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Edge-Directed Single-Image Super-Resolution via
Adaptive Gradient Magnitude Self-Interpolation

Lingfeng Wang, Shiming Xiang, Gaofeng Meng, Huaiyu Wu, and Chunhong Pan

Abstract—Super-resolution from a single image plays an im-
portant role in many computer vision systems. However, it is still
a challenging task, especially in preserving local edge structures.
To construct high-resolution images while preserving the sharp
edges, an effective edge-directed super-resolution method is
presented in this paper. An adaptive self-interpolation algorithm
is first proposed to estimate a sharp high-resolution gradient field
directly from the input low-resolution image. The obtained high-
resolution gradient is then regarded as a gradient constraint or an
edge-preserving constraint to reconstruct the high-resolution im-
age. Extensive results have shown both qualitatively and quanti-
tatively that the proposed method can produce convincing super-
resolution images containing complex and sharp features, as com-
pared with the other state-of-the-art super-resolution algorithms.

Index Terms—Edge-directed, gradient magnitude transforma-
tion, super-resolution.

I. Introduction

SUPER-RESOLUTION is a fundamental task for various
computer vision applications, such as object detection and

recognition, video compression, and communication. Gener-
ally, the goal of image super-resolution methods is to recover
a high-resolution (HR) image from one or a sequence of low-
resolution (LR) images [1]–[20]. In many real-world applica-
tions, only one LR image is available. Hence, super-resolution
from a single-input LR image is practically in great need.
Unfortunately, the problem of single-image super-resolution
is under-constrained, which makes classical methods, such
as interpolation or reconstruction-based methods, often bring
undesired artifacts in the HR image, especially along the
salient edges. To overcome this limitation or to preserve local
edge structures in the HR image, it is effective to introduce
an additional edge constraint, which is the main issue that we
will address in this paper.

The problem of single-image super-resolution has received
much attention from both computer graphic and computer
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vision communities. Generally, approaches addressing this
problem can be grouped into four categories [21], [12], i.e.,
the interpolation-based, learning-based, reconstruction-based,
and edge-directed methods.

The interpolation-based methods [8], [13], [18], [19], [22]
are widely used for producing zoom-in images because of its
simplicity. Unfortunately, these solutions tend to produce vi-
sual artifacts, such as ringing, aliasing, blocking, and blurring,
especially on salient edges. A survey of these methods and
their shortcomings is given in [19] in detail.

The learning-based or example-based super-resolution
methods are first introduced in [17], [20], and [23], and
extended later by others, such as [6], [7], [15], and [24].
In these methods, the correspondences between LR and HR
image patches are first learned from a database of LR and
HR image pairs, and then applied to a new LR image to
recover its HR version. Improved performances compared with
traditional super-resolution methods have been reported in
these papers. However, the learning-based methods rely largely
on the quality of the prior used, that is, the similarity between
the training set and the test set. Furthermore, the computational
cost of these methods is expensive due to a large training set
being used.

The reconstruction-based methods [25]–[27] emphasize
the reconstruction constraint, which requires that the down-
sampling version of the target HR image should be close to the
LR image. However, the main problem is that the reconstructed
edges are sometimes too sharp and look unnatural. Moreover,
these methods often introduce undesired artifacts, such as
ringing, in the HR image, especially along salient edges.

The sophisticated methods based on the edge models (edge-
directed) have been proposed in [5], [10], [11], [14], [21],
[28], and [29]. These methods estimate the target HR image
by enforcing some edge knowledge, such as the smooth edge
[10], [11], [28] or the gradient profile prior (GPP) [5], [21],
[29]. The enforced edge knowledge is able to produce sharp
edges with minimal jaggy or ringing artifacts. Unfortunately,
these two edge models have their own drawbacks. First, the
smooth edge knowledge is a smoothness constraint. Hence,
some small scale information cannot be well recovered in
the HR image. That is, some image details, especially on the
weak edges, may be hard to recover in the HR image. Second,
in [29], the super-resolution algorithm needs to locate edge
pixels. Therefore, their results partially rely on the edge pixel
location accuracies. The gradient profile prior is learned from
an image dataset, so the image super-resolution result of [29]
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Fig. 1. Overview of our super-resolution algorithm. First, a HR gradient is estimated by adaptive gradient magnitude self-interpolation. Then, the HR image
is recovered by the reconstruction based super-resolution framework (see Sections II and VI). In the dashed box, we present the details about HR gradient
estimation. The gradient magnitude is first used to compute a displacement field (refer to Section V), which is, thereafter, adopted to sharpen the gradient
magnitude by an interpolating method (refer to Section IV).

relies on the utilization of training dataset to some extent.
Third, the two types of methods are under the edge-directed
reconstruction framework. In this framework, an iteration
method is utilized to solve the objective functional. Hence, a
good initialization is necessary on both reducing the iteration
times and recovering the HR image. However, these methods
often adopt a bicubic up-sampled image, which is blurred in
the edges as the initialization.

Motivated by the previous work [10], [25], [29], we propose
an edge-directed super-resolution approach based on a novel
adaptive gradient magnitude self-interpolation. The mainflow
of our algorithm is shown in Fig. 1. We estimate a sharp
HR gradient field by an adaptive self-interpolation algorithm.
In our self-interpolation algorithm, the displacement field is
calculated from the gradient magnitude of the bicubic up-
sampled image. It is worth noting that this displacement field
is also used to interpolate the bicubic up-sampled image as an
initialization. The estimated HR gradient is used as a gradient
constraint or a edge-preserving constraint to recover the HR
image. The main advantages or details of our algorithm are
summarized as follows.

1) The proposed super-resolution method introduces an ad-
ditional edge constraint to reduce the undesired artifacts
brought by the traditional algorithm. Hence, compared
with the classical interpolation and reconstruction-based
methods, our algorithm can effectively get rid of some
visual artifacts, such as ringing, aliasing, and blurring.

2) Different from the smoothness edge methods, such as
the soft edge smoothness proposed in [11], our self-
interpolation sharpening method does not belong to
the smoothness constraint. Hence, both small and large
scales can be better recovered in our HR image, as
compared with the smoothness edge methods.

3) Compared with the gradient magnitude sharpening
method proposed in [29], our method has two advan-
tages.

The gradient sharpening algorithm used in [29] de-
pends on the gradient profile prior learnt from an image
dataset. However, our adaptive self-interpolation algo-
rithm relies on the displacement field, which is estimated
from the input LR image directly. That is, our method

does not rely on the using of training datasets. Further-
more, in [29], it needs to locate the edge-pixels before
sharpening the gradient, while our method interpolates
the whole image domain directly to obtain the sharp
gradient. Hence, our method is more general.

The computational cost of our method is lower. GPP
edge-directed [29] and our method both have two time-
consuming procedures, i.e., the gradient sharpening
and the reconstruction. In the gradient sharpening, the
experimental results show that our method is three times
faster than [29]. In the reconstruction, the displacement
field estimated by our method can also be used to
obtain a sharp image as initialization. Comparing the
bicubic up-sampled image used in [29], our sharp
initialization image is more close to the desired image.
Hence, less iterations are needed in our method. In
practice, 30 iterations are enough for our method, while
100 iterations are used in [29]. A smaller iteration
makes the computational cost lower.

The remainder of this paper is organized as follows. A brief
introduction of an edge-directed single-image super-resolution
framework is presented in Section II. The main motivation
on HR gradient field estimation is presented in Section III.
The gradient sharpening method is presented in Section IV.
The adaptive gradient magnitude self-interpolation algorithm,
especially the displacement field estimation, is described in
Section V. The HR image is reconstructed by optimization of
an objective energy functional, which is presented in Section
VI. Section VII gives the experimental results. Conclusions
and future work are given in Section VIII.

II. Edge-Directed Single-Image Super-Resolution

Within the reconstruction framework, the goal of edge-
directed image super-resolution is to estimate the HR image
Ih based on two inputs, i.e., the LR image Il and the HR
gradient field ∇̂Ih. The estimation of I�

h can be formulated as
the minimization of the following energy functional:

I�
h = arg min

Ih

E(Ih|Il, ∇̂Ih)

= arg min
Ih

Ed(Ih|Il) + αEg(∇Ih|∇̂Ih) (1)
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where Ed(.) and Eg(.) are the down-sampling energy and the
gradient energy, respectively, and α is the weighting constant
to balance these two energies. The gradient field ∇I is denoted
as ∇I = (∂xI, ∂yI) = G · θ, where G =

√
(∂xI)2 + (∂yI)2

is the gradient magnitude and θ = arctan (∂yI/∂xI) is the
gradient direction. To obtain ∂xI and ∂yI, the image I is
convolved by the discrete gradient operators [−1/2 0 1/2]
and [−1/2 0 1/2]T , respectively. The down-sampling energy
(or constraint) is represented by the difference between the LR
image Il and the down-sampled version of the HR image Ih

Ed(Ih|Il) =
∥∥[Ih ⊗ g]↓(β) − Il

∥∥2

where ⊗ is the convolution operation, [.]↓(β) is the down-
sampling operation with factor β, and g is the blurry kernel.
The gradient constraint requires the gradient of the HR image
∇Ih should be close to the input gradient ∇̂Ih

Ed(∇Ih|∇̂Ih) =
∥∥∥∇Ih − ∇̂Ih

∥∥∥2
.

Combining with (1), the edge-directed image super-resolution
estimates the HR image I�

h by minimizing the following
objective energy functional:

I�
h = arg min

Ih

∥∥[Ih ⊗ g]↓(β) − Il

∥∥2
+ α

∥∥∥∇Ih − ∇̂Ih

∥∥∥2
. (2)

From (2), we see that the estimation of Ih mainly relies on two
aspects, namely, the blurry kernel g and the HR gradient field
∇̂Ih. In this paper, we focus on the second aspect, i.e., the
estimation of the HR gradient field ∇̂Ih. The blurry kernel is
assumed to be a 2-D Gaussian kernel, and its standard variance
is related to the up-sampling factors, i.e., it is set to 1.2, 1.5,
and 1.8 for the up-sampling factors of 2, 3, and 4.

III. Motivation of Gradient Sharpening

The estimation accuracy of the HR gradient field has
both theoretical and practical importance on the edge-directed
single-image super-resolution problem. As shown in (2), with-
out a gradient constraint, that is, only using the first term,
the super-resolution problem is severely under-constrained.
Adding a gradient constraint can make this problem easy to
solve (determined or even overdetermined). It is worth noting
that the reconstruction-based method, such as back-projection
[25], only considers the down-sampling energy, ignoring the
gradient constraint. Theoretically, the back-projection algo-
rithm is convergent. That is, the output HR image obtained
by back-projection converges to a desired image that satisfies
that the reconstruction error (or the down-sampling energy) is
close to zero. However, this algorithm often brings undesired
artifacts in the HR image, especially along salient edges.
Hence, it is important to introduce additional edge constraints
to the traditional reconstruction-based method.

IV. Gradient Sharpening

In the actual super-resolution problem, we only have the
input LR image, but do not have the true HR gradient field.
Hence, a more wise and effective method is to estimate the

Fig. 2. Example of sharpening gradient magnitude. (a) Input LR image.
(b) Bicubic up-sampled image (3X magnification). (c) Gradient maps (nor-
malized and inverted magnitudes) of (b). (d) Closeups of the red rectangular
region. Note that the X–O–Y plane is the image plane, and the z-axis
represents the gradient magnitude. The green arrows illustrate a 1-D path
passing through the edge-pixel (see the red point). (e) Gradient profile is
the curve of gradient magnitude along the green arrows of (d). (f) Gradient
magnitude sharpened by GPP [21]. The red curves in (f) and (g) are the
original gradient magnitudes, while the blue curves are the sharpened gradient
magnitudes. (g) Gradient magnitude sharpened by our method. The green
arrows in (g) are the displacement field, while the pink curve is the gradient
of the original gradient profile (red curve).

∇̂Ih from the LR image, such as the gradient of the bicubic
up-sampled LR image, i.e., ∇Iu

h , where

Iu
h = [Il]↑(β)

in which [.]↑(β) is the (bicubic) up-sampling operation and β is
the down-sampling factor. In practical, the bicubic up-sampled
image Iu

h will be blurred in the image edge, which makes the
corresponding gradient magnitude blurry [refer to Fig. 2(b),
(c)]. Hence, it is infeasible to directly use ∇Iu

h . Fortunately,
we can adopt its transformation version to represent ∇̂Ih. That
is, ∇̂Ih is calculated as follows:

∇̂Ih = Tran(∇Iu
h ) (3)

where Tran(.) is a transformation function. We denote the HR
gradient field ∇̂Ih as ∇̂Ih = Ĝh · θ̂h. Generally, to obtain the
sharp gradient ∇̂Ih, we only need to sharpen its magnitude
Ĝh, while the direction θ̂h can be estimated by the bicubic
up-sampled version, i.e., θ̂h = θu

h , where θu
h is the gradient

direction of ∇Iu
h . Hence, (3) is simplified as

Ĝh = Tran(Gu
h) (4)

where Gu
h is the gradient magnitudes of ∇Iu

h . Accordingly, the
finally sharpened gradient field ∇̂Ih is obtained by

∇̂Ih = Ĝh · θu
h. (5)

A. Scaling Sharpening Overview

In [5] and [29], they define the transformation function as
follows (� is the image domain):

Ĝh(x) = Tran(Gu
h) = r(x)Gu

h(x) x ∈ � (6)

where ratio r is learnt from natural images. Yan et al. [30]
improve the ratio calculation by using the Laplacian image.
As interpreted in [5], [29], and [30], the main purpose of
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multiplying ratio r is to sharpen the gradient magnitude,
especially the gradient profile [see Fig. 2(d) and (e)]. For
example, in Fig. 2(f), the ratio r along the gradient profile
should satisfy{

r(xY) ≥ 1 xY ∈ [y2 y3]

0 ≤ r(xY) < 1 xY ∈ [y1 y2) ∪ (y3 y4]
(7)

where xY is the 1-D coordinate value along the y-axis. The
ratio r proposed in [29] used to zoom the gradient magnitude;
thereby, we call this gradient sharpening method scaling
sharpening.

B. Proposed Self-Interpolation Sharpening

We propose a self-interpolation sharpening to sharpen the
gradient magnitude. We use an interpolation operator instead
of a zoom operator to make the gradient magnitude sharp.
That is, the sharp gradient magnitude Ĝh is obtained thought
the interpolation function

Ĝh = Tran(Gu
h) = Intp(Gu

h, u) (8)

where u is the displacement field and Intp(.) is the interpola-
tion function defined as follows:

Ĝh(x) = Intp(Gu
h(x), u(x)) = Gu

h(x − u(x)) x ∈ �. (9)

Fig. 2(g) gives a 1-D interpolation example. As shown in this
subfigure, the green arrows illustrate the displacement field u.
The interpolated gradient magnitude (see the blue curve) is
much sharper than the original gradient magnitude (see the
red curve), after performing interpolating operation.

On the other hand, as shown in Fig. 2(g), to make Gu
h sharp

by the interpolation method, the displacement field u should
satisfy that ⎧⎪⎨⎪⎩

u(xY) > 0 xY < yo

u(xY) = 0 xY = yo

u(xY) < 0 xY > yo

(10)

where yo is the local peak point of the gradient profile.
Fortunately, the gradient of original gradient magnitude, i.e.,
∇Gu

h, just satisfies (10), that is⎧⎪⎨⎪⎩
∇Gu

h(xY) > 0 xY < yo

∇Gu
h(xY) = 0 xY = yo

∇Gu
h(xY) < 0 xY > yo.

(11)

The pink curve of Fig. 2(g) shows ∇Gu
h. From this subfigure,

we conclude that the sign of the displacement field u is the
same as the sign of ∇Gu

h. Thus, we can efficiently estimate
the displacement field u from ∇Gu

h, directly.
Based on the above analysis, the estimation of the dis-

placement field u only relies on the original gradient mag-
nitude. Thereby, we call our gradient sharpening method self-
interpolation sharpening. More information about gradient
magnitude self-interpolation will be presented in Section V
in detail.

In the following, we use a 1-D case to justify that our self-
interpolation-based method can sharpen the gradient magni-
tude (the gradient profile is 1-D). Let f (x) be a continuous and

monotonic function defined in (a, b); the sharpness of f (x) in
(a, b) is denoted as

ω(a,b)(f (x)) =

∫ b

a
f (x)dx

|f (b) − f (a)| . (12)

The sharpness ω(a,b)(f (x)) is interpreted as the mean width of
f (x) [refer to the rectangle width of Fig. 3(a)]. The sharper
the function f (x), the smaller the ω(a,b)(f (x)).

Definition 1: f (x) and g(x) are both continuous and mono-
tonic functions defined in (a, b), satisfying f (a) = g(a) and
f (b) = g(b).

1) If f (x) and g(x) are both monotonically increasing, and
f (x) ≥ g(x), ∀x ∈ (a, b), then f (x) is smoother than
g(x), i.e., ω(a,b)(f (x)) ≥ ω(a,b)(g(x)).

2) If f (x) and g(x) are both monotonically decreasing, and
f (x) ≥ g(x), ∀x ∈ (a, b) then f (x) is smoother than
g(x), i.e., ω(a,b)(f (x)) ≥ ω(a,b)(g(x)).

Definition 1 gives a criterion to compare the sharpness of
two functions. The intuitive comparisons are illustrated in Fig.
3(b) and (c) in detail.

Lemma 1: f (x) is a continuous and monotonically increas-
ing function defined in (a, b). The derivative f ′(x) is a bounded
and continuous function, satisfying f ′(a) = f ′(b) = 0. Defining
g(x) = f (x − ηf ′(x)), where η > 0 and 1 − ηf ′′(x) ≥ 0, we
get that

ω(a,b)(f (x)) ≥ ω(a,b)(g(x)).

For a monotonically decreasing function f (x), we can get a
similarity result.

Proof: First, according to f ′(a) = f ′(b) = 0, we get that
g(a) = g(a + f ′(a)) = f (a), g(b) = g(b + f ′(b)) = f (b). f ′(x)
is bounded and continuous; thus, g(x) = f (x − ηf ′(x)) is also
a continuous function. Let t(x) = x − ηf ′(x). Thereby, t′(x) =
1 − ηf ′′(x) ≥ 0. Hence, ∀a ≤ x1 ≤ x2 ≤ b. We get that
g(x1) = f (t(x1)) ≤ f (t(x2)) = g(x2). To sum up, g(x) is a
continuous and monotonically increasing function.

Second, f (x) is a continuous and monotonically increasing
function; thus, f ′(x) ≥ 0, which makes x ≥ x−ηf ′(x). Hence,
g(x) = f (x − ηf ′(x)) ≤ f (x), ∀x ∈ (a, b).

Combining with Definition 1, we get ω(a,b)(f (x)) ≥
ω(a,b)(g(x)).

Comparing (9) with Lemma 1, ηf ′(x) can be regarded as
a displacement field in the interpolation function. It is worth
noting that ηf ′(x) is obtained from its gradient. Hence, for a
continuous and monotonically function, self-interpolation can
sharpen the gradient theoretically. In practice, the gradient
profile function can be assumed to be composed of some
continuous and monotonically functions. For example, the
gradient profile can be approximated with a Gaussian function.
In such a case, the definition domain of f (x) can be divided
into two parts, i.e., (−∞, 0) and (0, ∞). It is easy to check
that in each definition domain, f (x) satisfies Lemma 1.

V. Adaptive Gradient Magnitude

Self-Interpolation

As interpreted in Section III, the key problem of our self-
interpolation sharpening is the estimation of displacement
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Fig. 3. (a) Sharpness ω(a,b)(f (x)) is defined as the mean width of f (x), or the
rectangle width (green line). (b), (c) Intuitive comparisons of two functions.

field u. The input gradient magnitude Gu
h is 2-D. Therefore,

the corresponding displacement field u should also have two
directions, namely, u = (ux, uy), where ux and uy are the x-
and y-direction displacement fields, respectively. Similarly to
the definition used for the gradient field, the displacement field
u is also denoted by the dot product of its magnitude M and
direction φ, given by

u = (ux, uy) = M · φ. (13)

In the following, we first present the estimation of direction φ

and magnitude M, and then summarize the main steps of our
gradient sharpening algorithm.

A. Direction φ Estimation

As mentioned in Section III, in the 1-D case, the sign of
the displacement field just equals that of the original gradient
magnitude [refer to (10) and (11) for details]. It is easy to
extent the 1-D case to the 2-D case by replacing the sign with
the angle between two directions. Hence, the direction φ can
be computed as follows:

φ = arctan

(
∂yG

u
h

∂xG
u
h

)
. (14)

In practice, the direction calculated by (14) is a little sensitive
to the noise. Hence, the direction is further smoothed by
Gaussian kernel g, namely, φ = φ⊗g. During implementation,
the standard variance of g is set to 3.

B. Estimation of the Magnitude M

From Fig. 2(g), in a gradient profile, the magnitude of
displacement (length of green arrows) gradually becomes
larger, as the distance between the current coordinate value
and the peak point becomes larger, that is

|yi − yo| > |yj − yo| ⇒ M(yi) > M(yj) (15)

where yo is the local peak point of original gradient magnitude.
As illustrated in Fig. 2(g), the gradient magnitude of Gu

h

satisfies that (see the pink curve)⎧⎨⎩|yi − yo| < |yj − yo| ⇒ |∇Gu
h(yi)| > |∇Gu

h(yj)|, y1 ≤ yi, yj < y2

|yi − yo| > |yj − yo| ⇒ |∇Gu
h(yi)| > |∇Gu

h(yj)|, y2 ≤ yi, yj ≤ y3

|yi − yo| < |yj − yo| ⇒ |∇Gu
h(yi)| > |∇Gu

h(yj)|, y3 < yi, yj ≤ y4

. (16)

From (15) and (16), we see that |∇Gu
h| and M share the

same condition when y2 ≤ yi, yj ≤ y3. Furthermore, the
error between M(y) and |∇Gu

h(y)| becomes larger as the
coordinate y becomes closer to the two edge points y1 or
y4. Fortunately, around y1 or y4, the change of gradient

Fig. 4. Example of multiple scales gradient magnitude sharpening. The red
curve is the original gradient magnitude, the blue curve is the sharpened
gradient magnitude, and the pink curve is the gradient of original gradient
magnitude.

magnitude of Gu
h is very small. That is, the interpolation result

obtained by (9) almost does not change even the estimation
of displacement field (either magnitude or direction), and has
obvious errors around y1 or y4. Hence, |∇Gu

h| can be adopted
as the approximate estimation of the magnitude M. In the 2-D
case, M is calculated as follows:

M = κ

√
(∂xG

u
h)2 + (∂yG

u
h)2 (17)

where κ is a scaling factor. The choice of κ is mainly related
to the up-sampling factors and the characters of the input LR
image. The κ are experimentally set to ≈ 0.6, ≈ 0.8, and ≈ 1
for the up-sampling factors of 2, 3, and 4.

As shown in (17), the parameter κ governs the scaling
value globally. In practical, this global method cannot deal
with the multiple scales case. Fig. 4 gives an example of
multiple scales gradient magnitude sharpening. As shown in
this figure, the original gradient magnitude (red curve) around
y1 is sharper than that around y2. Hence, to sharpen the
gradient, the displacement magnitudes around y1 should be
smaller than those around y2. However, the gradient of original
gradient magnitude |∇Gu

h| (see the pink curve) just provides
the opposite result, i.e., |∇Gu

h| around y1 is larger than those
around y2. To solve multiple scales case, we should adaptively
calculate the scaling factor κ(x) according to the local scale
of gradient profile

κ(x) = σ(x)κ x ∈ � (18)

where σ(x) is the local scale located x. The corresponding
magnitude M is calculated as follows:

M(x) = κ(x)
√

(∂xG
u
h)2 + (∂yG

u
h)2 x ∈ �. (19)

In this paper, the local scale σ is obtained by two substeps:
1) ridge points (all points on ridge lines) detection, and local
scale estimation of these ridge points, and 2) local scale value
filling.

In the first step, we perform the ridge lines detection and
width estimation algorithm proposed in [31] on the gradient
magnitude to obtain the ridge points p(x) and their correspond-
ing width w(x), given by

{p(x), w(x)|x ∈ X }
where X ⊂ � is a point position set of all ridge points. The
local scales of these ridge points are calculated by

σ(x) = max

(
ξl, min

(
ξh,

w(x)

med(w)

))
x ∈ X (20)
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Fig. 5. Super-resolution example (4X magnification). (a) Input LR image.
(b) Bicubic. (c) Initialization of our method. (d) Our result. (e) Gradient
maps (normalized and inverted magnitudes) of (b). (f) Our adaptively self-
interpolated gradient maps.

Algorithm 1: Adaptive Gradient Sharpening
Data: The bi-cubic up-sampled gradient ∇Iu

h

Result: The sharpened gradient ̂∇Ih

Calculate original gradient magnitude and direction by1
∇Iu

h = Gu
h · θu

h ;
Calculate displacement field direction φ by Eqn. (14);2
Calculate displacement field magnitude M by Eqns (20), (18)3
and (19);
Calculate displacement field by Eqn. (13);4
Interpolate the original gradient magnitude to obtain the5
sharpened gradient magnitude by Eqn. (9);
Output the estimated sharpened gradient field by Eqn. (5);6

where ξl and ξh are the low and high bounds, respectively, and
med(w) gives the median width of all ridge points. During
implementation, ξl and ξh are set ξl = 0.5 and ξh = 2.

In the second step, we fill the rest points by the nearest
neighboring filling methods, namely

σ(y) = σ(x), y ∈ � − X (21)

where p(x) is the nearest neighbor of p(y) in the set X .

C. Algorithm

To sum up, the main procedures of our adaptive gradient
sharpening method are summarized in Algorithm 1. Fig. 5
gives an example of our super-resolution result. From this
figure, the adaptively self-interpolated gradient magnitude [see
Fig. 5(f)] is significantly sharper than the original one [see Fig.
5(e)], especially on the salient edges.

VI. Optimization and Initial HR Image Setting

The objective energy functional of (2) is minimized by the
standard gradient descent by solving the gradient flow equation
given by

∂Ih

∂t
= −∂E(Ih|Il, ∇̂Ih)

∂Ih

= −
∂

(∥∥[Ih ⊗ g]↓(β) − Il

∥∥2
+ α

∥∥∥∇Ih − ∇̂Ih

∥∥∥2
)

∂Ih

= − (
[[Ih ⊗ g]↓(β) − Il]↑(1/β)

) ⊗ g +

α
(

div(∇Ih) − div(∇̂Ih)
)

(22)

where div(∇·) = ∂2

∂x2 + ∂2

∂y2 is the Laplacian operator. In our
implementation, we use the following iterative scheme to
optimize (22), that is

It+τ
h = It

h − τ
((

[[Ih ⊗ g]↓(β) − Il]↑(1/β)
) ⊗ g−

α
(

div(∇Ih) − div(∇̂Ih)
))

(23)

where τ is time step. During implementation, the time step τ

is set to 0.1. The parameter α is used to trade off between the
two constraints, i.e., an image domain constraint and a gradient
domain constraint. A smaller α will produce better image color
and contrast, yet with ringing or jaggy artifacts along edges.
On the contrary, a larger α will result in sharp edges with little
artifacts. To balance the image color recovery and artifacts
removal, the parameter α is experimentally set to 0.1.

As described above, an iteration method is used to solve
(22); thereby, the super-resolution result partially depends on
the initial HR image. Generally, the bicubic up-sampled image
Iu
h is regarded as the initial HR image I init

h , namely, I init
h = Iu

h .
However, the up-sampled image Iu

h is blurred in the image
edges, which causes that the super-resolution algorithm needs
many iterations to obtain the sharp edge, for example, 100
iterations reported in [29]. Hence, the computational cost will
be high. To avoid this, we use the interpolated version as the
initialization given by

I init
h = Intp(Iu

h , u) (24)

where Intp(.) is defined in (9). Fig. 5 gives an example. As
shown in Fig. 5(c), the initialization obtained by our method
is much more sharper than the bicubic [see Fig. 5(b)]. In our
method, 30 iterations are enough to produce sharp and clear
HR results.

VII. Experimental Results

Extensive experiments have been conducted to evaluate our
method in comparison with several state-of-the-arts, which
cover the four categories of single-image super-resolution, i.e.,
interpolation-based, reconstruction-based, learning-based, and
edge-directed methods. Note that, for a color image, it is first
transformed from RGB to YIQ. Then, the Y channel (intensity)
is up-sampled by our algorithm. The I and Q chromatic
channels, characterized by low-frequency information, are
interpolated by the bicubic method. Finally, the three channels
are combined to form the final super-resolution result. Both
qualitative and quantitative methods are utilized to evaluate
our method. For quantitative evaluation, we use RMS, ERMS
[16], [29], and SSIM [32] to measure super-resolution results.
A good super-resolution result should provide small RMS and
ERMS, and large SSIM.

A. Evaluation of the Proposed Method

In this subsection, we evaluate the initialization and
key parameter of our method. For initialization, we com-
pare our method with the GPP edge-directed method
[29].
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Fig. 6. Initialization comparison on synthetical image (4X magnification).
(a) Bicubic initialization of GPP. (b) Our initialization. (c) Comparison of the
edge sharpness. To compare sharpness, for each image, we select the pixel
values in the 140th row.

TABLE I

Initialization Comparison on 300 Images Obtained From

Berkeley Database

Method GPP Our Method

Mag.& Criteria
RMS 13.48 13.60

X3 ERMS 21.49 21.00
SSIM 0.738 0.739
RMS 15.51 15.40

X4 ERMS 24.97 23.91
SSIM 0.665 0.670

Fig. 7. Initialization comparison on two real images (4X magnification).
(a) Bicubic initialization of GPP. (b) Our initialization.

1) Initialization Evaluation: Fig. 6 first presents a syn-
thetical comparative result. As shown in this figure, our
initialization image is sharper than that of GPP edge-directed.
For further comparison, we test two methods on 300 images,
which are obtained from the Berkeley website [33]. The
original image is used as the ground truth. The LR image

TABLE II

Effect of Parameter α on 300 Images Super-Resolution Results

Parameter α = 0.05 α = 0.075 α = 0.1 α = O.125 = 0.15 α = 0.2 α = 0.25

Criteria
RMS 12.84 12.84 12.86 12.84 12.85 12.85 12.85
ERMS 18.76 18.78 18.67 18.82 18.84 18.89 18.94
SSIM 0.767 0.767 0.768 0.767 0.766 0.766 0.765

Fig. 8. Effect of parameter α on the super-resolution results. (a) Original
image. (b)–(h) are the up-sampled results (3X) with α = 0.05, 0.075,

0.1, 0.125, 0.15, 0.2, 0.25.

is obtained by down sampling its original version. The quan-
titative evaluations are shown in Table I. From this table, our
results are better than those of GPP edge-directed, especially
when the up-sampling factor is higher. Fig. 7 presents two
examples from the 300 images. From this figure, we see that
our initializations are sharper.

2) Parameter α Evaluation: We test our algorithm with
different α on 300 image obtained from Berkeley database.
The ground truth and LR images are obtained in the same
way as given in Section VII-A1. The quantitative results are
shown in Table II. The visual results are illustrated in Fig.
8. From Table II and Fig. 8, we see that our results are very
stable under different choices of α. Moreover, when α = 0.1,
the ERMS and SSIM are the best. In other experiments, the
parameter α is set 0.1.

B. Comparisons of Other Edge-Directed Methods

In this subsection, we compare our method with three edge-
directed methods, i.e., the GPP edge-directed [29],1 the soft-
cut edge-directed [11],2 and the Laplacian edge-directed [30].3

1The results are obtained from yuwing.kaist.ac.kr/projects/superresolution/
index.htm. In this website, Tai et al. [5] provide the code about GPP
implementation.

2The results are available at vision.eecs.northwestern.edu/research/IP/SR/
index.html.

3We implement the Laplacian edge-directed super-resolution algorithm
according to their paper [30], and some parameters are adjusted according
to the input image.
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Fig. 9. Super-resolution comparison (3X magnification) of other edge-
directed methods. (a) Back-projection. (b) Laplacian edge-directed [30].
(c) GPP edge-directed [29]. (d) Our result. The second row presents the
gradient magnitude (normalized and inverted magnitude) detail of up-sampled
images. The third row illustrates the closeups. Please refer to the electronic
version for a better comparison.

Fig. 10. Super-resolution comparison (3X magnification) of other edge-
directed methods. (a) Back-projection. (b) Laplacian edge-directed [30].
(c) Soft-cut edge-directed [11]. (d) Our result. The bottom row illustrates
the closeups of the corresponding results.

Fig. 11. Super-resolution comparison (3X magnification) of other edge-
directed methods. (a) Back-projection. (b) Laplacian edge-directed [30].
(c) Soft-cut edge-directed [11]. (d) Our result.

1) Comparison With GPP [29]: Fig. 9 illustrates the com-
parison of our method with the GPP edge-directed and Lapla-
cian edge-directed methods in detail. As shown in this figure,
the edges are significantly blurred by the back-projection and
Laplacian edge-directed methods (see closeups). The ringing
artifacts along the image edges of our method are less than
those of the GPP edge-directed method. Particularly, this figure
also shows that the gradient magnitude of our method is
sharper than those of other methods, especially along the edges
(see closeups).

2) Comparison With Soft-Cut [11]: Figs. 10 and 11
present two comparisons of our approach with the soft-cut
edge-directed and Laplacian edge-directed methods. As with
the results in Fig. 9, the image edges are blurred by the
back-projection and Laplacian edge-directed methods. More-
over, these results also have obviously ringing artifacts along
edges (refer to close-ups). In the soft-cut edge-directed super-
resolution results, some salient edges are blocked and look
unnatural. For example, as shown in Fig. 11(c), the blocking

Fig. 12. Super-resolution comparison (4X magnification) of other edge-
directed methods. (a) Back-projection. (b) Laplacian edge-directed [30].
(c) GPP edge-directed [29]. (d) Soft-cut edge-directed [11]. (e) Our result.
(f) Ground truth. The second row presents the gradient magnitude (normalized
and inverted magnitude) detail of up-sampled images.

Fig. 13. Super-resolution comparison (3X magnification) of other edge-
directed methods. (a) Back-projection. (b) Laplacian edge-directed [30].
(c) GPP edge-directed [29]. (d) Soft-cut edge-directed [11]. (e) Our result.
(f) Ground truth. The second row presents the gradient magnitude (normalized
and inverted magnitude) detail of up-sampled images.

artifacts are obvious along both sides of the black dapple of the
butterfly. Compared with these results, our approach recovers
the super-resolution results better, especially on salient edges.

3) Comparison With GPP [29] and Soft-Cut [11]: Figs.
12 and 13 present two more super-resolution examples by
comparing with GPP, soft-cut, and Laplacian edge-directed
methods. As shown in these two figures, the back-projection
and Laplacian edge-directed algorithms produce serious ring-
ing artifacts, such as the edges around nose in Fig. 12. The
salient edges in the soft-cut results are very sharp, but the
small scale edges are not well recovered, for example, the
flecks on the face in Fig. 12, and the texture areas on the hat
in Fig. 13. The main reason is that in the soft-cut edge-directed
method, the alpha channel in a small scale area is very hard to
estimate. Hence, the gradient field obtained by this method is
very smooth, which further causes the loss of details. From the
second rows of these two figures, the gradient magnitudes of
GPP edge-directed are less sharper than those obtained through
our method and the soft-cut method. In particular, both the
figures show that the gradient magnitudes of our method are
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Fig. 14. Super-resolution comparison (4X magnification) of learning based
methods. (a) Bicubic. (b) Yang et al.’s [7]. (c) Shan et al.’s [34]. (d) Our
result. The running time of our method is about 20 s. Yang et al.’s needs
80 s.

Fig. 15. Super-resolution comparison (4X magnification) of learning based
methods. (a) Bicubic. (b) Yang et al.’s [7]. (c) Shan et al.’s [34]. (d) Our
result. The running time of our method is about 14 s. Yang et al.’s needs
50 s.

more similar to the ground truth than those of GPP and soft-
cut methods. This indicates that the gradient fields obtained
through our method are more accurate.

C. Comparisons With Learning and De-convolution Based
Methods

In this subsection, we compare the proposed method with
four methods, i.e., Yang et al.’s [7],4 Shan et al.’s [34]
(de-convolution based),5 Glasner et al.’s [6],6 and Freedman
et al.’s. [24].7

1) Comparison With Yang et al.’s [7] and Shan et al.’s [34]:
In the first example, we compare our method with Yang et al.’s
and Shan et al.’s in two aspects, i.e., super-resolution results
and computational cost. In our method, the iteration times are
equally set 30. As can be seen from Figs. 14 and 15, the results
of Yang et al.’s are sharper in appearance than those by the
bicubic (see close-ups for detail comparisons). However, the
high-frequency artifacts are also introduced from the training
samples, such as the ringing artifacts around the pipelines.
In Shan et al.’s [34] results, the salient edges are smoother
than those of our method [see the comparison of red patches
in Fig. 14(c), (d) as an example]. The speed of our method is
faster. For example, in Fig. 14, the running time of our method
is about 20 s. Yang et al.’s needs 80 s. It is worth noting
that we run all algorithms on PC with CPU as a processor.
Compared with Yang et al.’s and Shan et al.’s methods, our
edge-directed method not only recovers the HR image with
less visual artifacts, but also takes a lower computational cost.

4Code available at www.ifp.illinois.edu/∼jyang29/.
5The executable code is downloaded from www.cse.cuhk.edu.hk/∼leojia/

projects/upsampling/index.html.
6The results are available at www.wisdom.weizmann.ac.il/∼vision/

SingleImageSR.html.
7The results are available at www.cs.huji.ac.il/∼raananf/projects/lss upscale/

index.html.

Fig. 16. Super-resolution comparison (4X magnification) of learning based
methods. (a) Bicubic. (b) Glasner et al.’s [6]. (c) Freedman et al.’s [24].
(d) Our result. The bottom rows illustrate the close-ups of the corresponding
results.

Fig. 17. Super-resolution comparison (3X magnification) of learning based
methods. (a) Bicubic. (b) Glasner et al.’s [6]. (c) Freedman et al.’s [24].
(d) Our result.

2) Comparison With Glasner et al.’s [6] and Freedman et
al.’s [24]: Figs. 16 and 17 present two examples of comparing
with Glasner et al.’s and Freedman et al.’s methods. In total,
as shown in these two figures, the details recovered by our
method are better than those by Freedman et al.’s method,
and the ringing artifacts introduced by our method are less
than those by the Glasner et al.’s method. Take Fig. 16 as an
example, the edges on the letters A and 9 (see red close-ups)
are too sharp to look natural in Freedman et al.’s result. On the
other hand, the edges in Glasner et al.’s method are not well
recovered (see yellow close-ups). Our method can reconstruct
sharp edges, but with a little additional artifact.

To sum up, these comparisons show that our method is able
to generate sharper edges while producing less artifacts than
the learning-based super-resolution methods. Meanwhile, the
computational cost of our method is lower. Furthermore, as a
general method on the image gradient, our gradient sharpening
algorithm can also be applied to other image processing tasks,
such as image enhancement and image de-focus.

D. Comparison on Dataset

Table III gives the numeric comparisons of our method
with the bicubic, back-projection [25], Laplacian edge-directed
[30], and Yang et al.’s [7] methods. The tested images are
obtained from the Berkeley website [33]. Each image has
the corresponding edge mask. Three up-sampling scales are
adopted to make the comparison more thoroughly. The original
image is used as the ground truth. The LR image is obtained
by down sampling its original version. The EMS, ERMS, and
SSIM error metrics are used to quantitatively measure the
super-resolution results. We calculate the average errors of all
tested images. As shown in the Table III, our method presents
lower EMS and ERMS and higher SSIM, as compared with
others, especially when the up-sampling scale is larger. Fur-
thermore, the computational cost of our method is significantly
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TABLE III

Super-Resolution Quality Measurement on Data-Set

Method Bi-cubic Back- Learning Laplacian Our

Meg. probjection Method
& Criteria

RMS 10.30 10.41 12.79 10.40 10.34
2X ERMS 16.08 15.04 17.82 15.02 14.71

SSIM 0.844 0.856 0.835 0.850 0.856
CPU Time 0.080 4.786 77.16 5.067 5.248

RMS 13.48 13.05 14.47 13.14 12.86
3X ERMS 21.49 19.79 20.90 19.29 18.67

SSIM 0.738 0.763 0.757 0.756 0.768
CPU Time 0.062 3.724 38.57 3.917 4.192

RMS 15.51 14.95 15.97 14.93 14.71
4X ERMS 24.97 23.39 25.05 23.39 22.25

SSIM 0.665 0.690 0.646 0.689 0.696
CPU Time 0.055 3.385 24.04 3.828 3.917

We compared our algorithm with the bi-cubic, back-projection, Yang et
al.’s [7], and Laplacian edge-directed [30] algorithms by three error
measurements, i.e., EMS, ERMS, and SSIM. The CPU time rows present
the running time (s). (Bold: best, underline: second best).

Fig. 18. Super-resolution comparison (3X magnification) of other methods.
(a) Bicubic. (b) Back-projection. (c) Yang et al.’s [7]. (d) Laplacian edge-
directed [30]. (e) Our result. (f) Ground truth.

TABLE IV

Super-Resolution Quality Measurement on Two Examples

Method Bi-cubic Back- Learning Laplacian GPP Our

Mag. & probjection Method
Criteria

RMS 11.62 11.19 13.46 11.36 11.5 11.04
Star ERMS 15.50 13.42 15.82 13.56 12.0 12.91
Fish SSIM 0.798 0.823 0.807 0.812 0.790 0.827

RMS 10.09 9.627 12.18 9.505 9.5 9.118
Lady ERMS 17.56 14.54 15.68 13.86 12.3 12.14

SSIM 0.886 0.889 0.858 0.878 0.891 0.899

We compared our algorithm with the bi-cubic, back-projection, Yang et al.’s
[7], Laplacian edge-directed [30], and GPP edge-directed [29] algorithms by
three error measurements, i.e., EMS, ERMS, and SSIM. The CPU time
rows present the running time (s). (Bold: best, underline: second best).

lower than that of Yang et al.’s method. Note that the iteration
times for back-projection, Laplacian edge-directed, and our
method are equally set to 30.

We select two images, i.e., Star Fish and Lady, as examples
for detailed comparison. The visual comparison results are
presented in Fig. 18, while the quantitative comparison results
are shown in Table IV. The quantitative results of GPP are
obtained from their paper [29]. As shown in this table, our
method is better than the others. Moreover, as shown in Fig.
18, our method recovers sharper HR images. As reported in
[29], the gradient sharpening times for these two images are
0.829 and 0.862 s, respectively. However, in our method, it
only needs 0.266 and 0.269 s to sharpen these gradient. Hence,
the gradient sharpening time of our method is greatly lower
(three times) that those of [29].

VIII. Conclusion and Future Work

In this paper, an edge-directed single-image super-resolution
algorithm was proposed by using a new adaptive gradient mag-
nitude self-interpolation. The extensive experimental results
demonstrated that the proposed gradient constraint, which is
represented by the estimated HR gradient, can preserve image
details or sharp edges, while suppressing the ringing, blocking,
and blurring artifacts, especially along salient edges.

In the future, we want to speed up the proposed super-
resolution algorithm. It is also interesting to incorporate the
learning-based models to enhance the super-resolution results.
In addition to the super-resolution problem, the proposed
gradient constraint can also be effectively applied to other
computer graphic and computer vision problems, such as
image de-blurring, de-noising, and enhancement.
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