝑖’s action affects (and can only affect) the payoff of the bidder allocated just above, say 𝑗. A 
reduction (increase) of 𝑖’s bid will increase (reduce) 𝑗’s payoff. 
 
As any equivalence class is defined by a series of linear inequalities, in terms of geometry, an 
equivalence class forms a convex polyhedron in ℬ = ℝ+

𝑁. As a non-empty convex polyhedron may be a 
point, line segment, rectangle, and so on, in a GSP auction, an infinite number of inefficient Nash 
equilibria may exist. Further, these polyhedra are distributed in the pure strategy space separately, since 
no two equivalence classes intersect each other. We provide an upper bound on the number of possible 
equivalence classes in the following theorem. 
 
Theorem 4.2. In GSP auction, the number of equivalence classes is at most: 
 

• 𝑁!, if 𝑁 ≤ 𝐾; 
 

• 𝑁(𝐾 − 1)!, if 𝑁 > 𝐾. 
 
In general, this is not a tight upper bound, since only the numbers of bidders and slots are taken into 
consideration. For a specific GSP auction, the number of equivalence classes is dependent on the 
concrete values of bidder valuations and click-throughs and may be less than this upper bound. 
Furthermore, as we will show later, only ℰ0 is weakly stable in a dynamic environment. One (advertiser 
or search engine) can, therefore, just focus on the equilibria in this polyhedron, which can be efficiently 
obtained. 
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4.3. Example 
We use a simple example with two bidders and two slots to illustrate our method for finding and 
partitioning PSNE. In this situation, there are at most two distinct allocations: 𝜋0 and 𝜋1, where 𝜋0 is the 
identity (i.e., 𝜋0(1) = 1,𝜋0(2) = 2 ) and 𝜋1(1) = 2,𝜋1(2) = 1 . The polyhedron corresponding to 
allocation 𝜋0 is determined by the following three inequalities: 
 

⎩
⎪
⎨

⎪
⎧ 𝑏1 > 𝑏2
𝑏1 ≥ �1 − 1

𝛾1
� 𝑣2 = 𝑘𝑣2 

𝑏2 ≤ �1 − 1
𝛾1
� 𝑣1 = 𝑘𝑣1

�     (12), 

 
where 𝑘 = 1 − 1

𝛾1
. The polyhedron corresponding to 𝜋1 is governed by: 

 

⎩
⎪
⎨

⎪
⎧ 𝑏2 > 𝑏1
𝑏1 ≤ �1 − 1

𝛾1
� 𝑣2 = 𝑘𝑣2 

𝑏2 ≥ �1 − 1
𝛾1
� 𝑣1 = 𝑘𝑣1

�     (13). 

 
The distributions of these two polyhedra when 𝑘𝑣1 > 𝑣2 and 𝑣2 > 𝑘𝑣1 are illustrated in Figures 2a and 
2b, respectively. 
 

 
Figure 2. Equilibrium Polyhedra of GSP Auction with Two Slots and Two Bidders 
 
In both figures, the shadowed regions ℰ0  and ℰ1  are polyhedra that correspond to 𝜋0  and 𝜋1 , 
respectively. In ℰ0(ℰ1), the bid of bidder 1 (bidder 2) can be arbitrarily large, as indicted by the arrows in 
these two regions. In practice, however, no bidder will bid a very large value. Although doing so may 
guarantee a high slot, the risk of its opponent placing a very high bid is high as well. In fact, bidding 
above 𝑘𝑣1 is weakly dominated for bidder 1. Suppose bidder 1 bids 𝑘𝑣1. If bidder 2 bids less than 𝑘𝑣1, 
bidder 1 would get the first slot and receive a payoff more than 𝑘𝑣1. If bidder 2 bids more than 𝑘𝑣1, it 
would get the first slot and bidder 1 would receive a payoff 𝑘𝑣1. Now, suppose bidder 1 bids 𝑏1 > 𝑘𝑣1. If 
bidder 2 bids 𝑏2 ∈ (𝑘𝑣1, 𝑏1), bidder 1 would still get the first slot, but the payoff is less than 𝑘𝑣1. 
 
In ℰ0, the payoffs of bidders 1 and 2 are 𝑐11(𝑣1 − 𝑏2) ≥ 𝑐11(𝑣1 − 𝑘𝑣1) = 𝑐12𝑣1 and 𝑐22𝑣2, respectively. In ℰ1, 
the payoffs of bidders 1 and 2 are 𝑐12𝑣1 and 𝑐21(𝑣2 − 𝑏1) ≥ 𝑐21(𝑣2 − 𝑘𝑣2) = 𝑐22𝑣2, respectively. So, bidder 1 
prefers ℰ0, but bidder 2 prefers ℰ1. Therefore, bidder 1 will bid more than 𝑘𝑣2 and bidder 2 will bid more 



 

 
67 Journal of the Association for Information Systems  Vol. 13 Issue 2 pp. 57-87 February 2012 

 

Li et al. / PSNE of GSP Auction  
 

than 𝑘𝑣1. The resulting bidding vector is no longer a Nash equilibrium. After a period of bid revisions, the 
final bidding vector may be in either ℰ0 or ℰ1. We will introduce further refinement methods in the next 
two sections to determine exactly which equivalence class the final bidding vector belongs to. 
 
Finally, we analyze the strategy of truth-telling. In Vickrey’s second-price auction with a single item, 
truth-telling is a weakly dominant strategy for every bidder (1961). In a GSP auction, truth-telling is not 
always a Nash equilibrium (an example is available in Edelman et al., 2007). Here, Figure 2 provides 
more informative results. If 𝑘𝑣1 > 𝑣2, truth-telling is a Nash equilibrium (point 𝐷 in Figure 2a). Otherwise, 
truth-telling is not a Nash equilibrium, and bidder 1 has incentive to lower its bid (Point 𝐷′ in Figure 2b). 

5. Weeding Out Inefficient Equilibrium 
In this section, we analyze bidding behaviors in the repeated version of Model 2 using a framework 
similar to the Cournot adjustments (Fudenberg & Levine, 1998) and prove that only equilibrium 
polyhedron ℰ0 is weakly stable. We consider an imperfect information structure, that is, after each stage 
auction, every bidder knows the allocation of this auction and the price it must pay, but not the prices of 
other slots except the one just above it (thus, the bidder allocated in slot 𝛼 knows 𝑏𝛼  and 𝑏𝑎+1). In 
practice, bids submitted in stage auctions are private information. Only the search engine knows the 
bids. To avoid potential legal issues, the search engine does not announce the bids after each stage 
auction. 

5.1. Weakly Stable Nash Equilibrium Polyhedron 
Definition 5.1. A pair of bidders 𝑖 and 𝑗 in a Nash equilibrium allocation is said to be an unstable factor, 
if 𝑣𝑖 > 𝑣𝑗 but 𝜓𝑖 > 𝜓𝑗. 
 
An unstable factor refers to a pair of bidders such that the one with higher valuation is actually allocated 
to a lower slot than its opponent. The existence of an unstable factor indicates the inefficiency of an 
allocation. Obviously, bidder 𝑖 may get a higher payoff if it is allocated to 𝑗’s slot, but it must bid more 
than 𝑗 in order to get that slot. Doing so is profitless in a static GSP auction because their bids have 
already formed a Nash equilibrium. However, in a repeated GSP auction, as stated in the following 
theorem, bidder 𝑖 can realize its incentive, if 𝑗 is allocated just above it. 
 
Theorem 5.1. In repeated GSP auction, if two bidders of an unstable factor are allocated to two 
neighboring slots, the bidder with higher valuation has incentive and is able to force its opponent to a 
lower slot. Afterward, it is impossible for the other bidder to reverse the order of their slots. 
 
Bidder 𝑖’s behavior not only increases its utility in future auctions, but also eliminates an unstable factor 
in a Nash equilibrium. Bidder 𝑗 may declare that it would maintain a higher bid to guarantee a higher 
slot, but the above theorem shows that this is just an empty threat (Fudenberg & Tirole, 1991; Osborne 
& Rubinstein, 1994). In this sense, we say that this Nash equilibrium is unstable in a repeated GSP 
auction. That is why we call the pair 𝑖 and 𝑗 an “unstable factor”. 
 
If bidders 𝑖 and 𝑗 (𝑣𝑖 > 𝑣𝑗) of an unstable factor are not allocated to two neighboring slots, bidder 𝑖 may 
not have a strategy to directly force 𝑗 to a lower slot by raising its bid. For example, suppose that 
another bidder 𝑘, with 𝑣𝑘 > 𝑣𝑖, is allocated between 𝑖 and 𝑗. To force 𝑗 to a lower slot, 𝑖 must bid more 
than 𝑘, but doing so is profitless, and Theorem 5.1 shows that 𝑘 may force 𝑖 to a lower slot, leading to 
complicated bidding dynamics. However, 𝑖 could just wait until 𝑘 has raised its bid and forced 𝑗 to a 
lower slot before raising its bid and forcing 𝑗 to an even lower slot. With this analysis, we are ready to 
define the weak stability of an equilibrium polyhedron. 
 
Definition 5.2. An equilibrium polyhedron ℰ𝑚 ∈ ℰ ≅,𝑚 = 0,1,2,⋯ ,𝑀 − 1⁄  is said to be weakly stable if 
no Nash equilibrium in it has any unstable factor. Otherwise, ℰ𝑚 is said to be unstable. 
 
As only the Nash equilibrium in ℰ0 has no unstable factor, only ℰ0 is weakly stable, as stated in the 
following theorem, and is referred to as weakly stable Nash equilibrium polyhedron (WSNE). 
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Theorem 5.2. In repeated GSP auction with 𝐾 ≥ 2 and 𝑁 ≥ 2, ℰ0 is the only weakly stable equilibrium 
polyhedron. 
 
In an auction, all bidders want the top slot, but their abilities to accomplish this objective are different. 
Theorem 5.2 indicates that a bidder with a higher valuation can obtain a higher slot in the GSP auction. 
This theorem also reveals that GSP is an efficient auction mechanism in a dynamic environment. 
 
The word “weakly” is used to depict the following situation: If a bidder knows that it is allocated to the 
right slot it can obtain according to Theorem 5.2, it will have no incentive to revise its bid because it 
cannot get a better slot. We call such a bidder a “lazy” one. ∀𝒃 ∈ ℰ0, all bidders are allocated to right 
slots. If all bidders are lazy, the bidding vector will fix at the current equilibrium point. That is why we use 
the term “weakly stable”. 
 
The weak stability of ℰ0 can only guarantee the invariability of the outcome of slot allocation. It is still not 
necessary that the bidding vector will converge to a particular Nash equilibrium. Even in ℰ0, there is still 
some freedom for each bidder to choose a bid. At the same time, the weak stability of allocation does 
not mean that the payoff of a bidder is invariant across Nash equilibria in ℰ0 because the payoff of a 
bidder is strictly dependent on the bid of another bidder allocated just below, and this bid can vary 
across Nash equilibria. 
 
As of the information requirement for the above analysis, only a bidder’s own price and bid (also the 
price of the bidder ranked just above) are needed to prove that only ℰ0 is weakly stable. Thus, the 
imperfect information structure assumed at the beginning of this section is sufficient. Note that there are 
also other analyses on the dynamic bidding strategy in a GSP auction (e.g., Bu et al., 2007, 2008; Cary 
et al., 2007; Vorobeychik & Reeves, 2008). These analyses assume incomplete but perfect information, 
whereas our analysis assumes complete but imperfect information. The perfect information assumption 
requires that the bidding vector be revealed after each stage auction; the complete information 
assumption requires the value vector to be common knowledge. However, neither assumption actually 
holds in a real GSP auction. Since revealing price-related information may cause legal issues, search 
engines do not announce the bids after each stage auction. The value per click is a bidder’s private 
information and cannot be acquired by others exactly. 

5.2. Degree of Unstability 
A Nash equilibrium in an unstable equilibrium polyhedron contains at least one unstable factor. Further, 
as the definition of equilibrium polyhedron guarantees that all Nash equilibria in the same polyhedron 
have the same number of unstable factors, this number can be used as a property to characterize the 
polyhedron. 
 
Definition 5.3. The degree of unstability (DoU) of an equilibrium polyhedron ℰ𝑚, denoted 𝒪(ℰ𝑚), is 
defined as the number of unstable factors in each Nash equilibrium in ℰ𝑚. 
 
Naturally, the DoU of ℰ0 is zero, that is, 𝒪(ℰ0) = 0. The order of DoU induces a partial relation (called 
“more unstable”) ≻ on ℰ ≅⁄ , such that ∀ℰ𝑚,ℰ𝑛 ,∈ ℰ ≅⁄ ,ℰ𝑚 ≻ ℰ𝑛 ↔ 𝒪(ℰ𝑚) ≥ 𝒪(ℰ𝑛) and after at most one 
elimination of a neighboring unstable factor, an equilibrium in ℰ𝑚 jumps into ℰ𝑛. 
 
Figure 3 illustrates the partial relation ≻ in three cases with two, three, and four bidders, respectively. In 
the two-bidder case (Figure 3a), as the DoU of ℰ1 is just one, one swap of slots is necessary and 
sufficient to eliminate the unstable factor and make the bids converge to ℰ0. In an auction with more 
bidders (e.g., Figures 3b and 3c), one elimination of the unstable factor may make the original Nash 
equilibrium converge to another unstable polyhedron with a DoU one less than the original polyhedron, 
rather than the stable polyhedron ℰ0. However, it will always converge to ℰ0 at the end. The Hasse 
diagram shows some possible paths by which an unstable Nash equilibrium converges to a weakly 
stable one, but the particular path that is realized is random and varies from one auction to another. 
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Figure 3. Examples of Hasse diagraph of ≺. (Each Vertex Denotes a Permutation 

Corresponding to an Equilibrium Polyhedron; For Example, 21 Represents the 
Polyhedron that Allocates Bidder 2 to Slot 1 and Bidder 1 to Slot 2. As a Convention, 
We Let DoU Increase Bottom-Up.) 

5.3. Discussion: Is WSNE a Good Refinement? 
In practice, not all bidders are lazy, as some of them may have incentive to obtain a higher slot. Even if 
a bidder is allocated to its right slot, when raising a bid and getting a higher slot is profitable, it might do 
so. Next, we use a simple example to illustrate why this is possible. 
 
Figure 4 shows the bidding dynamics in a repeated GSP auction with two bidders and two slots. The 
bidding dynamics in non-Nash regions (𝐴 − 𝐸) are as follows. 
 

• 𝐴 and 𝐸: Bidder 2 is allocated to slot 1 (𝑏2 > 𝑏1). Bidder 2 knows that bidder 1’s bid (i.e., 
bidder 2’s price) is larger than 𝑘𝑣2 and has incentive to lower its bid, because its payoff is 
less than 𝑐22𝑣2 in slot 1 and deviating to slot 2 would bring a larger payoff 𝑐22𝑣2. In region 𝐸 
and subregion 𝐴1, bidder 1 has incentive to raise its bid up to 𝑘𝑣1, because it does not 
know bidder 2’s bid. If bidder 2’s bid is larger than 𝑘𝑣1, deviating to slot 1 is profitless for 
bidder 1, because its payoff in slot 1 would be less than its current payoff 𝑐12𝑣1 . In 
subregion 𝐴2, bidder 1 has incentive to make a lower bid. 
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• 𝐵: Bidder 1 is allocated to slot 1 (𝑏1 > 𝑏2). Bidder 1 has incentive to lower its bid. Bidder 
2’s bid (i.e., bidder 1’s price) is larger than 𝑘𝑣1. Bidder 1’s current payoff is less than 𝑐12𝑣1. 
Deviating to slot 2 would bring bidder 1 a higher payoff of 𝑐12𝑣1. Bidder 2 has no incentive 
to raise its bid, because it knows that bidder 1’s bid is larger than its own bid 𝑏2 > 𝑘𝑣2. For 
bidder 2, deviating to slot 1 is profitless, because its payoff in slot 1 would be less than its 
current payoff 𝑐22𝑣2. However, bidder 2 has incentive to lower its bid, because it knows 
that bidder 1 would lower its bid to deviate to slot 2. It is profitless for bidder 2 to retain its 
current bid if bidder 1’s new bid is larger than 𝑘𝑣2. 

 
• 𝐶: Bidder 2 is allocated to slot 1 (𝑏2 > 𝑏1). Bidder 1 has incentive to raise its bid, but the 

optimal adjustment is unknown because it does not know bidder 2’s bid. Bidder 2 has 
incentive to raise its bid up to 𝑘𝑣1, because it knows that bidder 1 will raise its bid, and 
would raise the bid too to keep slot 1. 

 
• 𝐷: Bidder 1 is allocated to slot 1 (𝑏1 > 𝑏2). Bidder 2 has incentive – without any risk – to 

raise its bid up to 𝑘𝑣2. It is profitable for bidder 2 if it gets the first slot with a price less than 
𝑘𝑣2. Bidder 1 has incentive to raise its bid in order to keep slot 1 because it knows that 
bidder 2 will raise its bid. 

 

 
Figure 4. Bid Adjustments in a Repeated GSP Auction with Two Slots and Two Bidders. (𝓔𝟎 is 

Partitioned into Four Subsets, 𝓔𝟎⋆  , 𝓔𝟎𝟏 , 𝓔𝟎𝟐 , and 𝓔𝟎𝟑. Arrows Indicate Bid Revisions. 
Horizontal (Vertical) Arrows Represent Bidder 1’s (Bidder 2’s) Movements.) 

 
In Nash equilibrium regions, unilateral bid revisions by either bidder do not increase payoff for that 
bidder directly, but may increase payoff in future auctions. The bidding dynamics in Nash equilibrium 
regions are as follows. 
 

• ℰ1: Bidder 1 has incentive to raise its bid (see Theorem 5.1). 
 
• ℰ01: Bidder 2 has incentive to raise its bid up to 𝑘𝑣2 (same reasoning as that on region 𝐷). 
 
• ℰ02: Bidder 2 has incentive to raise its bid up to 𝑘𝑣2 (same reasoning as that on region 𝐷). 

Bidder 1 has incentive to lower its bid to reduce the risk if bidder 2 bids more than 𝑘𝑣1. 
• ℰ03: Bidder 1 has incentive to lower its bid to reduce the risk if bidder 2 bids more than 𝑘𝑣1. 
 
• ℰ0⋆: No one has incentive to adjust bid. 
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As discussed above, rational bid revisions must follow the directions indicated by the arrows in various 
regions. For an arbitrary Nash equilibrium in ℰ0⋆, if a perturbation forces it out of this region, following the 
directions indicated by the arrows, the bidding vector will eventually converge to ℰ0⋆ after several rational 
bid revisions. 
 
According to the definition of SNE/LEF, it is easy to see that SNE/LEF is ℰ0⋆ ∪ ℰ03. The stable set ℰ0⋆ 
(discussed in the next section) is only a subset of SNE/LEF. Thus, not all equilibria in SNE/LEF are 
stable in a dynamic environment. 

6. Stable Nash Equilibrium Set 
Since only ℰ0 is weakly stable, we only need to consider Nash equilibria in it. The previous example 
(Figure 4) shows that neither WSNE nor SNE/LEF is adequate for describing the bidding behaviors of a 
GSP auction in a dynamic environment. In this section, we propose the concept of stability and employ 
it to further refine WSNE and SNE/LEF. Stability is a widely used refinement in cybernetics and dynamic 
game, especially in evolutionary game theory and learning in game (Fudenberg & Levine, 1998). Its 
usage can be traced even back to Cournot’s duopoly game (Fudenberg & Tirole, 1991). We adopt this 
refinement to narrow the equilibrium set, in order to help advertisers bid in this market. 
 
Definition 6.1. A subset 𝒜 of ℰ0 is said to be a stable Nash equilibrium set (STNE), if ∀𝒃 ∈ 𝒜 and for 
arbitrary perturbation, which forces 𝒃 out of 𝒜, the bidding vector will again form a Nash equilibrium in 
𝒜 after a series of rational bid revisions. 
 
Note that the stability considered here is about a subset of an equivalence polyhedron, while that 
typically considered in cybernetics and evolutionary game theory is about an individual equilibrium point. 
Furthermore, while system dynamics in cybernetics and evolutionary game theory is governed by 
differential/difference equation(s), the bidding dynamics concerned here are related to the rationality of 
bidders. Thus, only qualitative analysis is relevant, and such analysis is sufficient to determine the 
stability property of a Nash equilibrium polyhedron. 
 
In ℰ0, the allocation of slots is efficient. As the allocation rule on ℰ0 is the identity map, we will use 𝑏𝛼 to 
represent 𝑏𝜋𝛼 in the following discussion for the sake of simplicity. 
 
Consider the constraints of a Nash equilibrium on slots 𝛼 − 1 and 𝛼. Because the bidder allocated to 
slot 𝛼 − 1 does not have an incentive to lower its slot, we get: 
 

𝑐𝛼−1𝛼−1(𝑣𝛼−1 − 𝑏𝛼) ≥ 𝑐𝑎−1𝛼 (𝑣𝛼−1 − 𝑏𝛼+1) ⇒ 𝑏𝛼 ≤ �1 − 1
𝛾𝛼−1

� 𝑣𝛼−1 + 1
𝛾𝛼−1

𝑏𝛼+1    (14). 
 
Similarly, because bidder 𝛼 has no incentive to raise its slot, we get: 
 

𝑐𝛼𝛼(𝑣𝛼 − 𝑏𝛼+1) ≥ 𝑐𝑎𝛼−1(𝑣𝛼 − 𝑏𝛼−1) ⇒ 𝑏𝛼−1 ≥ �1 − 1
𝛾𝛼−1

� 𝑣𝛼 + 1
𝛾𝛼−1

𝑏𝛼+1    (15). 
 
Next, we show that the lower bound given by Inequality 15 for slot (or bidder) 𝛼 − 1 is also a lower 
bound for slot 𝛼. To do so, we need to discuss the dynamic bidding behaviors of bidders 𝛼 − 1 and 𝛼. 
Without loss of generality, we assume that the bid adjustments of these two bidders do not affect other 
bidders’ slots. Figure 5 illustrates the bidding dynamics of 𝛼 − 1 and 𝛼 (ℰ0𝛼 has similar meaning as the 
ℰ0⋆ in Figure 4. We substitute the superscript ‘⋆’ with ‘𝛼’ to emphasize that we are discussing the bidding 
behaviors of bidders 𝛼 and 𝛼 − 1.) The figure appears similar to Figure 4 except that bid revisions are 
restricted to be within the rectangle 𝑃1𝑃2𝑃3𝑃4. If the bids of 𝛼 − 1 and 𝛼 go out of this rectangle, other 
bidders may have incentive to change their slots, but the weak stability property of ℰ0 guarantees that 
the bidding vector will come back to ℰ0 again. Therefore, restricting the bid revisions of 𝛼 − 1 and 𝛼 to 
the rectangle 𝑃1𝑃2𝑃3𝑃4 is reasonable and can simplify the analysis. The actual values of 𝑏𝐿 and 𝑏𝑈 are 
not important, as we are only concerned with the bidding dynamics. 
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Figure 5. Bid Adjustments of Bidders 𝜶 − 𝟏 and 𝜶 in a Repeated GSP Auction 

 
Using the same sort of analyses as that used in the previous example in Section 5.3, we can see that 
ℰ0𝛼 is the stable region. After a period of dynamic adjustments, the bids of 𝛼 − 1 and 𝛼 will converge to 
this region. Therefore, the lower bound given by Inequality 15 for 𝛼 − 1 is also a lower bound for 𝛼. 
 
Similarly, considering slots 𝛼 and 𝛼 + 1, we can get another pair of bounds on 𝛼: 
 

𝑏�𝛼 ≤ �1 − 1
𝛾𝛼
� 𝑣𝛼 + 1

𝛾𝛼
𝑏𝛼+2    (16), 

 
𝑏�𝛼 ≥ �1 − 1

𝛾𝛼
� 𝑣𝛼+1 + 1

𝛾𝛼
𝑏𝛼+2    (17). 

 
By recursively using the above two pairs of bounds, we can get the bidding interval of bidder 𝛼 . 
Suppose that 𝑏𝛼+1𝑈  and 𝑏𝛼+1𝐿 , upper and lower bounds of bidder 𝛼 + 1, have been derived. Substituting 
these bounds into Inequalities 14 and 15, we get: 
 

𝑏𝛼
𝑈1 = �1 − 1

𝛾𝛼−1
� 𝑣𝛼−1 + 1

𝛾𝛼−1
𝑏𝛼+1𝑈     (18), 

 
𝑏𝛼
𝐿1 = �1 − 1

𝛾𝛼−1
� 𝑣𝛼 + 1

𝛾𝛼−1
𝑏𝛼+1𝐿     (19). 

 
Substituting them into Inequalities 16 and 17, we get: 
 

𝑏𝛼
𝑈2 = �1 − 1

𝛾𝛼
� 𝑣𝛼 + 1

𝛾𝛼
𝑏𝛼+2𝑈     (20), 

 
𝑏𝛼
𝐿2 = �1 − 1

𝛾𝛼
� 𝑣𝛼+1 + 1

𝛾𝛼
𝑏𝛼+2𝐿     (21). 

 
The starting values for the above-described recursion are 𝑏𝐾+1𝑈 = 𝑏𝐾+1𝐿 = 𝑣𝐾+1, which follows the fact th
at truth-telling is a weakly dominant strategy for the first excluded bidder (Varian, 2007; Vickrey, 1961). 
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The game-theoretic implications of these four bounds are as follows. 
 

• 𝑏𝛼
𝐿1: If 𝛼 bids less than this value, it would lose the opportunity to get slot 𝛼 − 1 with an 

increased payoff. This is also the lower bound of SNE/LEF. 
 
• 𝑏𝛼

𝐿2: If 𝛼 bids less than this value, bidder 𝛼 + 1 may have incentive to deviate to slot 𝛼. 
 
• 𝑏𝛼

𝑈1: If 𝛼 bids more than this value, bidder 𝛼 − 1 may have incentive to lower its slot to 𝛼, 
as otherwise its price would exceed the maximum threshold it can afford. This is also the 
upper bound of SNE/LEF and Nash equilibrium. 

 
• 𝑏𝛼

𝑈2: It is weakly dominated if 𝛼 bids more than this value, as the higher bid does not bring 
a payoff to 𝛼 and exposes 𝛼 to a potential risk of losing the payoff. 

 
Note that 𝑏𝛼

𝐿2 and 𝑏𝛼
𝑈1 are requirements of a Nash equilibrium, while 𝑏𝛼

𝐿1 and 𝑏𝛼
𝑈2 are results of rational 

reasoning or results of competitions. From the above discussion, it can be seen that 𝑏𝛼
𝐿1 may be larger 

than 𝑏𝛼
𝐿2 and 𝑏𝛼

𝑈1 may be larger than 𝑏𝛼
𝑈2. A sufficient condition guaranteeing this is 𝛾1 ≥ 𝛾2 ≥ ⋯ ≥ 𝛾𝐾−1 

(see Proposition 6.1 later). According to Equations 18–20, it is obvious that 𝑏𝛼
𝑈1 > 𝑏𝛼

𝐿1 and 𝑏𝛼
𝑈2 > 𝑏𝛼

𝐿2. In 
fact, 𝑏𝛼

𝐿1 is not only the lower bound of 𝛼 in SNE/LEF (Varian, 2007, 2009), but also the lower bound of 
STNE, as the following discussion will reveal (see Equations 23 and 25). Using these facts, we can get 
the bidding bounds of bidder 𝛼 in the following two cases. 
 
Case 1: 𝑏𝛼

𝐿1 ≤ 𝑏𝛼
𝑈2. It is obvious that the upper bound 𝑏𝛼𝑈 is the minimum between 𝑏𝛼

𝑈1 and 𝑏𝛼
𝑈2, while the 

lower bound 𝑏𝛼𝐿 is the maximum between 𝑏𝛼
𝐿1 and 𝑏𝛼

𝐿2; that is: 
 

𝑏𝛼𝑈 = min�𝑏𝛼
𝑈1 , 𝑏𝛼

𝑈2� = 𝑏𝛼
𝑈2  (22), 

 
𝑏𝛼𝐿 = max�𝑏𝛼

𝐿1 , 𝑏𝛼
𝐿2� = 𝑏𝛼

𝐿1   (23). 
 
In this case, if bidding in the interval [𝑏𝛼𝐿 , 𝑏𝛼𝑈], 𝛼 can satisfy all four bounds (i.e., 𝑏𝛼

𝐿1,  𝑏𝛼
𝐿2, 𝑏𝛼

𝑈1, and 𝑏𝛼
𝑈2). 

 
Case 2: 𝑏𝛼

𝐿1 > 𝑏𝛼
𝑈2 . In this situation, at least one target cannot be realized, and bidding between 

�𝑏𝛼
𝑈2 , 𝑏𝛼

𝐿1� is dominated since it breaks two bounds. So, there are two possible alternatives, �𝑏𝛼
𝐿1 ,𝑏𝛼

𝑈1� 
and �𝑏𝛼

𝐿2 , 𝑏𝛼
𝑈2�. The former, which is the same as SNE/LEF, aims to obtain a potential payoff if bidder 

𝛼 − 1 makes a mistake by placing a low bid, but runs the risk of a reduced payoff in case bidder 𝛼 + 1 
raises its bid. The latter gives up the chance to obtain a potential payoff and focuses on maintaining the 
current payoff. However, the latter strategy is not stable (see Proposition 6.2 later). Thus, in Case 2, the 
former is the only, but unsatisfactory, choice; that is: 
 

𝑏𝛼𝑈 = 𝑏𝛼
𝑈1  (24), 

 
𝑏𝛼𝐿 = 𝑏𝛼

𝐿1  (25). 
 
Proposition 6.1. If 𝛾1 ≥ 𝛾2 ≥ ⋯ ≥ 𝛾𝐾−1, 𝑏𝛼

𝐿1 ≥ 𝑏𝛼
𝐿2 and 𝑏𝛼

𝑈1 ≥ 𝑏𝛼
𝑈2. 

 
Proposition 6.2. If 𝑏𝛼

𝐿1 > 𝑏𝛼
𝑈2, bidding in �𝑏𝛼

𝐿2, 𝑏𝛼
𝑈2� is unstable. 

 
As shown in Algorithm 1, because the value vector 𝒗 and parameters 𝛾1, 𝛾2,⋯ , 𝛾𝐾−1 are known to all 
bidders, by recursively using Formulae 18–25, every bidder can efficiently obtain all bidders’ bidding 
intervals (the computational complexity of Algorithm 1 is linear with respect to the number of bidders, 
that is, 𝒪(𝑁)). The STNE of a GSP auction can then be explicitly specified. 
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Algorithm 1. Computing STNE Bounds 

 
Define: 
 

𝒟1 ≜ [𝑏1𝐿 , 𝑏1𝑈] × [𝑏2𝐿 , 𝑏2𝑈] × ⋯× [𝑏𝐾𝐿 , 𝑏𝐾𝑈],  
 

𝒟2 ≜ {�𝑏|𝑏1 > 𝑏2 > ⋯ > 𝑏𝐾},  
 
where 𝒟1 is the Cartesian product of all bidders’ bidding intervals and is a finite cuboid and 𝒟2 is the set 
of all efficient bidding vectors and is an infinite cone. The STNE can then be represented as: 
 

ℰ0⋆ = 𝒟1 ∩ 𝒟2   (26). 
 
If all bidders’ possible choices belong to Case 2, ℰ0⋆ is the same as SNE/LEF. Otherwise, ℰ0⋆ is just a 
proper subset of SNE/LEF. 

7. Discussion and Implications 
In this section, we discuss some implications of STNE to bidders and auctioneers. We also discuss the 
relationships between our proposed equilibrium refinements and major existing refinements. 

7.1. Bidding Strategy 
By employing Algorithm 1 (note that the value vector 𝒗 and parameters 𝛾1, 𝛾2,⋯ , 𝛾𝐾−1  are common 
knowledge), the STNE bidding intervals of all advertisers can be efficiently calculated. A direct bidding 
strategy for an advertiser is simply to choose a bid from its own bidding interval. However, since some 
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of the bidding intervals may overlap, even if every advertiser chooses a bid from its own interval, the 
bidding vector may not be a Nash equilibrium (region 𝐸 in Figure 4 indicates this situation; this figure 
also shows that STNE, ℰ0⋆, exists even if some bidders’ bidding intervals overlap). Therefore, even if all 
advertisers use a stable strategy, there may be a period of bid revisions before the bidding vector 
converges into STNE. There are the following two possible situations. 
 

• Non-overlapping: In this situation, an advertiser’s STNE bidding interval does not overlap 
with either that of the advertiser ranked just above or that of the one ranked just below. 
Thus, this advertiser can freely choose a bid in its STNE interval. In particular, it can 
choose from two special strategies: the upper bound and the lower bound of STNE. The 
upper bound strategy can help this advertiser decline the profit of the advertiser ranked 
just above. The lower bound strategy can reduce the loss in case the advertiser ranked 
just below mistakenly bids a large amount. 

 
• Overlapping: In this situation, an advertiser’s STNE bidding interval overlaps with that of 

the advertiser ranked just above or that of the one ranked just below. If the advertiser 
chooses a bid in an overlapping zone, the outcome may not be a Nash equilibrium, and 
the advertiser may face some loss of revenue (as analyzed in the proof of Theorem 5.1). 
Therefore, the advertiser should bid in the remaining non-overlapping zone. It can still use 
the upper bound of this non-overlapping zone to cut the revenue of the advertiser ranked 
just above and use the lower bound to avoid potential risk in case the one ranked just 
below makes a mistake. 

 
Note that, as Figure 4 shows, two bidders may have an identical upper bound (𝑘𝑣1). If both bidders 
choose the identical upper bound as their strategies, the tie needs to be broken by the auctioneer. 
However, the tie-breaking rule is pre-determined by the auctioneer and is not part of a bidder’s bidding 
strategy. 

7.2. Realizable Revenue 
As the above discussion indicates, the bidding vector will form a Nash equilibrium in STNE after a 
period of bid revisions. As there still exists great freedom for a bidder to choose a bid, one still cannot 
predict exactly which Nash equilibrium in STNE will be the final outcome. However, no matter which 
stable Nash equilibrium is the final outcome, the revenue of the search engine on STNE is at least the 
same as that under VCG. Varian (2009) shows that the revenue on SNE/LEF is at least the same as 
that under VCG, and STNE is a subset of SNE. This is a good property to the search engine. On the 
other hand, while the minimal revenue on STNE equals that on SNE/LEF, the maximal revenue on 
STNE is less than that on SNE/LEF. Although this seems to be unfavorable to the search engine, we 
point out that the maximal revenue of SNE/LEF is attained at an unstable and risk-dominated 
equilibrium and, hence, has no practical value (i.e., it is not realizable). Therefore, managerially, we 
recommend the use of the maximal revenue on the STNE set rather than that on the SNE/LEF set as a 
benchmark for evaluating different auction mechanisms. 
 
As to an advertiser, the price of a GSP auction on STNE is, thus, at least the same as that under VCG. 
This is, indeed, necessary because every bidder must bid truthfully in the VCG mechanism, but 
revealing this information may cause lots of problems (see Ausubel & Milgrom, 2006, & Rothkopf, 2007, 
for detailed discussions). However, in a GSP auction, every bidder is free to choose a preferred bid in its 
STNE bidding interval. Although it is somewhat expensive in comparison with VCG, the final outcome 
will be efficient, fair, and free from the problems associated with truth-telling. 

7.3. Relationships with Other Equilibrium Concepts 
As we have proved, in a dynamic environment, the polyhedron in which all equilibria are efficient is 
weakly stable, whereas all other polyhedra are unstable. We also find that the bidding vector will 
converge into STNE, which is a subset of the weakly stable polyhedron, after a series of rational bid 
revisions. Cary et al. (2007) and Vorobeychik and Reeves (2008) propose a greedy bidding strategy in a 
repeated GSP auction and found a specific point to which the bidding vector will converge under their 
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balance strategy (Bu et al., 2008, report a similar result). However, they assumed a perfect information 
structure (i.e., the bidding vector is known to all bidders after each stage auction). In our treatment, we 
used an imperfect information structure. As a result, a set of equilibria, rather than a single equilibrium, 
can be used to interpret the final outcome. 
 
Varian (2007, 2009) states that SNE is a good description of the bidding behaviors in Google’s AdWords 
system and provided some explanations for the upper and lower bounds for SNE. However, based on 
the above analysis, we can see that SNE is the result of rational bid revisions in a repeated GSP 
auction. Furthermore, SNE is not as powerful as STNE. Generally, SNE can be employed to describe 
the situation of Case 2 (discussed in Section 6), but is not a good equilibrium refinement for Case 1 
because it contains some risk-dominated strategies. The relationships of these equilibrium concepts can 
be summarized as follows: 
 

PSNE ⊇ WSNE ⊇ SNE/LEF ⊇ STNE. 
 
We can also relate our results to the stable core of an assignment game (or more generally, the two-
sided matching game). Edelman et al. (2007) establishes the relationship between GSP auction and the 
assignment game studied by Shapley and Shubik (1972), and finds that each LEF induces a core price 
vector, and each core price vector can be implemented by a LEF. Our results show that STNE is a 
proper subset of SNE/LEF in Case 1 and, therefore, can only correspond to a subset of the stable core 
of an assignment game. The reason is that we take the risk of bidding into consideration, thus ruling out 
some risk-dominated strategies. The definition of stable core does not account for risk, especially in two-
sided matching games without payment from one side to the other; such as the marriage match game 
(Bikhchandani & Ostroy, 2006; Roth & Sotomayor, 1992). However, this is not really a surprising result, 
as Shapley and Shubik (1972) point out that the stable core contains not only all competitive outcomes 
but also other outcomes without a corresponding competitive implementation. 

8. Conclusion 
In this paper, we provide a comprehensive analysis of pure-strategy Nash equilibria of GSP auction in 
both static and dynamic environments. We make several original contributions. First, we find all the 
PSNE of a GSP auction. When using the “same-slot” relation defined on the entire space of PSNE, the 
nonlinear allocation rule in the definition of PSNE can be eliminated. Then, well-developed methods can 
be employed to find all PSNE. Generally, each equivalence class of PSNE under this same-slot relation 
is a convex polyhedron, and all polyhedra are distributed in the pure-strategy space separately, if 
valuations of all bidders are distinct. We also derive a general upper bound for the number of possible 
polyhedra. 
 
Second, in order to weed out inefficient equilibria, we study the repeated version of a GSP auction. We 
propose weak stability and stability (similar to concepts used in cybernetics and evolutionary game 
theory) for equilibrium refinements. We prove that the polyhedron in which all equilibria are efficient is 
weakly stable, whereas all other polyhedra are unstable.  
 
Third, we conclude that the bidding vector will converge into STNE after a series of rational bid 
revisions. We also find that SNE/LEF is a subset of the weakly stable polyhedron and that STNE is the 
same as or a proper subset of SNE/LEF. SNE/LEF may contain risk-dominated strategies, whereas 
STNE never does. 
 
Our findings have important practical implications. We show that a GSP auction (with quality score) is a 
dynamic efficient mechanism, implying that it can maximize the social welfare of the advertising market. 
From the point of view of auctioneers (search engines), the revenue on STNE is at least the same as 
that under VCG, and auctioneers can use the STNE revenue as a benchmark for evaluating other 
auction mechanisms. From the point of view of advertisers, as the STNE bidding intervals can be 
calculated efficiently, our result provides them a simple yet effective and stable strategy. The outcome of 
the STNE bidding strategy is efficient and fair while exposing no secret information of advertisers. 
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Our work also opens avenues for further work, which may extend ours by relaxing the assumptions of 
complete information and budget-free. First, in practice, the valuation of a bidder is usually private 
information. A frequently used framework to deal with incomplete information is to assume the joint 
distribution of the valuations of all bidders to be common knowledge. Another possible approach is to 
develop valuation estimation algorithms based on both acquired historical data and the equilibrium 
structure. Second, the optimal bidding strategy for bidders under budget constraints is still open to 
investigation. A possible approach to deal with such constraints is to change the payoff from the 
expected profit to a function taking return-on-investment into account. Another direction for future work 
is to empirically validate our proposed refinement concepts, especially the STNE, with real keyword 
auction data. Currently, an apparent obstacle in this direction is the fact that past bidding behaviors 
observed at practical keyword auctions are not based on the equilibrium structure that we reveal in this 
paper or on our proposed refinements. 
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Appendix A. 

Proof of Theorem 4.1. 
Case 1: 𝑁 ≤ 𝐾. Suppose that bidding vector 𝒃⋆ is a Nash equilibrium with 𝑚 ≥  2 bidders who bid the 
same value 𝑏⋆. According to the allocation rule of GSP auction mechanism, these 𝑚 bidders will be 
allocated to 𝑚 contiguous slots with the same probability 1

𝑚
. Denote these 𝑚 slots as 𝑠, 𝑠 + 1,⋯ , 𝑠 +

𝑚 − 1(𝑠 ≥ 1, 𝑠 + 𝑚 − 1 ≤ 𝑁). 
 
Now, consider a bidder, say 𝑖, from these 𝑚 bidders. Its current payoff is: 
 

1
𝑚

[𝑐𝑖𝑠(𝑣𝑖 − 𝑏⋆) + 𝑐𝑖𝑠+1(𝑣𝑖 − 𝑏⋆) + ⋯+ 𝑐𝑖𝑠+𝑚−2(𝑣𝑖 − 𝑏⋆) + 𝑐𝑖𝑠+𝑚−1(𝑣𝑖 − 𝑝)]    (27), 
 
where 𝑝 = 𝑏𝜋𝑠+𝑚 is the bid just below 𝑏⋆, and 𝑣𝑖 − 𝑝 > 0 since 𝑏⋆ is a Nash equilibrium. 
 
If bidder 𝑖 raises bid slightly, it would be allocated to slot 𝑠 and get a payoff: 
 

𝑐𝑖𝑠(𝑣𝑖 − 𝑏⋆)    (28). 
 
Since 𝒃⋆ is a Nash equilibrium, bidder 𝑖 has no incentive to raise bid. In other words, Payoff 27 is 
larger than payoff (28); that is: 
 

1
𝑚

[𝑐𝑖𝑠(𝑣𝑖 − 𝑏⋆) + 𝑐𝑖𝑠+1(𝑣𝑖 − 𝑏⋆) + ⋯+ 𝑐𝑖𝑠+𝑚−2(𝑣𝑖 − 𝑏⋆) + 𝑐𝑖𝑠+𝑚−1(𝑣𝑖 − 𝑝)] ≥ 𝑐𝑖𝑠(𝑣𝑖 − 𝑏⋆)   (29). 
 
Define 𝛿̅ = 𝑐𝑖

𝑠+𝑚−1

(𝑚−1)𝑐𝑖
𝑠−∑ 𝑐𝑖

𝑡𝑠+𝑚−2
𝑡=𝑠+1

, the above inequality can then be simplified as: 

 
𝑏⋆ ≥ 𝑣𝑖 − 𝛿̅(𝑣𝑖 − 𝑝)    (30). 

 
Now, if bidder 𝑖 lowers bid slightly, it would be allocated to slot 𝑠 + 𝑚− 1 and get a payoff: 
 

𝑐𝑖𝑠+𝑚−1(𝑣𝑖 − 𝑝)   (31). 
 
Again, Payoff 27 is larger than the above Payoff 31; that is, 
 

1
𝑚

[𝑐𝑖𝑠(𝑣𝑖 − 𝑏⋆) + 𝑐𝑖𝑠+1(𝑣𝑖 − 𝑏⋆) + ⋯+ 𝑐𝑖𝑠+𝑚−2(𝑣𝑖 − 𝑏⋆) + 𝑐𝑖𝑠+𝑚−1(𝑣𝑖 − 𝑝)] ≥ 𝑐𝑖𝑠+𝑚−1(𝑣𝑖 − 𝑝)   (32). 
 
Define 𝛿 = (𝑚−1)𝑐𝑖

𝑠+𝑚−1

∑ 𝑐𝑖
𝑡𝑠+𝑚−2

𝑡=𝑠
= 𝑐𝑖

𝑠+𝑚−1

∑ 𝑐𝑖
𝑡/(𝑚−1)𝑠+𝑚−2

𝑡=𝑠
, the above inequality can then be simplified as: 

 
𝑏⋆ ≤ 𝑣𝑖 − 𝛿(𝑣𝑖 − 𝑝)   (33). 

 
Define: 
 

𝑏𝑖 = 𝑣𝑖 − 𝛿(𝑣𝑖 − 𝑝), 
 

𝑏𝑖 = 𝑣𝑖 − 𝛿(𝑣𝑖 − 𝑝), 
 

𝒟𝑖 = ��𝑏|𝑏𝚤� ≤ 𝑏 ≤ 𝑏𝑖�. 
 
According to the above analyses, 𝑏⋆ ∈ 𝒟𝑖. Next, we show that 𝒟𝑖 = 𝜙. 
 
If 𝑚 >  2 
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(𝑚 − 1)𝑐𝑖𝑠 −� 𝑐𝑖𝑡 = 𝑐𝑖𝑠 + (𝑐𝑖𝑠 − 𝑐𝑖𝑠+1) + ⋯+ (𝑐𝑖𝑠 − 𝑐𝑖𝑠+𝑚−2) > 𝑐𝑖𝑠 >𝑠+𝑚−2

𝑡=𝑠+1 � 𝑐𝑖𝑡 (𝑚 − 1)⁄𝑠+𝑚−2
𝑡=𝑠 . 

 
Thus, 𝛿 < 𝛿  and 𝑏𝑖 > 𝑏𝑖 . This implies that 𝒟𝑖 = 𝜙 , contradicting the assumption made at the 
beginning. 
 
If 𝑚 = 2, 𝛿 < 𝛿 = 𝑐𝑖

𝑠+1

𝑐𝑖
𝑠 , 𝑏𝑖 = 𝑏𝑖 , and thus 𝒟𝑖 = �𝑏𝑖�, 𝑏⋆ = 𝑏𝑖 . For the other bidder, 𝑗, using the same 

analysis, we get that 𝒟𝑗 = �𝑏𝑗�  and 𝑏⋆ = 𝑏𝑗 . Since 𝑣𝑖 ≠  𝑣𝑗 , 𝑏𝑖 ≠ 𝑏𝑗 , which implies 𝑏⋆ ≠ 𝑏⋆ , a 
contradiction. 
 
Case 2: 𝑁 >  𝐾. It has been proven in Case 1 that: 
 

𝑏𝜋1 > 𝑏𝜋2 > ⋯ > 𝑏𝜋𝐾. 
 
Now, suppose that 𝑏𝜋𝐾 = 𝑏𝜋𝐾+1 = 𝑏⋆  and denote corresponding bidders as 𝑖 and 𝑗. The payoffs of 
these two bidders will be 1

2
𝑐𝑖𝐾(𝑣𝑖 − 𝑏⋆) and 1

2
𝑐𝑗𝐾�𝑣𝑗 − 𝑏⋆�, respectively. If one bidder, say 𝑖, raises bid, it 

will be allocated to slot 𝐾 and receive a payoff 𝑐𝑖𝐾(𝑣𝑖 − 𝑏⋆), which is larger than 1
2
𝑐𝑖𝐾(𝑣𝑖 − 𝑏⋆). Thus, 

bidder 𝑖 has incentive to raise bid, contradicting the fact that 𝒃⋆ is a Nash equilibrium. 

Proof of Theorem 4.2. 
Case 1: 𝑁 ≤ 𝐾. The maximum number of equivalence classes is just the total number of permutations 
of 𝑁 bidders, i.e., 𝑁!. 
 
Case 2: 𝑁 > 𝐾. Let 𝒩1 and 𝒩2 be subsets of 𝒩 consisting of the first 𝐾 bidders and the remaining 
bidders, respectively. 
 
First, consider the possible polyhedra that allocate all the slots to the bidders in 𝒩1. The total number 
of permutations of the bidders in 𝒩1 is 𝐾!. 
 
Second, consider an allocation that allocates a slot to one bidder, say 𝑗, in 𝒩2. This forces another 
bidder, say 𝑖, in 𝒩1 to lose in the auction. Next, we prove that only slot 𝐾 is a possible choice for 
bidder 𝑗. 
 
At a Nash equilibrium, as bidder 𝑖 has no incentive to get a slot, the bid of every bidder who gets a 
slot must be above bidder 𝑖’s valuation, 𝑣𝑖. Suppose that bidder 𝑗 is allocated to a slot other than 𝐾. 
Bidder 𝑗 will face a price 𝑝 ≥ 𝑣𝑖 as there will be a bidder below it. Bidder 𝑗 has incentive to deviate, 
since 𝑣𝑖 ≥ 𝑣𝑗 and, hence, its payoff is negative, contradicting the assumption. Therefore, only slot 𝐾 is 
possible for bidder 𝑗. 
 
Using the same reasoning, we can prove that no more than one slot can be allocated to bidders in 𝒩2 
and that only bidder 𝐾 can be forced out. The number of bidders in 𝒩2 is 𝑁 − 𝐾, and the number of 
permutations of the first 𝐾 − 1 bidders is (𝐾 − 1)!, so the total number of polyhedra that allocate a slot 
to a bidder in 𝒩2 is (𝑁 − 𝐾)(𝐾 − 1)!. 
 
The total number of possible polyhedra in Case 2 is, therefore, 𝐾! + (𝑁 − 𝐾)(𝐾 − 1)! = 𝐾! +
𝑁(𝐾 − 1)! − 𝐾(𝐾 − 1)! = 𝑁(𝐾 − 1)! 
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Proof of Theorem 5.1. 
Consider a neighboring unstable factor involving bidder 𝑖 and 𝑗, where 𝑣𝑖 >  𝑣𝑗, 𝜓𝑗 =  𝛼, and 𝜓𝑖 =  𝛼 +
1. The constraints for bidding vector 𝒃 as a Nash equilibrium on slots 𝛼 and 𝛼 + 1 are: 
 

𝑐𝑗𝑎�𝑣𝑗 − 𝑏𝑖� ≥ 𝑐𝑗𝑎+1�𝑣𝑗 − 𝑏𝜋𝑎+2� ⇒ 𝑏𝑖 ≤
𝑐𝑗
𝑎−𝑐𝑗

𝑎+1

𝑐𝑗
𝑎 𝑣𝑗 +

𝑐𝑗
𝑎+1

𝑐𝑗
𝑎 𝑏𝜋𝑎+2 = �1 − 1

𝛾𝛼
� 𝑣𝑗 + 1

𝛾𝛼
𝑏𝜋𝑎+2 ≜ 𝜆𝛼   (34), 

 
𝑐𝑖𝑎+1�𝑣𝑖 − 𝑏𝜋𝑎+2� ≥ 𝑐𝑖𝑎�𝑣𝑖 − 𝑏𝑗� ⇒ 𝑏𝑗 ≥

𝑐𝑖
𝑎−𝑐𝑖

𝑎+1

𝑐𝑖
𝑎 𝑣𝑗 + 𝑐𝑖

𝑎+1

𝑐𝑖
𝑎 𝑏𝜋𝑎+2 = �1 − 1

𝛾𝛼
� 𝑣𝑖 + 1

𝛾𝛼
𝑏𝜋𝑎+2 ≜ 𝜅𝛼   (35), 

 
Since 𝑣𝑗 <  𝑣𝑖, 𝜆𝛼 < 𝜅𝛼. 
 
If bidders 𝑗 = 𝜋𝛼  and 𝑖 = 𝜋𝛼+1 are swapped while holding other bidders’ bids unchanged, the new 
Nash equilibrium conditions are 
 

𝑐𝑖𝑎�𝑣𝑖 − 𝑏𝑗� ≥ 𝑐𝑖𝑎+1�𝑣𝑖 − 𝑏𝜋𝑎+2� ⇒ 𝑏𝑗 ≤
𝑐𝑖
𝑎−𝑐𝑖

𝑎+1

𝑐𝑖
𝑎 𝑣𝑖 + 𝑐𝑖

𝑎+1

𝑐𝑖
𝑎 𝑏𝜋𝑎+2 = �1 − 1

𝛾𝛼
� 𝑣𝑖 + 1

𝛾𝛼
𝑏𝜋𝑎+2 = 𝜅𝛼  (36), 

 

𝑐𝑗𝑎+1�𝑣𝑗 − 𝑏𝜋𝛼+2� ≥ 𝑐𝑗𝑎�𝑣𝑗 − 𝑏𝑖� ⇒ 𝑏𝑖 ≥
𝑐𝑗
𝑎−𝑐𝑗

𝑎+1

𝑐𝑗
𝑎 𝑣𝑖 +

𝑐𝑗
𝑎+1

𝑐𝑗
𝑎 𝑏𝜋𝑎+2 = �1 − 1

𝛾𝛼
� 𝑣𝑗 + 1

𝛾𝛼
𝑏𝜋𝑎+2 = 𝜆𝛼  (37). 

 
Next, we show that bidder 𝑖 has incentive to realize this swapping. The current payoff of bidder 𝑖 is 
𝑓1 = 𝑐𝑖𝑎+1�𝑣𝑖 − 𝑏𝜋𝛼+2�. After swapping, its payoff would be 𝑓2 = 𝑐𝑖𝑎�𝑣𝑖 − 𝑏𝑗�. The minimum payoff after 
swapping would be 𝑓2 = 𝑐𝑖𝑎(𝑣𝑖 − 𝜅𝛼). since 𝑓2 ≥ 𝑓1 (Inequality 36), bidder 𝑖 has incentive to swap slots 
with bidder 𝑗. 
 
For convenience, we temporarily assume that bidder 𝑗 knows 𝑏𝜋𝑎+2. In this setting, the strategy for 
bidder 𝑖 to accomplish the above swapping is to raise bid to 𝑏�𝑖 such that 𝜆𝛼 < 𝑏�𝑖 < 𝜅𝛼. However, to 
show the effectiveness of this strategy for bidder 𝑖, we still have to analyze bidder 𝑗’s behaviors. Note 
that bidder 𝑗 has two options now: lower bid to slot 𝛼 + 1 or keep bid to maintain the current slot 𝛼. In 
slot 𝛼 , the expected profit of bidder 𝑗 is 𝑐𝑗𝑎�𝑣𝑗 − 𝑏�𝑖�, whereas in slot 𝛼 + 1, the expected profit is 
𝑐𝑗𝑎+1�𝑣𝑗 − 𝑏𝜋𝛼+2�. Since 𝑏�𝑖 > 𝜆𝛼, we have: 
 

𝑐𝑗𝑎+1�𝑣𝑗 − 𝑏𝜋𝛼+2�  ≤  𝑐𝑗𝑎�𝑣𝑗 − 𝜆𝛼�  
 

=  𝑐𝑗𝑎 �𝑣𝑗 − �1 − 1
𝛾𝛼
� 𝑣𝑗 −

1
𝛾𝛼
𝑏𝜋𝑎+2�  [inequality (37)] 

 

=  
𝑐𝑗
𝑎

𝛾𝛼
�𝑣𝑗 − 𝑏𝜋𝛼+2�  

 
=  𝑐𝑗𝑎+1�𝑣𝑗 − 𝑏𝜋𝛼+2�   (38). 

 
Thus, bidder 𝑗 cannot afford to maintain slot 𝛼, and it is profitable for bidder 𝑗 to deviate to slot 𝛼 + 1. 
 
Figure A.1 shows a possible adjustment that accomplishes this swap. Bidder 𝑖 raises bid to 𝑏�𝑖 and the 
bidding vector moves to point A. Since bidder 𝑗 knows the value of 𝑏�𝑖 (its price), it chooses a bid less 
than 𝑏�𝑖, causing the bidding vector to move to point B (in general, we cannot predict the locations of 
points A and B accurately). No matter where A and B are, bidder 𝑖 obtains slot 𝛼 with an increased 
profit. 
 
In the preceding analysis, we temporarily assumed that bidder 𝑗  knows 𝑏𝜋𝛼+2 . However, as the 
information structure adopted in this paper does not allow bidder 𝑗 to directly know 𝑏𝜋𝛼+2, bidder 𝑖 
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needs to convey such information to bidder 𝑗. A possible strategy for bidder 𝑖 is to lower its bid to 
𝑏 = 𝑏𝜋𝛼+2 + 𝜖(𝜖 > 0), allowing bidder 𝑗  to infer that 𝑏𝜋𝛼+2 < 𝑏  (as 𝑏  is bidder 𝑗 ’s new price). Next, 
bidder 𝑖  raises bid to 𝑏𝜖  to force bidder 𝑗  to lower slot. The expected profit of bidder 𝑗  would be 
𝑐𝑗𝑎�𝑣𝑗 − 𝑏𝜖� in slot 𝛼 or 𝑐𝑗𝑎+1�𝑣𝑗 − 𝑏𝜋𝛼+2� in slot 𝛼 + 1. Although bidder 𝑗 does not know 𝑏𝜋𝛼+2 exactly, it 
can infer that: 
 

𝑐𝑗𝑎+1�𝑣𝑗 − 𝑏𝜋𝛼+2� > 𝑐𝑗𝑎+1�𝑣𝑗 − 𝑏�. 
 
Thus, to force bidder 𝑗 to lower slot, bidder 𝑖’s new bid  𝑏𝜖 should satisfy: 
 

𝑐𝑗𝑎+1�𝑣𝑗 − 𝑏� ≥ 𝑐𝑗𝑎�𝑣𝑗 − 𝑏𝜖�. 
 
Solving this inequality, we get bidder 𝑖’s new bid: 
 

𝑏𝜖  ≥  �1 −
1
𝛾𝛼
� 𝑣𝑗 +

1
𝛾𝛼
𝑏 

 

=  �1 −
1
𝛾𝛼
� 𝑣𝑗 +

1
𝛾𝛼
𝑏𝜋𝛼+2 +

1
𝛾𝛼
𝜖 

 
=  𝜆𝛼 + 1

𝛾𝛼
𝜖. 

 

 
Figure A-1. Slot Swapping of Bidders 𝒊 and 𝒋 

 
To make the strategy effective, 𝑏𝜖 must be less than 𝜅𝛼, i.e., 𝜆𝛼 + 1

𝛾𝛼
𝜖 ≤ 𝑏𝜖 ≤ 𝜅𝛼, and, hence: 

 
𝜖 ≤ (𝛾𝛼 − 1)�𝑣𝑖 − 𝑣𝑗�. 
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In summary, the strategy of bidder 𝑖 is as follows: 
 

• Choose a positive quantity 𝜖 such that 𝜖 < (𝛾𝛼 − 1)�𝑣𝑖 − 𝑣𝑗� and 𝜖 < 𝑏𝑖 − 𝑏𝜋𝛼+2, and lower 
bid to 𝑏 = 𝑏𝜋𝛼+2 + 𝜖; 

 
• Then, raise bid to 𝑏𝜖 such that 𝜆𝛼 + 1

𝛾𝛼
𝜖 < 𝑏𝜖 < 𝜅𝛼. 

 
In the following, we prove that the inverse procedure is impossible. Note that both bidders 𝑖 and 𝑗 
know 𝑏𝜋𝛼+2 in this situation. It can be seen, following the same reasoning, bidder 𝑗 also has incentive 
to swap slots with bidder 𝑖. The strategy it can use is to raise bid too. Suppose that the bidding vector 
forms an equilibrium with 𝑏𝑖 > 𝑏𝑗 and satisfies Inequalities 36 and 37. We show that this is impossible 
in the following two possible cases. 
 
Case 1: 𝜆𝛼 ≤ 𝑏𝑖 ≤ 𝜅𝛼(𝑏𝑖 ≥ 𝜆𝛼 is due to Inequality 37. 
 
In this case, to obtain slot 𝛼, bidder 𝑗 can choose a bid 𝑏�𝑗 ≥ 𝑏𝑖 to get slot 𝛼 directly or choose a bid 
𝑏�𝑗 < 𝑏𝑖 to force bidder 𝑖 to lower bid to slot 𝛼 + 1. First, the conditions of Nash Equilibrium 36 and 37 
guarantee that the latter strategy (i.e., forcing bidder 𝑖 to lower bid to slot 𝛼 + 1) is infeasible (see also 
Figure A.1). Second, the former strategy (i.e., choosing a bid 𝑏�𝑗 ≥ 𝑏𝑖 to get slot 𝛼 directly) does not 
work either. Note that, if bidder 𝑗 applies this strategy, the expected profit of 𝑗 obtained in slot 𝛼 is 
𝑐𝑗𝑎�𝑣𝑗 − 𝑏𝑖�, whereas that in slot 𝛼 + 1 is again 𝑐𝑗𝑎+1�𝑣𝑗 − 𝑏𝜋𝛼+2�. Since 𝑏𝑖 ≥ 𝜆𝛼, we have 𝑐𝑗𝑎�𝑣𝑗 − 𝑏𝑖� ≤
𝑐𝑗𝑎+1�𝑣𝑗 − 𝑏𝜋𝛼+2� (similar to the deduction of inequality (38)); hence bidder 𝑗 cannot afford to maintain 
slot 𝛼, i.e., bidder 𝑖 does not need to adjust its bid, whereas bidder 𝑗 will find that it is not profitable to 
raise its bid to 𝑏�𝑗 ≥ 𝑏𝑖. 
 
Case 2: 𝑏𝑖 > 𝜅𝛼. In this situation, bidder 𝑗 has two strategies to choose from. 
 
In one strategy, bidder 𝑗 raises bid 𝑏�𝑗 to at least 𝑏𝑖 (bidder 𝑗 can accomplish this by increasing its bid 
with a small increment 𝜖 > 0, successively). Since 𝑏�𝑗 > 𝑏𝑖 , bidder 𝑗 gets slot 𝛼, directly. The profit 
bidder 𝑗 would receive is 𝑐𝑗𝑎�𝑣𝑗 − 𝑏𝑖�. Since 𝑏𝑖 > 𝜅𝛼 > 𝜆𝛼 , the same reasoning employed in Case 1 
shows that bidder 𝑗 cannot afford to maintain slot 𝛼. 
 
In the other strategy, bidder 𝑗 maintains slot 𝛼 + 1 while raising its bid to reduce bidder 𝑖’s profit. To 
force bidder 𝑖 to lower slot, 𝑏�𝑗 should be larger than 𝜆𝛼 (Inequality 36). In this situation, bidder 𝑖 needs 
to lower its slot and has two strategies: (1) lower its bid into the interval (𝜆𝛼 , 𝜅𝛼) and (2) choose a bid 
𝑏�𝑖 in the interval (𝜅𝛼 , 𝑏�𝑗). If bidder 𝑖 uses the former strategy, inequality (38) guarantees that bidder 𝑗 
will lower its bid to get slot 𝛼 + 1. If bidder 𝑖 chooses the latter strategy, bidder 𝑗 can then choose a bid 
𝜆𝛼 < 𝑏�𝑗′ < 𝑏�𝑖 and continue to cut bidder 𝑖’s profit, forcing bidder 𝑖 to face the same issue it faced at the 
beginning. As the former strategy dominates the latter one, bidder 𝑖 can simply adopt the former 
strategy at the very beginning and force bidder 𝑗 to lower its slot to 𝛼 + 1. 
 
Through the above reasoning, we have shown that bidder 𝑗 cannot maintain slot 𝛼 stably, whereas 
bidder 𝑖 can accomplish this objective. 
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Proof of Proposition 6.1. 
𝑏𝛼
𝑈1 − 𝑏𝛼

𝑈2 = �1 − 1
𝛾𝛼−1

� (𝑣𝛼−1 − 𝑣𝛼) − 1
𝛾𝛼−1

(𝑣𝛼 − 𝑏𝛼+1𝑈 ) + 1
𝛾𝛼

(𝑣𝛼 − 𝑏𝛼+2𝑈 ). 
 
Since 𝛾𝛼−1 ≥ 𝛾𝛼, − 1

𝛾𝛼−1
≥ − 1

𝛾𝛼
, and hence: 

 

𝑏𝛼
𝑈1 − 𝑏𝛼

𝑈2 ≥ �1 −
1

𝛾𝛼−1
� (𝑣𝛼−1 − 𝑣𝛼) −

1
𝛾𝛼

(𝑣𝛼 − 𝑏𝛼+1𝑈 ) +
1
𝛾𝛼

(𝑣𝛼 − 𝑏𝛼+2𝑈 ) 

 
= �1 − 1

𝛾𝛼−1
� (𝑣𝛼−1 − 𝑣𝛼) + 1

𝛾𝛼
(𝑏𝛼+1𝑈 − 𝑏𝛼+2𝑈 ). 

 
Since 𝑏𝛼+1 > 𝑏𝛼+2(∀𝒃 ∈ STNE), 𝑏𝛼+1𝑈 ≥ 𝑏𝛼+2𝑈 , and hence 𝑏𝛼

𝑈1 ≥ 𝑏𝛼
𝑈2. 

 
The proof of 𝑏𝛼

𝐿1 ≥ 𝑏𝛼
𝐿2 is similar. 

Proof of Proposition 6.2. 
Suppose bidder 𝛼 plays the latter strategy; that is: 
 

�1 − 1
𝛾𝛼
� 𝑣𝛼+1 + 1

𝛾𝛼
𝑏𝛼+2𝐿 ≤ 𝑏𝛼 ≤ �1 − 1

𝛾𝛼
� 𝑣𝛼 + 1

𝛾𝛼
𝑏𝛼+2𝑈     (39). 

 
Bidder 𝛼 − 1 could be in Case 1 or 2. Suppose it is in Case 2 and plays the latter strategy; that is: 
 

�1 − 1
𝛾𝛼−1

� 𝑣𝛼 + 1
𝛾𝛼−1

𝑏𝛼+1𝐿 ≤ 𝑏𝛼−1 ≤ �1 − 1
𝛾𝛼−1

� 𝑣𝛼−1 + 1
𝛾𝛼−1

𝑏𝛼+1𝑈     (40). 
 
Consider bidder 𝛼 − 2. Its current payoff per click is: 
 

𝑣𝛼−2 − 𝑏𝛼−1  ≤  𝑣𝛼−2 − �1 − 1
𝛾𝛼−1

� 𝑣𝛼 −
1

𝛾𝛼−1
𝑏𝛼+1𝐿   (41) 

 
=  𝑣𝛼−2 − 𝑣𝛼 + 1

𝛾𝛼−1
(𝑣𝛼 − 𝑏𝛼+1𝐿 ).   

 
If bidder 𝛼 − 2 is allocated to slot 𝛼 − 1, its payoff per click will be: 
 

𝑣𝛼−2 − 𝑏𝛼 ≥ 𝑣𝛼−2 − �1 − 1
𝛾𝛼
� 𝑣𝛼 −

1
𝛾𝛼
𝑏𝛼+2𝑈   (42) 

 
 =  𝑣𝛼−2 − 𝑣𝛼 + 1

𝛾𝛼
(𝑣𝛼 − 𝑏𝛼+2𝑈 ).   

 
Since 𝑏𝛼

𝐿1 > 𝑏𝛼
𝑈2, we get: 

 
1

𝛾𝛼−1
(𝑣𝛼 − 𝑏𝛼+1𝐿 ) < 1

𝛾𝛼
(𝑣𝛼 − 𝑏𝛼+2𝑈 )    (43). 

 
Combining inequalities (41)-(43), we have 𝑣𝛼−2 − 𝑏𝛼−1 < 𝑣𝛼−2 − 𝑏𝛼 . Therefore, bidder 𝛼 − 2  has 
incentive to deviate to slot 𝛼 − 1. 
 
Otherwise, if 𝛼 − 1  is in Case 1 or is in Case 2 and plays the former strategy, with the same 
reasoning, we can see that bidder 𝛼 − 2 has incentive to deviate to slot 𝛼 − 1. 
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