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Change Field: A New Change Measure
for VHR Images

Leigang Huo, Xiangchu Feng, Chunlei Huo, Member, IEEE, Zhixin Zhou, and Chunhong Pan

Abstract—Due to the complexity of very high resolution (VHR)
images and the inaccurate correspondence, change feature extrac-
tion is the key difficulty of VHR image change detection. In this
letter, change field is proposed to represent the complex changes
between VHR images. Change field measures the complex changes
based on the displacements and the compensated distance. Based
on change field, a novel change detection approach is proposed,
where the inter-class variability is improved and the changed class
and the unchanged class can be separated effectively. Experiments
demonstrate the effectiveness of the proposed approach.

Index Terms—Change detection, change field, progressive
transductive classification, very high resolution (VHR) images.

I. INTRODUCTION

COMPARED to the traditional low-to-moderate resolution
images, VHR image change detection is more attractive.

Besides the location where changes occur, the types and the de-
tails of the changes can also be recognized by taking advantages
of the improved spatial resolution. However, new challenges are
raised simultaneously, among which change feature representa-
tion (i.e., how to represent the complex changes between VHR
images. This topic will be illustrated in depth in Section II) is
the key factor that suspends the practical application. In detail,
the main challenges lie in the following two aspects.

First, the discriminability between different land-cover
classes is determined simultaneously by the spatial resolution
and the spectral resolution. Although the spatial resolution of
VHR sensors increases significantly, the spectral resolution and
the spectral separability are relatively poor [1]. As a result,
the statistical separability of the different land-cover classes is
reduced in the spectral domain. For the similar reason, the over-
all separability of the changed class and the unchanged class
presented in VHR images is not improved with the increased
spatial resolution.

Manuscript received July 15, 2013; revised November 26, 2013 and
January 29, 2014; accepted February 26, 2014. Date of publication March 19,
2014; date of current version May 12, 2014. This work was supported by
the Natural Science Foundation of China under Grants 61271294, 61375024,
61005013, 91338202, 61105011 and 863 project 2013AA7013031.

L. Huo is with the School of Mathematics and Statistics, Xidian University,
Xi’an 710071, China and also with the National Laboratory of Pattern Recog-
nition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190,
China (e-mail: lghuo2@126.com).

X. Feng is with the School of Mathematics and Statistics, Xidian University,
Xi’an 710071, China (e-mail: xcfeng@mail.xidian.edu.cn).

C. Huo and C. Pan are with the National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
(e-mail: clhuo@nlpr.ia.ac.cn; chpan@nlpr.ia.ac.cn).

Z. Zhou is with the Beijing Institute of Remote Sensing, Beijing 100191,
China (e-mail: zhixin.zhou@mail.ia.ac.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LGRS.2014.2310202

Second, the overall separability is further deteriorated by
the inaccurate correspondence. Generally, the inaccurate cor-
respondence is mainly caused by the image registration error,
view angle variation, etc. For instance, many uncertainties (such
as feature matching, outlier removal, transformation model
selection and estimation, interpolation artifact, pan-sharpening
error) are involved in image registration procedure, and the reg-
istration error is accumulated by the above impacts. Accurate
VHR image registration is still an open problem, and it hinders
the reliable change detection. For another example, the appear-
ances and the positions of the same object(e.g., the buildings)
varies greatly with the view angle difference, and it is difficult
for the traditional global-transformation-based image registra-
tion approaches to compensate the nonlinear deformation. For
low-to-moderate resolution images, the above impacts can be
neglected, and the satisfactory performance can be achieved
by the spectral differences. However, for VHR images, many
false changes are produced and difficult to remove due to the
inaccurate correspondence.

In short, the complexities of the changes lie in the fact that
more false negatives and false positives are generated by the
improved spatial resolution and difficult to be removed. Many
change features proposed in the existing literature aimed at
addressing the above difficulties by: 1) improving the discrim-
inativeness of the features to effectively represent the complex
objects in an image or 2) improving the robustness of the
change features to reduce the undesired impacts. For instance,
Huo [2] proposed to extract object-specific change feature
which combines the relative change feature and the original
multi-temporal signatures. Falco [3] proposed to use morpho-
logical attribute profiles to represent multiscale geometrical
features, which is implemented by multiresolution contextual
transformation. To remove the false changes caused by the
registration noise, Bovolo [4] proposed to represent change fea-
tures by spectral change vectors in the polar domain. To reduce
the parallax effects caused by the camera motion, Bourdis [5]
proposed to measure the change by the residual error, which
is computed based on the constrained optical flow matching.
Similarly, Klaric [6] presented to calculate the “corrected”
feature difference based on the corrected pixel correspondence
and the window-based bidirectional difference algorithm.

Despite of the novelties of the above change metrics, they are
lack of meaningful interpretation and insufficient to measure
the complex changes. In this context, it is necessary to develop
new change metrics for VHR images. To address the above
difficulties, a novel change measure called change field is
proposed for VHR images. Compared to the traditional metrics,
change field is promising in utilizing high-dimension local
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Fig. 1. Illustration of shortcomings of traditional change features based on
pixel-wise difference. (a) and (b): multi-temporal images, (c): change map
based on pixel-wise spectral difference.

features to represent the complex changes and compensating
the inaccurate correspondence.

II. CHANGE FIELD

Considering the shortcomings of the traditional pixel-wise
difference approaches, change field aims at capturing the com-
plex changes between VHR images via simulating the visual
change detection of human beings. For this reason, we in-
vestigate the behaviors of the traditional approaches on VHR
images and the complex changes caused by the improved
spatial resolution. As illustrated in Fig. 1, for a co-registered
VHR image pair, change detection errors caused by the pixel-
wise differencing approach can be generally classified into the
following two types:

1) False negative. As shown in region A in Fig. 1, false neg-
atives are mainly due to the low interclass variability(different
objects are of similar spectral features, for instance, the road
and the building roof) and the limitation of the pure usage of the
spectral features. In fact, it is difficult to represent such complex
changes even with the help of multiband spectral features if
only the spectral feature is used. In other words, higher level
features are important to reduce missed alarms.

2) False positive. As illustrated in region B and C in Fig. 1,
most false positives are caused by the registration error and
view angle variation. As reported in [7], sub-pixel image reg-
istration accuracy is needed for change detection. However,
this accuracy cannot be achieved at the building areas, the
underlying reason lies in the facts that the traditional image
registration approaches utilize the global transformation model
and no additional compensations are considered for the non-
linear deformation. In consequence, for the building regions
under different view angles, it is impossible to avoid high false
positives even if discriminative features are used.

Surprisingly, human beings can detect the changes robustly
to the above impacts. Human eyes will subconsciously encode
the complex objects from the spectral space into the feature
space and search the similar objects in the other image within
certain ranges before comparison and decision. In other words,
human beings decide whether changes occur between objects
based on the differences after compensation [8].

Motivated by the human visual change detection mechanism,
we define change field as follows:

For the co-registered multi-temporal images I1 and I2,
change field is a 3-D vector (x, y, z) defined over each pixel
(i, j) that follows the two conditions

(x,y)=arg min
xi,yj

∑

i,xi∈N(i),

j,yj∈N(j)

D(F (I1(i, j)), F (I2(i+xi,j+yj)))

(1)

z=D (F (I1(i, j)) , F (I2(i+ x, j + y))) (2)

where F and D denote the discriminative feature space (e.g.,
SIFT [9], DAISY [10]) and the robust distance function
(e.g., Mahalanobis distance and Earth Mover’s distance) re-
spectively, N(i) and N(j) are the neighborhoods for the pixel
indices i and j. As can be seen from the above definition, (x, y)
is the displacement vector and aims at simulating human eyes
to find the local search range that makes the similarity between
the patch pairs in I1 and I2 maximized. z is the distance after
compensating the necessary displacements. For a pixel or object
p in I1 and its counterpart q in I2, the direct interpretation of
change field is that p reaches q after the displacement vector
(x, y) with the cost z.

Given the change field concept, the collection of (x, y, z)
over all pixels lies within the following semi-ellipsoid
[Fig. 2(a)]
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where Rx, Ry, Rz denote the maximum of x, y, z along the
directions of X , Y and Z, respectively. (Cx, Cy, Cz) represents
the clustering center of the unchanged class. In the ideal case,
the center of (Cx, Cy, Cz) should be the coordinate origin, i.e.,
(Cx, Cy, Cz) = (0, 0, 0). In the practical situations, due to the
impacts caused by the mis-registration or view-angle variation,
(Cx, Cy, Cz) will violate the coordinate origin. As illustrated
by Fig. 2(b), the semi-ellipsoid is divided into three layers:
the unchanged class (green), the false changed class (blue), the
changed class (red). By change field, change features can be
distinguished effectively: the unchanged class is characteristic
of small displacement and cost, the changed class is charac-
teristic of huge displacement or cost, while the false changed
class corresponds to small cost and reasonable displacement.
Considering the similarities of the unchanged class and the
false changed class in the spatial distribution and the semantic
interpretation, we combine the false changed class and the
unchanged class.

To clarify the novelty of the change field concept, we ana-
lyze the similarities and the differences between some related
concepts.

1) Change field is similar to change vector [4] in project-
ing high-dimension feature space into low-dimension change
feature space. However, change vector [4] is 2-D, and change
features are obtained by the pixel-wise algebra operation. In
contrast, change field is 3-D, and it compensates the local non-
rigid displacements adaptively.
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Fig. 2. Illustration of change field. (a): 3-D change field, (b) 2-D cross section of 3-D change field in ideal case. (c) Change field distribution in real case.

2) Change field is similar to optical flow and SIFT flow in
containing the displacement information. However, the differ-
ences between them lie in many aspects. First, optical flow or
SIFT flow focuses mainly on the 2-D motion information, while
change field aims at capturing the change signature. Of course,
changes are closely related to the motion [8], but the motion
is only one of the signatures for changes. For the co-registered
multi-temporal images, the item (x, y) in change field is not for
the motion information but to compensate the registration error
or view angle variation. Second, change field is a 3-D vector.
It contains not only the displacement vector, but the change
probability after compensation, i.e., the cost z combined with
(x, y) used to separating the changed class from the unchanged
class. Huo [11] computes the displacements based on SIFT
flow and uses only the displacements as the change features.
However, as illustrated in the experiment section, the cost z is
helpful in separating the false changes from the real changes.

III. CHANGE FIELD ANALYSIS

Change field is not a specific change detection approach
but a general change metric for VHR images. To illustrate the
effectiveness of change field, a novel change detection approach
called change field analysis is proposed in this letter, which
consists of the following two steps: change field computation
and change field classification.

A. Change Field Computation

As stated before, discriminative features are required to
improve the interclass variability. Compared to the spectral
features, local feature descriptors (e.g., HOG or SIFT) are
promising in capturing the complex structure of the objects, and
they are used widely in image matching, image classification
and object recognition [12]. Winder [13] has recently shown the
superiority of the DAISY descriptor [10] in comparison to other
widely used descriptors such as SIFT. For this reason, in this
letter, DAISY is used for dense descriptor, i.e., at each pixel,
we use DAISY to encode the local neighborhood.

After DAISY features are extracted at each pixel from the
images individually, change field can be computed based on
feature matching. Due to the repetitive structures contained in
VHR images, the traditional global feature matching such as
KNN is not suitable for our purpose. Instead, local nearest
neighbor search is used for change field computation. For a
pixel p1 = (i, j) from the image I1, local nearest neighbor is

the pixel q1 = (k, l) in the image I2 that makes the distances of
DAISY features at p1 from I1 and the neighbors around p1 in
I2 minimized. Change field at p1 is (x, y, z) = (|i− k|, |j −
l|, dis(p1, q1)), where dis(p1, q1) is the Euclidean distance
between DAISY features extracted at p1 and q1. To constrain
the spatial smoothness and speed up the computation, a fast
deformable spatial pyramid matching algorithm [14] is used
to find the nearest neighbor for each pixel and compute the
change field. The size of the neighborhood is determined by
the satellite acquisition geometry, the spatial resolution, etc. For
QuickBird images used in the experiments, we found that the
satisfactory performances can be achieved when the size of the
neighborhood is in the range [30,60].

B. Change Field Classification

The distribution of change field is illustrated in Fig. 2(b). The
interclass between the changed class and the unchanged class
(including the false changed class) is improved by change field,
and change map can be achieved by the traditional classification
approaches in a supervised or unsupervised fashion. To balance
the laborious procedure in labeling the training samples and
the high classification accuracy, we utilize a progressive semi-
supervised classifier [15].

For simplicity, we use li = −1, 1 to denote the label of
the unchanged class and the changed class respectively. li = 0
denotes the label to be determined for the test samples. Based
on the training samples tri = (fi, li) and the trained classifier
F (·), the labels of the test samples, tei can be determined, i.e.,
li = F (fi), where fi is the change field at the i-th pixel. It
is difficult and impractical to select the representative training
samples automatically. As illustrated by Fig. 2(c), based on
the spatial distribution, change field can be divided into three
levels: the changed class, the unchanged class(including the
false changed class) and the uncertain region. The uncertain
region means the region where the changed class is mixed up
with the unchanged class. The principle of progressive semi-
supervised classifier is to classify the change features in the
uncertain region progressively driven by the training samples
of high confidence. The confidence is measured by the distance
of change field to the coordinate origin. For the unchanged
class, the smaller the distance is, the higher the confidence
will be. For the changed class, the bigger the distance is, the
higher the confidence will be. By this way, the classifier is
initially determined by the above samples, and it is refined by
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Fig. 3. Performance comparison: dataset 1. (a) and (b): multi-temporal images (882 × 1041 pixels), (c): ground truth, (d): result by DAISY-dif, (e): result by
cDAISY-dif, (f): result by (x,y), (g): result by (x,y,cDAISY-dif), (h): result by obj-itsvm.

propagating good training samples and removing bad training
samples iteratively. In this letter, iterated transductive SVM [16]
is used to classify the change field.

IV. EXPERIMENTS

To validate the effectiveness of the proposed approach, sev-
eral experiments were carried out. For space limitation, two
datasets are discussed in this letter. The images are taken
over Beijing (China) acquired by the QuickBird satellite on
February 12, 2004 and October 18, 2005, respectively. The
datasets consist of multispectral images (R, G, B, and NIR
bands, 2.44 m/pixel in 2004 and 2.52 m/pixel in 2005) and
panchromatic images (0.61 m/pixel in 2004 and 0.63 m/pixel
in 2005). The original images are encoded by 11 bit. In the
experiments, we convert the data to TOA reflectance values
and re-encode them by 8 bit. The panchromatic image and
multispectral image of the same time are registered by the
multi-level SIFT matching [15] and merged based on sparse
matrix–vector multiplication [17]. For change detection, the
multi-temporal pansharpened images are registered by [15].
The pansharpened RGB images are shown in Fig. 3(a), (b) and
Fig. 4(a), (b). The sizes of the dataset are 882 × 1041 pixels
and 1430 × 1194 pixels respectively.

The main differences between the proposed approach with
the related ones [5], [11] are the change measures. To in-
vestigate the effectiveness of the proposed change measure,
change field is compared with other three change metrics and
another object-level change detection approach: DAISY-dif
(the pixel-wise DAISY magnitude difference), cDAISY-dif (the
compensated pixel-wise DAISY magnitude difference, i.e., the
displacement cost item of change field), (x,y) (the displacement
item of change field) and obj-itsvm [11] (object level approach
based on iterative transductive SVM classifier). For simplicity,
the proposed change field is denoted as (x,y,cDAISY-dif). In

Fig. 4. Dataset 2 (1430 × 1194 pixels).

this letter, the performances of different approaches are eval-
uated by the following measures [18]: FP (False Positives),
FN (False Negatives), TPR (True Positive Rate), FPR (False
Positive Rate) and TA (Total Accuracy).

It is worth noting that the multi-temporal images are taken at
different seasons, and the appearances of the vegetation vary
significantly. Fortunately, the Normalized Difference Vegeta-
tion Index (NDVI), which is computed based on the R and NIR
bands of the multispectral images) is comparatively robust to
the seasonal variation. In this letter, the vegetation regions are
extracted by thresholding the NDVI images. Since the construc-
tion and removal of the buildings are of real interest, we remove
the vegetation regions common in the multi-temporal images
from the change maps in the following experiments. Noting
that DAISY is originally designed for the gray images. For
the multispectral images considered in this letter, for efficiency,
we transform the pansharpened RGB space to the HSV space
and build DAISY descriptor on the Hue. Similar to HueSIFT
[19], it is scale-invariant and shift-invariant to light intensity.
Of course, other techniques presented in [19] (such as the
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TABLE I
PERFORMANCE COMPARISON OF DIFFERENT APPROACHES

direction combination of DAISY features from each band) can
be used without problem, but it will increase the computation
complexities. By experiments, we found that for VHR image
change detection, the performance differences can be neglected
by the different techniques, since DAISY describes the local
texture structure.

The performances of different approaches are listed in
Table I. The results obtained by different change features are
shown in Fig. 3. The ground truth is shown in Fig. 3(c),
which is labeled by the experts after careful validation. From
Table I, it can be seen that the performance of change field
outperforms the other features. In detail, FP of DAISY-dif
is 46025. Many false changes are detected due to the mis-
registration and view angle variation. By cDAISY-dif, FP is
reduced to 32293. After the above impacts are compensated,
FP is further reduced to 19527 by (x,y). Nevertheless, the
combination of (x,y) and cDAISY-dif is superior to either (x,y)
or cDAISY-dif, TPR is improved to 91.6%, and TA is increased
to 95.6%. Furthermore, the proposed approach is better than
obj-itsvm, the underlying reasons lie in the DAISY feature
in capturing the complex structures and the change field in
achieving the correspondence. The advantages of change field
can also by validated by visually comparing the results shown
in Fig. 3. By comparing Fig. 3(d) and (e), it can be observed
that many false positives are corrected. Similar to cDAISY-dif,
the displacement (x,y) is helpful in compensating the inac-
curate correspondence. However, many changes are missed.
False negatives and false positives are reduced significantly by
change field, since it achieves a good balance between the above
two items. Object-level change features in obj-itsvm [11] are
discriminative in detecting the complex changes, however, as
illustrated by the region A in Fig. 3(h), they are less robust to
the complex spectral variation and inaccurate correspondence.
On the contrary, DAISY describes the local contextual struc-
ture, and change field can separate the false changes from the
real changes by taking advantages of the discriminative local
features and the robust change measure. The advantages of
the proposed approach can also be validated by the second
dataset. The above comparisons demonstrate the importance of
inaccurate correspondence compensation and the effectiveness
of change field in measuring the complex changes.

V. CONCLUSION

Change feature representation is the key factor of VHR
image change detection. In this letter, change field is proposed

to describe the complex changes between images. Compared to
the traditional change features, change field has the meaningful
interpretation in projecting the high dimensional feature space
into 3-D change feature space, and it is promising in separating
the false changes from the real changes. To illustrate the ef-
fectiveness of change field, a novel change detection approach
is presented. It starts with change field computation based on
the discriminative local features and local nearest neighbor
search, and followed by change field classification based on the
progressive transductive SVM. Experiments demonstrate the
advantages of the proposed approach. The novelties of the pro-
posed approach lie in the concept of change field to describe the
complex changes. The future developments are mainly related
to the utilization of newly proposed local features for change
field computation and more advanced classifier for change field
classification.
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