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Forward–Backward Mean-Shift for Visual Tracking
With Local-Background-Weighted Histogram

Lingfeng Wang, Hongping Yan, Huai-Yu Wu, and Chunhong Pan

Abstract—Object tracking plays an important role in many
intelligent transportation systems. Unfortunately, it remains a
challenging task due to factors such as occlusion and target-
appearance variation. In this paper, we present a new tracking al-
gorithm to tackle the difficulties caused by these two factors. First,
considering the target-appearance variation, we introduce the
local-background-weighted histogram (LBWH) to describe-
the target. In our LBWH, the local background is treated as
the context of the target representation. Compared with tradi-
tional descriptors, the LBWH is more robust to the variability
or the clutter of the potential background. Second, to deal with
the occlusion case, a new forward–backward mean-shift (FBMS)
algorithm is proposed by incorporating a forward–backward
evaluation scheme, in which the tracking result is evaluated by
the forward–backward error. Extensive experiments on various
scenarios have demonstrated that our tracking algorithm outper-
forms the state-of-the-art approaches in tracking accuracy.

Index Terms—Forward–backward mean shift (FBMS),
local-background-weighted histogram (LBWH), visual tracking.

I. INTRODUCTION

O BJECT TRACKING is a critical component in many
intelligent transportation systems (ITS), such as visual

surveillance systems [1]–[4] and driver assistance systems [5]–
[7]. In visual surveillance systems, object tracking can be
used for event detection and target activity analysis. With the
help of object tracking, driver assistance systems can auto-
matically detect potentially dangerous situations, so that it
can warn the driver or initiate appropriate protective measures
in time.

Although many excellent approaches have been proposed
for object tracking, it is still very difficult to develop a robust
tracking algorithm, because the performance of object tracking
is greatly influenced by factors such as the variability of the
target appearance and the partial or entire occlusion of the
target.
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To tackle the problem of appearance variation, many classical
algorithms, such as the mean shift [8], [9], focus on construct-
ing an adaptive target model. However, in many tracking appli-
cations, such as surveillance, a tracker needs to clearly separate
the target from its local background. Thus, it is very restrictive
if the tracker only utilizes the target model but ignores its
surroundings (background). A better representation of the target
should combine both aspects. Based on this idea, we incor-
porate the local background into the target model by present-
ing the new local-background-weighted histogram (LBWH).

To handle the difficulty that is caused by occlusion, we im-
prove the traditional mean-shift tracking framework by adding
a forward–backward evaluation scheme, in which the tracking
result is evaluated in both forward and backward manners.
Specifically, our tracking result adaptively fuses two results,
i.e., the observation that is calculated by the mean shift and the
prediction that is computed by the median filter of the historical
trajectory.

The advantages of our tracker as compared with the state-of-
the-art approaches can be highlighted in two aspects:

1) The proposed LBWH treats the local background as
the context of the target and selects salient features to
describe the target. Therefore, our tracking algorithm is
more robust to the case in which the target is similar
with its local background. Furthermore, different from the
corrected background-weighted histogram (CBWH) [10],
which assumes that the target and candidate regions share
the same background, the LBWH considers that these
regions have their own local background. By introducing
the LBWH, our method better suits general tracking
scenarios, particularly when the background varies.

2) The forward–backward scheme makes our tracking pro-
cess smoother than other traditional methods. Hence,
our method can tackle the short-term occlusion better.
Moreover, as pointed out in [11], Kalman-filter-based
methods [12], [13] adaptively fuse the results of obser-
vation obtained from current image and the prediction
obtained from previous tracking result. From the view of
information fusion, our method is similar to the Kalman
filters. The main difference is that, in our method, the
fusion weight is determined by the tracking consistence,
whereas in the Kalman filters, it is controlled by the
observation and prediction covariance. In fact, in object
tracking, the tracking consistence is more important than
the observation and prediction covariance. The experi-
mental results also indicate that our tracking process is
more stable than those of the filtering methods.
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The rest of this paper is organized as follows. An overview
of related work is given in Section II. Section III presents
our forward–backward mean-shift (FBMS) tracking method
based on the LBWH. Section IV gives the experimental re-
sults. Discussions and conclusions are presented in the last
section.

II. RELATED WORK

Object tracking is widely applied in ITS. Generally, the ap-
proaches that are most related to our paper can be grouped into
four categories, i.e., appearance-based [14]–[17], dynamical-
model-based [13], [18], [19], online-selection-based [20]–[23],
and online-learning-based methods [24]–[29].

The template-based method [14], [30] is one of the classical
appearance-based methods, as it is robust to nonrigidity and
partial occlusion. Tracking with fixed templates can be reli-
able over short duration, but it copes poorly with appearance
changes over longer durations that occur in most applications.
Robustness can be enhanced with the use of subspace models of
appearance [15], [31]. Another appearance-based method relies
on invariant features, such as histogram [8], [9], spatiogram
[16], and spatial-color mixture of Gaussians [3], [32]. For
example, Jepson et al. [17] proposed an online appearance
model for visual tracking.

For the dynamical-model-based method, probabilistic mod-
eling and sampling techniques are employed to achieve effi-
cient visual tracking. The dynamical model based method is
often composed of two stages. In the first stage, a dynamic
model is utilized to predict the next state; in the second
stage, the prediction is refined by the observations from the
images. The classical Kalman filter algorithm [12], [13], [33]
has been used to track objects via the randomness that is
generated by a linear dynamic operator with the Gaussian noise.
However, it is hard to handle the nonlinear or non-Gaussian
conditions. The particle-filter [18], [19], [34], [35] algorithm
becomes an effective tool to solve these problems. The crit-
ical disadvantage of the particle filter is its high computa-
tional cost.

Recently, treating object tracking as an online selection
problem has attracted much attention. The core of the scheme
is to select appropriate features to classify each pixel as fore-
ground or background. To the best of our knowledge, the
first online-selection-based tracking algorithm was proposed by
Collins et al. [20], by switching the mean-shift tracking al-
gorithm between different linear combinations of three color
channels to select the features that can distinguish between
the target (foreground) and the background. Motivated by the
work of Collins et al., Liang et al. [21] solve the online feature
selection problem by using the Bayesian error rate instead of the
variance ratio. Similarly, Kwolek [36] presents multiple color
histograms instead of the linear combination of the three color
channels. Improved performances have been reported in these
papers. However, these methods perform well only when the
object appearance does not drastically change. Background-
weighted methods [10], [37], [38] can be treated as a variant
of online-selection-based methods. The essential idea behind
these methods is to weaken inner-background features or make

target features prominent. For example, Ning et al. [10] adopted
a CBWH to represent the target.

A family of online-learning-based tracking approaches [24]–
[29], [39] have been recently proposed. Since these methods
are in common with object detection, they have been termed
“tracking by detection.” Similar with the online-selection-
based method, the online-learning-based method also formu-
lates visual tracking as a classification problem, i.e., optimally
separating the target from the background in each frame.
However, the main difference between the two groups is the
target representation. The online-selection-based method rep-
resents the target as a pixel set, whereas the online-learning-
based method represents it as a whole template. For example,
Grabner et al. [25] designed an online boosting classifier that
selects features to discriminate the target from the background.
The online-learning-based method demonstrates that, by using
online feature selection, the tracking problem can be consid-
erably simplified, and therefore, the classifier can be quite
compact and fast. However, when the object is occluded, these
methods may fail because it is hard to be detected.

III. METHOD

Here, we first introduce the mean-shift-like trackers. Then,
we describe the proposed LBWH and the forward–backward
scheme in detail. Finally, we present the implementation details
about our tracker.

A. Overview of Mean-Shift-Like Trackers

In object tracking, the target is usually described in a rect-
angle shape. For mean-shift-like trackers, the target region
is represented by the color histogram q = {qu}Bu=1 with B
bins, i.e.,

qu = C1

n∑
i=1

k
(
‖x�

i ‖22
)
δ [b (x�

i )− u] (1)

where {x�
i }ni=1 are the locations of n pixel, b(x�

i ) is the bin at
location x�

i , C1 is a normalization constant, k(.) is the kernel
function, and δ[.] is the Kronecker delta function. Similarly, the
candidate region that is centered at y is represented by the color
histogram p(y) = {pu(y)}Bu=1, in which

pu(y) = C2

n∑
i=1

k

(∥∥∥∥y − xi

h

∥∥∥∥2
2

)
δ [b(xi)− u] (2)

where C2 is a normalization constant, and h is the bandwidth.
The object tracking problem is defined as finding a mean-

ingful position y, in which the Bhattacharyya coefficient be-
tween p(y) and q, namely, ρ(p(y),q), reaches a maximum
value, i.e.,

y� = max
y

ρ (p(y),q) = max
y

B∑
u=1

√
pu(y)qu. (3)

The mean-shift-like trackers search for the new target lo-
cation in the current frame starting from location ym of the
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target in the previous frame. By applying the first-order Taylor
expansion at pu(ym), we get that

ρ (p(y),q)

≈ 1
2
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√
pu(ym)qu +

1
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)
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where

wi =

B∑
u=1

√
qu

pu(ym)
δ [b(xi)− u] . (5)

To obtain the solution to (3), the second term in (4) has to
be maximized. Note that, in (4), the first term is independent of
y, and the second one is the kernel density term with a kernel
function k(.). As pointed in [40], the maximum value can be
obtained by a mean-shift procedure, i.e.,

ym+1 =

∑n
i=1 xiwig

(∥∥ym−xi

h

∥∥2
2

)
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i=1 wig
(∥∥ym−xi

h

∥∥2
2

) (6)

where g(.) is the shadow of the kernel profile k(.). {xi}ni=1 are
the pixel locations in the candidate region, and {wi}ni=1 are the
corresponding weights of all pixels.

The main difference between all mean-shift-like trackers lies
in the calculation of weight wi. For example, the classical
mean-shift algorithm proposed in [41] computes weight wi by
(5). This algorithm performs well when the target appearance
is homogeneous and well distinguished from the background.
However, it often fails when the target region is roughly initial-
ized. In such case, the target region might contain background
features (called inner-background features) as well. Thus, back-
ground features cannot be ignored in the representation of the
target and candidate regions.

To incorporate background features, Comaniciu et al. [41]
introduced the background-weighted histogram (BWH) to si-
multaneously represent the target and candidate regions, i.e.,

q̃u = qu ∗ vu (7)

p̃u(y) = pu(y) ∗ vu. (8)

The background weight vu is obtained by vu=min{o�u/ou, 1},
where o = {ou}Bu=1 is the background histogram and o�u is
its smallest nonzero entry. As shown in (7) and (8), the main
insight of the BWH is that it can reduce the original histogram
entries [both qu and pu(y)], where target features often appear
in the background (where ou is large). However, in [10], Ning
et al. proved that the BWH did not introduce any background
features, since the background histogram simultaneously trans-
forms the target and candidate histograms. Instead, they pro-
posed the CBWH, which only transforms the target histogram.

In [10], weight wi is calculated as follows:

wi =

B∑
u=1

√
q̃u

pu(ym)
δ [b(xi)− u] . (9)

From (5) and (9), we see that only the target histogram is
weighted by the background histogram, i.e., qu is replaced by
q̃u in the weight calculation.

B. LBWH

The authors in [10] and [41] assume that the target and
candidate regions share the same background that is represented
by o. However, in practice, these regions have their own local
backgrounds. That is, the surrounding background of each
region is different (or varying frame by frame) and needs to
be distinguished. Therefore, the LBWH is proposed to weaken
the inner-background features of all these regions by using their
own local backgrounds.

The proposed LBWH assigns each bin b(x�
i ) weight νi and

reformulates the histogram calculation as follows:

q̂u = C1

n∑
i=1

k
(
‖x�

i ‖22
)
δ [b (x�

i )− u] νi. (10)

Weight νi denotes the probability of each pixel belonging
to the target. The pixel that is located on the target has a
higher weight than the pixel that is located on the inner
background. Thus, introducing the weight can help weaken
inner-background features or make the target features more
prominent.

We assume that, in a small local region Ωi (e.g., 3 × 3) that is
centered at the ith pixel, weight νj(i) is a linear transformation
of the original input image Ij(i), i.e.,

νj(i) = wiIj(i) + bi ∀ j(i) ∈ Ωi (11)

where wi and bi are the linear coefficients that are assumed
to be constant in the local region Ωi. Theoretically, the total
regression error can be represented as follows (refer to [42]):

E(ν) = νTLν (12)

where L is a Laplacian matrix that is constructed on image I.
During the tracking process, the target is represented by a

rectangle. Hence, we can obtain a rough weight ν̂ based on the
tracking result that is obtained in the previous frame, i.e.,

ν̂(i) =

{
1, pixel i in the target
0, pixel i in the local background.

(13)

Weight ν should be close to the rough weight ν̂, i.e., ‖ν −
ν̂‖22 should be small. Combining with (12), weight ν can be
calculated by

ν = argmin
ν

‖ν − ν̂‖22 + λνTLν (14)

where λ is a weighting constant. By minimizing (14), ν is
calculated as ν = (Id + λL)−1ν̂, where Id is an identity matrix.
Calculating (Id + λL)−1 is time consuming. Fortunately, the
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Fig. 1. Example of weight calculation with the guided filter (a) Input frame.
(b) Target and its local background rectangles. (c) Corresponding weight map
obtained by the guided filter.

filtering method that is proposed in [43] can approximately
solve (14). Accordingly, to obtain weight νi, we perform the
guided filter [43] with the target rectangle and the local-
background rectangle as the inputs, as shown in Fig. 1. In this
figure, the blue and red rectangles are the target and the local
background, respectively. Fig. 1(c) shows the corresponding
weight map after performing the guided filter. Combining with
(5), weight wi is calculated as

wi =

B∑
u=1

√
q̂u

p̂u(ym)
δ [b(xi)− u] . (15)

The calculation of weights in (5), (9), and (15) is similar.
The main difference is the definition of the histograms. In (5),
the original histograms are used. In (9), the weighted target
histogram is used. In our method, both the target and candidate
histograms are used as the weighted versions.

From the aforementioned description, we can see that all
the background-weighted methods aim to weaken the inner-
background features or to make the target features prominent,
but the way to reach the goal is different. Specifically, in our
LBWH, the target and candidate regions use their own local
backgrounds to reach this goal, whereas in the BWH and
the CBWH, the targetand candidate regions share the same
background. Accordingly, our tracking algorithm is more robust
to the scenarios where the background is varying.

C. FBMS

In some scenarios, the target may be occluded by the back-
ground. In such case, the mean-shift vector that is calculated
by (6) may be incorrect. The direction of the mean-shift vector
may be decided by the local background rather than the target.
When this occurs, the tracking algorithm often suddenly fails.
To prevent this sudden failure, we propose a forward–backward
evaluation scheme, as well as the corresponding FBMS tracking
algorithm.

The principle of the forward–backward evaluation scheme is
based on the forward–backward consistency assumption [44] in
which correct tracking should be reversible over the time flow.
Algorithmically, the forward–backward evaluation consists of
the following two steps (see Fig. 2).

Forward: Starting from the previous location yt−1, we pro-
duce a forward mean-shift vector ŷt on the current frame [see

Fig. 2. Illustration of FBMS. (a) Forward mean-shift procedure in the current
frame and the backward mean-shift procedure in the previous frame. (Red
rectangle in the previous frame) Previous target location yt−1. (Red rectangle
in the current frame) y◦

t estimated by the forward mean shift. (Green rectangle)
y◦
t + y̌t estimated by the backward mean shift. (b) All the flow vectors.

(Red dashed arrow) is Forward mean-shift vector ŷt. (Green dashed arrow)
Backward mean-shift vector y̌t. (Gray line) Final location yt is a linear
combination of the mean-shift result y◦

t and the predicted result y�
t .

the red dashed arrow in Fig. 2(b)]. Hence, current location y◦
t

estimated by mean shift is represented as

y◦
t = yt−1 + ŷt. (16)

Backward: Starting from the current location y◦
t , we com-

pute a backward mean-shift vector y̌t on the previous frame
[see the green dashed arrow in Fig. 2(b)].

If the target is correctly tracked, the opposite of forward
mean-shift vector ŷt should be equal to the backward mean-
shift vector y̌t, namely, ŷt + y̌t = 0. Thus, we can use the
forward–backward error, i.e.,

εt = ‖ŷt + y̌t‖2 (17)

to evaluate how well the target is tracked.
To make the tracking process smooth, we also provide the

prediction result of the current location y�
t based on the his-

torical trajectory Yt−1 = {y1,y2, . . . ,yt−1}, given by y�
t =

p(yt|Yt−1), where p(yt|Yt−1) is approximated by the median-
flow model, i.e.,

y�
t = p(yt|Yt−1) = yt−1 + medτ∈T (Δyτ ) (18)

where T = {t− 1, t− 2, . . . , t−N} (N is experimentally set
to 20) is the historical moments, Δyτ = yτ − yτ−1, and func-
tion medτ∈T (.) is used to obtain the median value.

Two components, namely, the mean-shift result y◦
t and the

predicted result y�
t , are combined together to estimate the final

target location yt of time t, i.e.,

yt = (1 − g(εt))y
◦
t + g(εt)y

�
t (19)

in which g(εt) is the weighting function that is controlled by
the forward–backward error εt. Here, soft thresholding is used
to estimate the weighting function g(εt), i.e.,

g(εt) =

{
εt
ξ εt ≤ ξ

1 εt > ξ
(20)

where ξ is the threshold. Parameter ξ is mainly determined by
the size and the speed of the moving target. Based on plenty of
experiments, ξ = 10 can provide satisfactory results.
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Algorithm Flowchart: The main flow of the FBMS with
the LBWH is summarized in Algorithm 1. In the forward and
backward mean shifts, the weight is calculated by (15).

Algorithm 1: FBMS with LBWH

1. Initialize the target location y0.
2. Calculate its histogram q̂ by (10).
3. for t = 1 to total time do
4. Calculate ŷt, y◦

t = ŷt + yt−1, and y̌t.
5. Calculate the forward–backward error εt by (17).
6. Calculate the fusion weight g(εt) by (20).
7. Calculate the predicted result y�

t by (18).
8. Calculate the fusion result yt by (19).
9 if t%n == 0 then
10 Update the target histogram by (21).
11 end
12 end

Model Updating: To handle the change of target appearance,
the target histogram q̂ is updated at each frame. To reduce
drifting probability, we use a slight model-updating method
based on the Bhattacharyya distance, i.e.,

q̂ =

{
(1 − β)q̂+ βq̂(yt) D (q̂, q̂(yt)) < η
q̂ otherwise

(21)

where q̂(yt) is the observed histogram at location yt. Parameter
β ∈ [0, 1] represents the contribution of the current histogram
q̂(yt) to the target model q̂, and threshold η ∈ [0, 1] decides
the condition of model updating. To avoid excessively updating
the target model, β and η are usually set to small values. After
performing plenty of experiments, β and η are set to 0.01 and
0.1, respectively.

IV. EXPERIMENTAL RESULTS

Extensive experiments are conducted to evaluate the per-
formance of the proposed tracking algorithm by com-
paring with several state-of-the-art approaches, i.e., mean
shift, CBWH mean shift [10],1 online boosting [25],2

tracking–learning–detection TLD [45], [46],3 L1 tracker (L1)
[14],4 and incremental visual tracking (IVT).5 In our method,
the RGB color space is used as the feature space, and it was
quantized into 16 × 16 × 16 bins. In the guided filter [43], the
window size is set to 10, and the regularization parameter is set
to 10−4. We provide two versions of our tracking algorithm.
The first version uses the mean shift, which is named “our
method with MS,” while the second one uses FBMS, which
is named “our method with FBMS.”

In our experiments, we adopt two widely used criteria,
i.e., the F-score and the position error Pe, to quantitatively

1The code is available at www4.comp.polyu.edu.hk/~cslzhang/code.htm
2The code is available at www.vision.ee.ethz.ch/boostingTrackers
3The code is available at info.ee.surrey.ac.uk/Personal/Z.Kalal/tld.html
4The code is available at www.ist.temple.edu/~hbling/code_data.htm
5The code is available at www.cs.toronto.edu/~dross/ivt/

Fig. 3. Comparison on CAVIAR data set. The sequences from top to bottom
are CAVIAR:fosne2, CAVIAR:csa2 and CAVIAR:bww1, respectively. We
compare (yellow) “our method with MS” and (black) “our method with FBMS”
with (red) the mean shift, (green) the CBWH mean shift, (blue) online boosting,
(pink) TLD, (dark green) L1, and (cyan) IVT. Bottom-right patches illustrate
the close-ups.

evaluate the tracking accuracy. The ground truth is created by
manually selecting the image region that best covers the target.
F-score measures the tracking accuracy by considering both
the recall and the precision, i.e.,

F-score =
2 · TP

2 · TP + FN + FP
(22)

where TP, FP, and FN are the true positive, the false positive,
and the false negative, respectively. In practice, the position
error Pe illustrates the distance between the center position of
the tracked target and the ground truth, i.e.,

Pe =

√(
ptrkx − pgtx

)2
+
(
ptrky − pgty

)2
(23)

where ptrkx and ptrky are the x- and y-center positions of the
tracked target, and pgtx and pgty are those of the ground truth. A
good result should provide a high F-score value but a low Pe
value.

A. Qualitative Comparisons

CAVIAR Data Set: In this experiment, we aim at tracking
pedestrians in three indoor sequences. The comparative results
are shown in Fig. 3. The tested video sequences are downloaded
from the CAVIAR Web site.6

In the first sequence (CAVIAR:fosne2), the challenges for
tracking come from two aspects. First, the illumination con-
dition gradually changes. Second, the appearance of a dark
pillar is very similar with the target. As illustrated in the first
row, most algorithms except TLD and ours fail when the target
passed through the pillar. Note that, the tracking rectangles that
are provided by TLD do not fit the pedestrian.

From the results of the second sequence (CAVIAR:csa2), we
can see that the mean shift, IVT, and online boosting algorithms

6http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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Fig. 4. Comparison on PET2001. We compare (yellow) “our method with
MS” and (black) “our method with FBMS” with (red) the mean shift, (green)
the CBWH mean shift, (blue) online boosting, (pink) TLD, (dark green) L1,
and (cyan) IVT. Top-right patches illustrate the close-ups.

fail when the target person is partially occluded by another
person. Among them, only the online boosting algorithm can
redetect the target after it reemerges. The results of the CBWH
mean shift and TLD flutter a little.

As shown in the third row (the results on CAVIAR:bww1),
the CBWH mean shift fails to track the target as he moves
away from the strong light area. The mean shift, IVT, and our
algorithm with MS fail to track the target as he approaches
the face-recognition machine. The local backgrounds around
the initial target region and the current candidate region are
very different, as the pedestrian moves away from the strong
light area. Hence, the weight that is generated by the CBWH
is inaccurate, which makes the CBWH mean shift fail. Our
method with FBMS tracks the target successfully throughout
the whole sequence.

There are two main reasons that lead to the good performance
of our algorithm. First, the LBWH selects salient features,
which helps in dealing with the variations of the target and the
background. Second, the proposed forward–backward scheme
better models the smoothness of the pedestrian’s motion.

PET2001: In the second experiment, we select an outdoor
video sequence from the PET 2001 data set,7 and the visual
result is shown in Fig. 4. As illustrated in this figure, the
appearance of the target is very similar to its local background.
Moreover, the target is partially occluded by a bicycle. From
this figure, we can see that the online boosting, TLD, IVT,
and L1 algorithms very quickly lose the target when the target
moves away from the black car (see the second image). The
mean shift and the CBWH mean shift fail to track the pedestrian
after the bicycle passes through. It is worth noting that the TLD
algorithm is able to recover the failure in some frames (refer to
the third image). Unfortunately, the tracked rectangle quickly
drifts away, when the target is partially occluded by the bicycle.
The ability to recover from failure relies on the utilization of
the detection module based on the p/n learning. However, the
failure is caused by the use of an optical flow framework, which
is proven sensitive to the partial occlusion. On the contrary, our
tracker can still track the pedestrian in this difficult scene.

PET2006: A third comparison result is shown in Fig. 5. The
tested video sequence is downloaded from the PET 2006 web
site.8 The similarity between the target and the background is
very high that, in some frames, it is difficult even for a human
observer to recognize the target. Moreover, the target is very
small and can be only represented by a 17 × 25 rectangle. From

7http://www.cvg.cs.rdg.ac.uk/PETS2001/pets2001-dataset.html
8http://www.cvg.rdg.ac.uk/PETS2006/data.html

Fig. 5. Comparison on PET2006. We compare (yellow) “our method with
MS” and (black) “our method with FBMS” with (red) the mean shift, (green)
the CBWH mean shift, (blue) online boosting, (pink) TLD, (dark green) L1,
and (cyan) IVT. Bottom-right patches show the close-ups.

Fig. 6. Comparison on OSU:1b. We compare (yellow) “our method with MS”
and (black) “our method with FBMS” with (red) the mean shift, (green) the
CBWH mean shift, (blue) online boosting, (pink) TLD, (dark green) L1, and
(cyan) IVT. Top-right patches illustrate the close-ups.

Fig. 7. Comparison on CAR11. We compare (yellow) “our method with MS”
and (black) “our method with FBMS” with (red) the mean shift, (green) the
CBWH mean shift, (blue) online boosting, (pink) TLD, (dark green) L1, and
(cyan) IVT. Top-right patches illustrate the close-ups.

this figure, we can see that all algorithms except ours fail when
the target moves to the store entrance.

OSU:1b: The fourth experiment is to track a pedestrian in
an outdoor video sequence.9 The result is shown in Fig. 6. At
the beginning, the pedestrian walks in the sun. After a period
of time, the target moves into the shadow. The online boosting,
L1, and our algorithm track the pedestrian well regardless of
these difficulties, whereas the others eventually fail.

CAR11: In the fifth experiment, we aim at tracking a moving
car. The video sequence is downloaded from the IVT Web
site.10 Tracking a moving car is frequently used in a driver
assistance system. From Fig. 7, it is even hard for a human to
distinguish the car from its local background. With the help of
the background weighing strategy, our method with FBMS can
successfully track the car throughout the whole sequence.

B. Quantitative Comparisons

Frame-by-Frame Comparison: The numerical comparisons
of all methods on the aforementioned seven video sequences are
shown in Figs. 8 and 9. From these figures, our algorithm holds
the highest F-score value, as well as the lowest Pe value. The
high F-score indicates that our algorithm accurately tracks the
targets, while the low Pe indicates that our tracking results are

9http://www.cse.ohio-state.edu/otcbvs-bench/
10http://www.cs.toronto.edu/~dross/ivt/
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Fig. 8. F-score comparisons. We compare (yellow) “our method with MS” and (black) “our method with FBMS” with (red) the mean shift, (green) the CBWH
mean shift, (blue) online boosting, (pink) TLD, (dark green) L1, and (cyan) IVT.

Fig. 9. Pe comparisons. We compare (yellow) “our method with MS” and (black) “our method with FBMS” with (red) the mean shift, (green) the CBWH mean
shift, (blue) online boosting, (pink) TLD, (dark green) L1, and (cyan) IVT.

stable. In particular, our algorithm successfully tracks all video
sequences.

Statistical Comparisons: For each video sequence, statisti-
cal comparisons are provided from the following two aspects.
The first one is the average F-score and the average Pe
(see Table I). The second one is the success ratio r (see
Table II), which is defined as the ratio between the success
frames Nsuc and the total frames Ntot, i.e., r = (Nsuc/Ntot).
The success frames Nsuc is calculated as follows: Nsuc =∑Ntot

i=1 1τ (F-score(i)), where τ is the threshold, F-score(i) is
the F-score in the ith frame, and 1τ (x) is a threshold function,
which is given by

1τ (x) =

{
1, x > τ
0, otherwise.

Threshold τ is set to 0.5. As shown in Tables I and II, our
results are better than the others for most video sequences.

C. Comparison of Computational Cost

The speed of our algorithm is also measured in frames per
second (fps). Our tracker is implemented in MATLAB, which
runs at 4.48 fps on an Intel Core 2 personal computer with
2.40-GHz central processing unit and 1-GB random access
memory. As shown in Table III, our method is faster than L1
and TLD but slower than the mean shift, the CBWH mean shift,
online boosting, and IVT. However, the mean shift, the CBWH
mean shift, and IVT often fail to track the target, and online
boosting is implemented by C++, which is, in general, more
efficient than MATLAB.

The 4.48 fps of our method can be almost used for real-time
applications. In the future, a large speedup can be expected from
code optimization and hardware acceleration. For example, in
the near future, we will reimplement our approach in C/C++
and use the graphic processing unit to speed up the guided filter
module that is the slowest part of our system.
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TABLE I
NUMERICAL COMPARISONS OF THE AVERAGES OF F-score AND Pe. THE BEST RESULTS ARE INDICATED BY “(A).” THE SECOND BEST

RESULTS ARE INDICATED BY “(B).” #: SOME TRACKED RECTANGLES ARE OUT OF THE IMAGE DOMAIN

TABLE II
NUMERICAL COMPARISONS OF THE SUCCESS RATIO. THE BEST RESULTS ARE INDICATED BY

“(A).” THE SECOND BEST RESULTS ARE INDICATED BY “(B)”

TABLE III
COMPARISON OF COMPUTATIONAL COST OR SPEED BY FRAMES PER SECOND

V. DISCUSSIONS AND CONCLUSION

A. Discussions

The intuitions behind the proposed tracker are mainly from
the following two aspects. First, the features of the target
should be as different as possible from those of the background.
Second, the target should smoothly move in the whole scene.
Hence, our tracker can work well in the scenarios where the
target and the background are homogeneous and distinguish-
able. We illustrate three major limitations of our method and
their potential solutions as follows.

The first difficulty is that the target may be occluded (either
partially or entirely). If the target is partially occluded for
a short-term, such as in the CAVIAR:csa2 and PET2001
sequences in our experiments, our tracker can track the target
well because the visible part can represent the target. However,
if the target is occluded for a long time, our tracker may fail.
The second difficulty is that the target may move very fast.
In such a situation, the smooth process that is implemented
by the forward–backward evaluation will be invalid. Therefore,
our algorithm can only track the slowly moving targets. To
solve the entire occlusion and the fast moving problems, we
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can add a detection module to reinitialize the tracker whenever
it fails. The third difficulty is that the tracked target is seriously
deformable. In such case, it is hard to use a fixed rectangle to fit
the target. For example, in the CAVIAR:bww1 sequence, our
result is worse than TLD and L1. To solve this problem, we can
use a deformable template, such as the deformable rectangle
used in L1, to represent the target.

B. Conclusion

In this paper, we have presented the FBMS tracking algo-
rithm with the LBWH. The main contributions of this paper
are from two aspects. First, we have proposed a new LBWH,
which can effectively separate the target from a very similar
background. Second, we have proposed a forward–backward
evaluation scheme to make the mean-shift algorithm robust
to short-term occlusion. Extensive experimental results have
shown that the proposed method is robust and efficient.

In the future, we will incorporate a dynamic model, such as
particle filter, into our tracking algorithm to further improve its
performance. Moreover, we desire to add other features, such
as gradient, contour, and motion features, to enhance target
representation, so that our algorithm can be more robust.
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