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Abstract Image segmentation plays an important role in many medical imaging systems, yet in complex

circumstances it remains an open problem. One of the main difficulties is the intensity inhomogeneity in an

image. In order to tackle this problem, we first introduce a region-based level set segmentation framework to

unify the traditional global and local methods. We then propose two novel parameter priors, i.e., the local order

regularization and interactive regularization, and then utilize them as the constraints of the objective energy

function. The objective energy function is finally minimized via a level set evolution process to achieve image

segmentation. Extensive experiments show that the proposed approach has gained significant improvements in

both accuracy and efficiency over the state-of-the-art methods.
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1 Introduction

Image segmentation is a key process in various medical imaging systems and a fundamental step for

subsequent tasks such as feature recognition and scene understanding. However, the performance of

segmentation is largely influenced by many factors. One of the major problems arises from the image

intensity inhomogeneity, which is the focus of the present work.

1.1 Related work

Recently, level set model has been extensively applied to medical image segmentation because of several

of its desirable advantages over traditional image segmentation methods. First, it can achieve sub-pixel

segmentation accuracy on object boundaries. Second, it can naturally handle the topology change of the

contours. Existing level set methods can be broadly classified into two groups: i.e., edge-based meth-

ods [1–3] and region-based methods [4–19]. The edge-based methods utilize local edge information to at-

tract the active contour toward the object boundaries. These methods have two inevitable limitations [4]:

dependence on the initial contour and sensitivity to image noise. The region-based methods, on the other
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Figure 1 A comparison of the proposed method to the traditional methods, including Chan’s method [4] (a global method)

and Li’s method [8] (a local method). Note that, two different yet very similar initial contours are used to test the sensitivity

to initialization.

hand, are introduced to overcome the two limitations. These methods identify each region of interest

by a certain region descriptor, such as intensity, to guide the evolution of the active contour. However,

these methods tend to rely on the assumption of homogeneity of the region descriptor. The region-based

segmentation methods can be further classified into two subgroups: i.e., global methods [4–6,10–13] and

local methods [7–9,14–19].

One of the most popular global methods is proposed by Chan et al. [4]. This method first assumes

that image intensities are statistically homogeneous in each segmented region. Then, it utilizes the global

objective energy function to represent this homogeneity. Some variants of the global method have been

reported in [4–6]. However, the details of the object always cannot be correctly segmented out by these

methods. Also, these methods cannot effectively tackle the intensity inhomogeneity problem (for example,

see Figure 1). The local methods are proposed to address the intensity inhomogeneity. These methods

assume that the intensities in a relatively small local region are separable. Li et al. [8] introduce a local

fitting energy due to a kernel function, which is used to extract the local image information. Motivated

by [8], the local Gaussian distribution fitting energy and the local image fitting energy are proposed in [9]

and [16], respectively. An et al. [7] offered a variational region-based algorithm, which combines the

convergence approximation with a new multi-scale piecewise smooth model. These algorithms have some

advantages in dealing with the intensity inhomogeneity problem over the global methods. Unfortunately,

these local methods are also sensitive to the initial contour and the segmentation results are not accurate

enough in some cases. As shown in Figure 1, although the two initial contours are very similar, the

segmentation results by [8] are quite different. Furthermore, both results have obvious false contours

(indicated by the ellipses). The main reason for these two problems is that the prior on local intensity

clusters is ignored in these local methods. As will be shown in our unified framework below, only the

contour prior is used in these methods.

1.2 The proposed method

Our work is mainly motivated by the traditional region-based level methods [4,7,8] and the interactive

segmentation methods [20–23]. In this work, we propose two novel parameter regularizations, the key

points in our proposed unified segmentation framework, to tackle the intensity inhomogeneity problem.

The advantages of the proposed method are listed below.

1. We propose a unified framework for region-based level set image segmentation. By using this

framework, the traditional global and local segmentation methods can be represented by different energy

terms utilized in the objective energy function. Furthermore, with this framework it is straightforward to

find the drawbacks of the two traditional methods. That is, the global (strong) parameter regularization

is used in the global methods and no parameter regularization is adopted in the local methods. It is also

convenient to add other energy terms into our unified framework to enhance the result.
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2. We propose two novel parameter regularizations, the local order regularization and interactive

regularization, and incorporate them into the objective energy function. There are two benefits of using

these regularizations. First, the local characteristic can soften the global constraint in the global methods.

Second, using additional constraints can strengthen the stability of the local methods. Adding the local

order regularization to the traditional local method, the detailed information can be accurately segmented

out and the algorithm is insensitive to the initialization. By using the interactive regularization, the

segmentation results can be user-controllable and significantly improved. That is, it is very easy to add

the interactive information into the algorithm.

2 The unified framework

Let Ω ⊂ R
2 be the image domain, and let I : Ω → R be the given gray-level medical image satisfying

Ix = I(x), where x ∈ Ω. Level set methods formulate the image segmentation problem as finding a

contour Γ, which splits Ω into two non-overlapping regions, i.e., the Ωf and Ωb, corresponding to the

interior of Γ (foreground) and the exterior of Γ (background), respectively. For region-based level set

segmentation methods, each pixel Ix at location x is further modeled by two parameters, i.e., the Cf
x

and Cb
x, which correspond to foreground and background parameters. The proposed unified framework

interprets the region-based level set segmentation problem as the Bayesian estimation of the contour Γ:

Γ = argmax
Γ,Cf ,Cb

p(Γ,Cf ,Cb|I), (1)

where Cf and Cb are all foreground and background parameters, that is Cf/b = {Cf/b
x |x ∈ Ω}. By

Bayes’ theorem, Eq. (1) can be rewritten as

Γ = argmax
Γ,Cf ,Cb

p(Γ,Cf ,Cb|I)

∝ argmax
Γ,Cf ,Cb

p(I|Γ,Cf ,Cb)p(Γ,Cf ,Cb)

∝ argmax
Γ,Cf ,Cb

p(I|Γ,Cf ,Cb)p(Γ)p(Cf ,Cb), (2)

where the contour Γ and Cf and Cb are assumed to be independent of each other. The first term

p(I|Γ,Cf ,Cb) is the likelihood of the image, the second term p(Γ) is the contour regularizing prior,

and the last term p(Cf ,Cb) is the foreground/background parameter prior. The maximum a posteriori

estimation in Eq. (2) is equivalent to minimizing the following objective function:

J(Γ) = L(I,Γ,Cf ,Cb) + μRc(Γ) + νRp(C
f ,Cb), (3)

where μ, ν are two weighting constants, L(.) is the likelihood item, Rp(.) is the parameter regularization

item, and Rc(.) is the contour regularization item. The weighting parameters μ and ν are used to balance

the likelihood and two priors. That is, a larger μ will result in smoother segmented contours. But

some detailed information may be lost, especially on weak edges. On the contrary, a smaller μ will

decrease the smoothness of the segmented contours. But some image details can be well segmented. In

our implementation, the weighting constant μ is adaptively set according to the image size. Similarly,

a larger ν holds the local order or interactive information better, but leading to a loss in more details.

In our implementation, the foreground/background parameter prior Rp(C
f ,Cb) is regarded as a hard

constraint. Hence, we do not need to specify the weighting constant ν beforehand in our method.

2.1 Traditional global methods

For the traditional global methods (see, e.g., [4]), the parameter prior is simply interpreted as the two

following global constants:

Rp(C
f ,Cb) = Rf

p(C
f ) +Rb

p(C
b), (4)
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where Rf
p (C

f ) and Rb
p(C

b) are defined as

R•
p(C

•) =
∫
x∈Ω•

∥∥C•
x − c•

∥∥2dx, where • ∈ {f, b}, (5)

in which cf and cb are two unknown constants. The parameter regularization item used in global method

requires that (see Eqs. (4) and (5)) foreground parameter in Ωf should be close to the constant cf ,

while background parameter in Ωb should be close to the constant cb. The contour regularization is

always interpreted as the contour length, the interior region area, and other contour smoothness items.

In [4], two items, namely, the contour length and the interior region area, are utilized as the contour

regularization, that is,

Rc(Γ) = α

∮
Γ

ds+ β

∫
x∈Ωf

dx. (6)

The likelihood term measures the conformity of image data within the interior and exterior regions:

L(I,Γ,Cf ,Cb) =
∑

•∈{f,b}

∫
x∈Ω•

‖Ix −C•
x‖2dx. (7)

In [4], the parameter regularization is used as the hard constraint. Therefore, combining (7) with (4)

and (5), the likelihood term Eq. (7) is reformulated as

L(I,Γ,Cf ,Cb) =
∑

•∈{f,b}

∫
x∈Ω•

‖Ix − c•‖2dx. (8)

The specified two constants cf and cb globally govern all the pixel intensities in Ωf and Ωb, respectively.

Furthermore, the two constants cf and cb can be interpreted as the cluster centers, i.e., the foreground

cluster cf and the background cluster cb.

2.2 Traditional local methods

The traditional local methods neglect the parameter regularization [8], and their contour regularization

is same as that of the global methods. The main difference between the local and global methods lies in

how to represent likelihood. The local methods describe the likelihood term using a kernel function

L(I,Γ,Cf ,Cb) =

∫
E(Γ,Cf

x, c
b
x)dx =

∫
E(x)dx, (9)

where E(x) is the local fitting energy [8] defined as

E(x) =
∑

•∈{f,b}

∫
x∈Ω•

Kσ(x− y)‖Iy −C•
x‖2dx, (10)

where Kσ(·) is the Gaussian function: Kσ(x) =
1

(2π)n/2σn e
−‖x‖2/2σ2

; Cf
x and Cb

x are locally calculated

by the pixel intensities centered at position x, whose size is controlled by σ. Similarly, Cf
x and Cb

x can

be further interpreted as two local cluster centers at position x.

To sum up, the main difference between the traditional global and local methods lies in the choice of

cluster centers. The global-homogenous method simply utilizes two constants cf and cb as the cluster cen-

ters, and formulates it as the global likelihood term expressed in (8). By contrast, the local-homogenous

method adopts the local cluster centers Cf
x and Cb

x at each location x, and formulates it as the local

likelihood term expressed in (9).

3 Local priors

Intensity inhomogeneity is a common problem in many medical images. The local methods perform better

than the global ones in finding accurate feature boundaries. However, the local methods also have some
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problems—they often ignore the parameter prior. If only the likelihood and contour regularization terms

(without parameter regularization term) are used to represent the objective energy function Eq. (3),

this objective function will have many local optimal solutions, yielding two problems: (i) the solution is

sensitive to the initialization, and (ii) the segmentation result has some obvious errors. As described in

Subsection 2.1, the global methods utilize the regularization term (see Eqs. (4) and (5)). Unfortunately,

the global constraint used in these methods is so strong that it is hard to meet the inhomogeneity property

in a medical image. Thus, a reasonable solution is adding parameter regularization as the constraint to

the local methods. In the rest of this section, we first propose two parameter regularizations, i.e., the

local order regularization and the interactive regularization. We then present the corresponding objective

energy function.

3.1 Local order regularization

In a medical image, the intensity values often manifest local order, meaning that the foreground (target)

intensity values are statistically larger (or smaller) than the background (non-target) in a relative small

local region. Take the Figure 1 as an example; the intensity values in foreground (such as the write

matter) are greater than those in background (such as the gray matter) in a small local region. Thus, the

foreground cluster center value Cf
x is larger than the background cluster center value Cb

x at each location

x. With this in mind, we propose the local order regularization to represent the local order information

as follows:

Rp(C
f ,Cb) =

∫
x∈Ω

s(Cb
x −Cf

x)dx, (11)

where s(·) is the sign function:

s(x) =

⎧⎪⎪⎨
⎪⎪⎩
1, x > 0,

0, x = 0,

−1, x < 0.

Note that the order constraint interpreted in Eq. (11) requires that the local foreground cluster Cf
x should

be larger than local background cluster Cb
x. If we want to keep Cf

x smaller than Cb
x, then Eq. (11) is

reformulated as

Rp(C
f ,Cb) =

∫
x∈Ω

s(Cf
x −Cb

x)dx. (12)

In the following, we only consider the first case in Eq. (11). Eq. (12) can be calculated similarly.

3.2 Interactive regularization

To reduce the intrinsic ambiguity in an image with complex features, an interactive environment may be

designed to allow users to specify the foreground and background. However, the interactive framework

is rarely used in the traditional region-based level set segmentation methods (both globally and locally),

partly because it is hard to effectively incorporate the user guidance into these methods. With the unified

framework discussed above, the incorporation becomes very straightforward by simply regarding the user

inputs as the parameter regularization.

Let Xf and Xb be the location sets belonging to the user-specified foreground and background. The

interactive results can be interpreted as two image intensity sets: the foreground set F = {If
x |x ∈ Xf}

and the background set B = {Ib
x|x ∈ Xb}, which contain the user specified foreground pixels and

background pixels, respectively.

In our method, the thresholding nearest neighbor model is adopted to represent the interactive regu-

larization, although other more advanced yet complicated models may be used too. For each pixel at x,

let Îf
x be the nearest pixel in the foreground set F and let rfx be the corresponding distances. Similarly,

denote the nearest pixel in B by Îb
x and the corresponding distance by rbx. The definition of the interactive

regularization is expressed as

Rp(C
f ,Cb) =

∫
x∈Ω

∑
•∈{f,b}

(
tτ (r

•
x)(C

•
x − Î•

x)
)
dx, (13)
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where tτ (·) is the τ -thresholding function (threshold is τ),

tτ (x) =
{ 1, x < τ,

0, else.

In our implementation, we set τ = 5. By Eq. (13), for the pixel at x, if its distance to the nearest pixel

Îf
x in the foreground set F is smaller than τ , then its foreground parameter Cf

x should be as close to the

nearest foreground pixel Îf
x as possible. The same interpretation applies to the background set B.

3.3 Energy formulation

By incorporating the local likelihood term (Eq. (9)), the contour regularization term (the first term in

Eq. (6)), and the parameter regularization term (Eq. (11)) into Eq. (3), we get the final objective energy

function as follows:

Jorder(Γ) =

∫
E(x)dx+ μ

∮
Γ

ds+ ν

∫
x∈Ω

s(Cb
x −Cf

x)dx. (14)

Similarly, by adopting Eq. (13) as the parameter regularization term, we have the objective function that

contains interactive user-guidance:

Jinter(Γ) =

∫
E(x)dx+ μ

∮
Γ

ds+ ν

∫
x∈Ω

∑
•∈{f,b}

(
tτ (r

•
x)(C

•
x − Î•

x)
)
dx. (15)

4 Level set formulation and energy minimization

Level set formulation is performed to solve the above energy functions Jorder(Γ) and Jinter(Γ). In this

section, we describe the solution of Jorder(Γ) in detail. To get the solution of Jinter(Γ), we only need to

redefine the parameter regularization term. In level set methods, a contour Γ is represented by the zero

level set of a Lipschitz function φ : Ω → R, called a level set function. Accordingly, the energy of our

method can be defined as

F (φ) =

∫∫
Kσ(x− y)‖Iy −Cf

x‖2H(φ(y))dydx+

∫∫
Kσ(x− y)‖Iy −Cb

x‖2
(
1−H(φ(y))

)
dydx

+μQ(φ) + ν

∫
x∈Ω

s(Cb
x −Cf

x)dx+ λP (φ), (16)

where μ, ν, and λ are the weighting constants,H(·) is the Heaviside function, Q(φ) =
∫
δ(φ(x))|∇φ(x)|dx

is the length term, δ(·) is the derivative function of Heaviside function, and P (φ) =
∫

1
2 (|∇φ(x)| − 1)2dx.

Note that the term P (φ) is another regularization term [9] used to maintain the regularity of the level set

function. In our implementation, Heaviside function is approximated by a smooth function Hε(x) =
1
2

[
1+

2
π
arctan(xε )

]
, and the corresponding derivative function δε(x) is defined by δε(x) = H ′

ε(x) = ε
π(ε2+x2) .

The parameter ε is chosen as 1.0 in our experiments.

The standard gradient descent method is performed to minimize the objective energy function F (φ)

in two steps. In the first step, we fix the level set function φ, and calculate two cluster centers Cf
x and

Cb
x. In the second step, we fix the two cluster centers Cf

x and Cb
x, and calculate the level set function φ.

First, the variational method is utilized to calculate Cf and Cb for a fixed level set function φ as follows:

Cf
x = max

{
Ĉf

x, Ĉ
b
x

}
, Cb

x = min
{
Ĉf

x, Ĉ
b
x

}
, (17)

where Ĉf
x and Ĉb

x are defined as

Ĉf
x =

Kσ(x)⊗
[
Hε(φ(x))Ix

]
Kσ(x)⊗Hε(φ(x))

, Ĉb
x =

Kσ(x)⊗
[(
1−Hε(φ(x))

)
Ix

]
Kσ(x)⊗

(
1−Hε(φ(x))

) , (18)
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in which ⊗ is the convolution operation. Note that, the local order energy is regarded as a hard constraint,

which is represented by Eq. (17). The use of hard constraint is mainly based on the following two

considerations: (i) we do not need to choose appropriate approximation sign function s(·); (ii) we do not

need to decide the weighting constant ν.

Then, by keeping Cf and Cb fixed, the energy function is minimized with respect to the function φ

based on the standard gradient descent by solving the following gradient flow equation:

∂φ

∂t
= −δε(φ)(T

f − T b) + μδεdiv

( ∇φ

|∇φ|
)
+ λ

(
∇2φ− div

( ∇φ

|∇φ|
))

, (19)

where T f and T b are defined as:

T •(x) =
∫

Kσ(y − x)‖Iy −C•
x‖2dy, • ∈ {f, b}. (20)

All the partial derivatives in Eq. (19) are simply discretized as the central finite differences, and the

temporal derivative is discretized as a forward difference. The kernel Kσ is truncated as an m×m mask,

where m = 4σ + 1. Our method proceeds in the following steps.

STEP 1. Initialize the level set function φ0 by Eq. (21). In our implementation, we set ρ = 2.

φ0 = φ(x, t = 0) =

⎧⎪⎪⎨
⎪⎪⎩
−ρ, x ∈ Ωf − ∂Ωf ,

0, x ∈ ∂Ωf ,

ρ, x ∈ Ω− Ωf ,

(21)

where ∂Ωf is the boundary of Ωf .

STEP 2. Calculate local clusters Cf
x and Cb

x from φn by Eqs. (17) and (18).

STEP 3. Evolve the level set function φ using Eq. (19). To obtain the numeric solution of Eq. (19),

the current level set φn+1 is updated by the previous iteration result φn, given by

φn+1 = φn +Δt
∂φn

∂t
, (22)

where Δt is the time-step.

STEP 4. Repeat STEP 2 and STEP 3 until φ is converged or the maximum iteration number is

reached.

When the interactive regularization is adopted as the parameter regularization, Jinter(Γ) should be

used as the objective energy function. In this case, we only need to modify the calculations of the cluster

centers Cf
x and Cb

x. In other words, we need to rewrite Eq. (17) as

Cf
x =

Ĉf
x + νtτ (r

f
x)Î

f
x

1 + νtτ (r
f
x)

, Cb
x =

Ĉb
x + νtτ (r

b
x)Î

b
x

1 + νtτ (rbx)
, (23)

where Îf
x , Î

b
x and tτ are defined in Subsection 3.2.

Convexity. As interpreted above, the local regularization term in Eq. (16) is used as the hard

constraint. Hence, we only need to discuss the convexity of other terms. Formally, these terms are the

same as those used in [8]. According to [24,25], the objective functional of [8] is non-convex. To sum up,

our objective functional except the regularization term is non-convex, and thereby two-stage optimization

method is adopted.

5 Experimental results

In this section, we demonstrate the advantages of our method, especially its robustness to the initialization

and the segmentation accuracy. Unless otherwise specified, the coefficients are empirically set as follows:

scale σ = 3, weighting constants λ = 1, ν = 1, and μ = 0.004× h×w, where h and w are the height and

width of the test image, and time-step Δt = 0.1. Meanwhile, we use convergence of level set or reaching

max iteration as termination criterion. In our experiments, we set the max iteration number at a large
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Figure 2 Visual comparison of our method with Chan’s [4] and Li’s methods [8]. From left to right are the initializations

and the initialization results by Chan’s, Li’s, and our method, respectively. Two different initial contours are used to test

the sensitivity to initialization.

value, i.e., 1000, to ensure that the level set converges before reaching the max iteration. The algorithms

described are implemented with MATLAB and tested on a standard PC with a 2.4 GHz processor and

1024 MB of memory. A number of synthetic images as well as real medical images are used to evaluate

the performance of the proposed scheme.

In the following, we shall first compare the traditional region-based level set segmentation methods

with our method that utilizes the local order regularization. We then compare several other interactive

segmentation methods with our method that utilizes the interactive regularization. And then, both

regularizations will be combined in our method for comparison with other methods. Finally, we examine

the influence of parameters of our method on the segmentation results.

5.1 Comparison with region-based methods

A number of experiments (on both synthetic images and real images) have been performed to evaluate the

performance of the proposed scheme. We compare our method with the two representative region-based

methods, i.e., the global method by Chan et al. [4]1) and the local method by Li et al. [8]2).

For the global method, the related parameters are listed as follows: weighting constant μ is set at

μ = 0.002 × 255 and time-step Δt = 0.1. For the local method, the related parameters are as follows:

scale σ = 3, weighting constants λ = 1, μ = 0.002× 255× 255, and time-step Δt = 0.1. We use the same

initializations in all methods for fair comparisons.

The results on two synthetic images are shown in Figure 2. Although images manifest intensity

inhomogeneity, the feature boundaries are still accurately segmented out by our method, as compared to

Chan’s [4] and Li’s [8] methods. Furthermore, the segmentation results of our method are less sensitive

to the initialization than Li’s method.

The comparisons on real images are illustrated in Figures 1 and 3 in detail. As shown in Figure 1,

although the initialization contours are very similar, the segmentation results by Li’s method have great

difference, as well as significant errors. Moreover, the image details cannot be segmented out by Chan’s

method, since both images are inhomogeneous. On the other hand, the results of our method are not

only very stable, but also very accurate. These experiments indicate that using parameter priors can

1) Available from: http://www.mathworks.com/matlabcentral/fileexchange/23445
2) Available from: http://www.engr.uconn.edu/∼cmli/
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Figure 3 Visual comparison of our method with Chan’s [4] and Li’s methods [8]. From left to right are the initializations

and the initialization results by Chan’s, Li’s, and our method, respectively. Two different initial contours are used to test

the sensitivity to initialization.

Figure 4 Visual comparison of our method with Chan’s [4] and Li’s methods [8] on a CTA image. From left to right are

the initializations and the initialization results by Chan’s, Li’s, and our method, respectively. Two different initial contours

are used to test the sensitivity to initialization.

improve segmentation accuracy of global method and at the same time strengthen the stability of the

local method.

We also use three medial images with different acquisition techniques, such as CTA, X-ray, and MR,

to evaluate our approach, and the comparison segmentation results are illustrated in Figures 4–6.

Although the acquisition techniques are different, our method can still segment the objects successfully.

For example, the detailed information is correctly segmented in the 3T MR image, the weak boundaries

are detected in the X-ray image, and the image inhomogeneous difficulty is tackled in the CTA image.

Furthermore, the results of our method are robust to initialization.

5.2 Comparison with other interactive methods

In this subsection, we evaluate the proposed segmentation method (with interactive regularization) by

comparing it with two traditional interactive segmentation methods, i.e., the random walk [21] and

graph cut [20]. The source codes are downloaded from the author’s home-page and run here for image

segmentation. Different from the above experiments, the initial level set φinitial is obtained by labeling

the foreground and background masks. In order to segment the foreground accurately, we first use the

local order regularization as the parameter regularization to obtain a rough contour. Then, the rough
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Figure 5 Visual comparison of our method with Chan’s [4] and Li’s methods [8] on a 3T MR image. From left to right are

the initializations and the initialization results by Chan’s, Li’s, and our method, respectively. Two different initial contours

are used to test the sensitivity to initialization.

Figure 6 Visual comparison of our method with Chan’s [4] and Li’s methods [8] on an X-ray image. From left to right are

the initializations and the initialization results by Chan’s, Li’s, and our method, respectively. Two different initial contours

are used to test the sensitivity to initialization.

contour is treated as the initialization for the next segmentation process that uses the interactive regu-

larization as the parameter regularization.

The visual comparisons are presented in Figure 7 and the computational costs on the two medical

images are listed in Table 1. As illustrated in Figure 7, the detailed feature boundaries are lost in

both random walk and graph cut algorithms, while our method produces better segmentation results.

Moreover, as shown in Table 1, the computational cost of the graph cut algorithm increases significantly

as the image resolution gets higher. Our method and the random walk algorithm are less expensive,

especially for higher resolution images.

5.3 Combining two regularizations

In this subsection we shall combine the two regularizations in our method and compare the resultant

method with the methods by Chan et al. [4] and Li et al. [8] and our algorithm that only uses local order

regularization. To this end, we redefine Cf
x and Cb

x as follows:

Cf
x =

max{Ĉf
x, Ĉ

b
x}+ νtτ (r

f
x)Î

f
x

1 + νtτ (r
f
x)

, Cb
x =

min{Ĉf
x, Ĉ

b
x}+ νtτ (r

b
x)Î

b
x

1 + νtτ (rbx)
. (24)

The visual comparison of the segmentation results are shown in Figure 8. In the upper image, the

object has some weak edges. If the initialization is not very good, the weak edge may not be segmented

out only using local order regularization. Moreover, the lower image has a very undesirable background,

and if we only use local order regularization, some background is segmented as object. On the other

hand, the features are best segmented by combining the two regularizations. Thus, we can conclude that

if the segmented image has weak edges or much undesirable background, adding interactive regularization

is effectual.
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Input image Interactive results Random walk Graph cut Our method

Figure 7 Two visual comparison of our method with two traditional interactive segmentation methods, namely the

random walk and graph cut. The first and second columns are the source images and the user specified strokes about the

foreground (in green) and background (in red). For each method, the upper row represents the segmented contours, while

the lower row shows the segmented regions.

Table 1 The comparison of computational costs (unit: s)

Images Resolution Random walk Graph cut Ours

Image 1 119×78 1.11 1.43 0.44

Image 2 256×256 1.82 21.56 1.16

Initializations Chan’s method Li’s method Ours (one) Ours (two)

Figure 8 Visual comparison of our method with those of Chan’s [4] and Li’s [8] on two testing images. The first column is

the user specified strokes about the foreground (in green) and background (in blue), and the initial contours (in red). Note

that the method ‘Our(one)’ indicates the method that only uses the local order regularization, while the method ‘Our(two)’

represents the method that uses two regularizations.
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Table 2 Comparisons by two error measures, i.e., the (FN) and (FP). ‘Our(one)’ is the method that only uses the local

order regularization, while ‘Our(two)’ is the method that uses two regularizations

Scene
Chan Li Our (one) our (two)

FN FP FN FP FN FP FN FP

Scene 1 0.131 0.018 0.142 0.163 0.026 0.019 0.009 0.006

Scene 2 0.144 0.021 0.152 0.102 0.017 0.015 0.005 0.004

Scene 3 0.123 0.012 0.178 0.128 0.020 0.017 0.008 0.006

Scene 4 0.126 0.014 0.101 0.137 0.018 0.016 0.008 0.007

Scene 5 0.132 0.016 0.122 0.124 0.011 0.014 0.004 0.003

Scene 6 0.126 0.014 0.186 0.149 0.019 0.021 0.007 0.009

Scene 2 Scene 4 Scene 6Scene 1 Scene 3 Scene 5

Figure 9 Images used in Table 2.

The numeric comparisons are presented in Table 2 (the tested images are shown in Figure 9). The

tested simulated image sequences are downloaded from the BrainWeb3). The segmentation results are

compared with the ground truth by using the following two error measures: 1) false negative (FN), which

calculates the ratio of foreground pixels that are missing over the ground truth; and 2) false positive

(FP), which is the ratio of background pixels marked as foreground to the ground truth. Denoting by

R
our(one)
target the result of target region of ‘our(one)’ method. Similarly, by Rchan

in , Rli
target, R

gt
target we denote

Chan’s, Li’s, and ground truth. Thus, the FN and FP are defined as

FP =
R∗

target −R∗
target ∩Rgt

target

Rgt
target

, FN =
Rgt

target −R∗
target ∩Rgt

target

Rgt
target

, (25)

where {∗|∗ ∈ chan, li, our(one), our(two)}. Note that, the ground truths in the BrainWeb are gray level

image. To obtain the binary level ground truths, we perform thresholding operator on gray level images

with threshold 128. As shown in Table 2, we select six different scenes. Both FN and FP of our methods

are smaller than the traditional methods. That is to say, the proposed methods are of higher accuracy

than the traditional methods. Furthermore, when using two regularizations, the two error measures are

significantly reduced.

5.4 Analysis of the parameters

It is necessary to examine the influence of the parameters, such as weighting constant μ and the scale

parameter σ, on the segmentation results, although the same scale parameter has been used for the

previous images.

Figures 10 and 11 report the segmentation results of an MR image with different weighting constant

μ and scale parameter σ, respectively, where all the segmentation results are very similar, meaning that

our method is insensitive to parameters μ and σ to some extend. To sum up, with smaller scale or

weighting constant, detailed boundary information can be better segmented, but with more noise edges.

In contrast, the segmentation results are rather smooth.

6 Conclusions and future works

In this work, a unified region-based level set segmentation framework is presented. In particular, two

3) Available from: http://www.bic.mni.mcgill.ca/brainweb/
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Figure 10 Results of our method with different weighting constant μ. From left to right are the initialization and the

segmentation results with μ = {0.002 × h×w, 0.004 × h×w, 0.006× h× w, 0.008× h× w}, respectively.

Figure 11 Results of our method with different scale σ. From left to right are the initialization and the segmentation

results with σ = {1, 3, 5, 10}, respectively.

parameter regularizations, the local order regularization and interactive regularization, are introduced

into this framework. Extensive experimental results demonstrate that the proposed method possesses

the following two major advantages: 1) the feature boundaries in an image can be faithfully segmented;

and 2) the method is insensitive to the initial contour. Although the present paper is focused on the

demonstration of segmentation on medical images, the proposed algorithm can also be applied to other

types of images, such as remote sensing images.

Although the proposed algorithm has the above advantages, it also has some shortcomings to be

improved. For example, the objective energy functional except the regularization term is still non-

convex, theoretically. Hence, our algorithm may rely on the initialization to some extent, although the

initialization sensitive drawback in Li’s [8] has been significantly improved. Note that, the non-convexity

of objective functional is the common disadvantage of local region-based level set segmentation method.

In practice, the proposed local order is a little rigid. Thus, this regularization is hardly applicable to the

natural image segmentation problem, although it performs well in medical image. In our future work

we will try to add some other regularization terms (such as the shape information) to further improve

the segmentation performance and to handle more complex scenes. We are also planning to extend the

proposed scheme to three-dimensional medical imaging data.
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