
Robust Recovery of Corrupted Low-Rank
Matrix by Implicit Regularizers

Ran He, Member, IEEE, Tieniu Tan, Fellow, IEEE, and Liang Wang, Senior Member, IEEE

Abstract—Low-rank matrix recovery algorithms aim to recover a corrupted low-rank matrix with sparse errors. However, corrupted

errors may not be sparse in real-world problems and the relationship between ‘1 regularizer on noise and robust M-estimators is still

unknown. This paper proposes a general robust framework for low-rank matrix recovery via implicit regularizers of robust M-estimators,

which are derived from convex conjugacy and can be used to model arbitrarily corrupted errors. Based on the additive form of half-

quadratic optimization, proximity operators of implicit regularizers are developed such that both low-rank structure and corrupted errors

can be alternately recovered. In particular, the dual relationship between the absolute function in ‘1 regularizer and Huber M-estimator

is studied, which establishes a connection between robust low-rank matrix recovery methods and M-estimators based robust principal

component analysis methods. Extensive experiments on synthetic and real-world data sets corroborate our claims and verify the

robustness of the proposed framework.

Index Terms—PCA, implicit regularizers, low-rank matrix recovery, correntropy, ‘1 regularization

Ç

1 INTRODUCTION

PRINCIPAL component analysis (PCA) is a popular tool in
signal processing and machine learning. It assumes that

high-dimensional data reside in a low-dimensional linear sub-
space, and has been widely used for dimensionality reduc-
tion. Consider a data set of n samples D ¼ ½d1; . . . ; dn�
where di is a variable in m-dimensional euclidean space,
U ¼ ½u1; . . . ; ur� 2 Rm�r be a matrix whose columns constitute
the bases of r-dimensional subspace, and V ¼ ½v1; . . . ; vn� 2
Rr�n be principal components that are projection coordinates
under U . From the viewpoint of mean square error (MSE),
PCA assumes that data matrix D is generated by perturbing
the matrix A ¼ UV 2 Rm�n whose columns reside in a sub-
space of dimension r� minðm;nÞ, i.e., D ¼ Aþ E, where A
is a rank-r matrix and E is a matrix whose entries are i.i.d.
Gaussian random variables [1]. In this setting, PCA can be for-
mulated as the following constrained optimization problem:

min
A;E
kEkF s:t: rankðAÞ � r ; D ¼ Aþ E; (1)

where k:kF is the Frobenius norm.
Although PCA can deal with small Gaussian noise in sig-

nal processing, it still has two on-going research issues.
First, PCA is sensitive to outliers1 because outliers dominate

MSE such that they may significantly change principal sub-
spaces [4], [5], [6]. Second, automatic selection of principal
components [7], i.e., finding the intrinsic low-rank structure
of data, remains challenging. To address the robustness
problem, robust PCA methods have been developed. When
matrix A is low-rank, robust PCA is also called the low-rank
matrix recovery [8]. Traditionally, robust PCA methods [4],
[5], [2], [9], [6] often treat some of samples (i.e., di) as outliers
and replace the MSE in PCA with a robust M-estimator,2

which can be summarized as the following general M-esti-
mation problem,

min
U;V ;m

Xn

i¼1

fðdi � m� UviÞ; (2)

where m 2 Rm is the robust center of D and f is a robust
estimator. Features (or samples) are iteratively reweighted
and then uncorrupted features (or samples) are utilized to
compute robust principal subspaces. To address the prob-
lem of automatic selection, Cai et al. [11] proposed a singu-
lar value thresholding (SVT) algorithm to find the rank r of
a low-rank matrix by solving a convex optimization prob-
lem, namely, nuclear-norm minimization.

Recently, Wright et al. [12] showed that the robust PCA
problem in (1) can be exactly solved by minimizing a combi-
nation of the nuclear norm and ‘1 norm if noise is known to
be sparse. Some methods [13], [14], [15], [16] are accordingly
developed to solve this robust PCA problem and recover
the low-rank structure of corrupted matrices. In addition,
recent theoretical analysis and experimental results in [14]
show that, one can exactly recover a low-rank matrix by
using the same optimization algorithm with an improved
regularization parameter, even if corruptions are almost

1. In robust statistics, outliers are those data points that deviate signifi-
cantly from the rest of the data [2]. They can arise in practical applications
due to either the process of data generation or mislabelled data [3].
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2. In statistics, one popular robust technique is the so-called M-esti-
mators [10], which are obtained as the minima of sums of functions of
the data. (See (27) in Appendix I, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2013.188.)
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arbitrarily large. However, when the errors incurred by
noise are dense, the solutions of ‘0-norm and ‘1-norm may
not be equivalent, which makes the role of ‘1 regularizer
still unclear. Although He et al. [17] showed that robust M-
estimators and the iteratively reweighting strategy can be
used to recover a corrupted low-rank matrix, the relation-
ship between ‘1 regularization based robust PCAs and M-
estimators based ones remains unknown.

This paper combines research outputs in low-rank matrix
recovery [11], [12], proximity operator [18], [19], M-estima-
tion [10], [20], half-quadratic (HQ) optimization [21] and
information theoretic learning (ITL) [22]. The main contribu-
tions are summarized as follows:

1) Based on the additive form of HQ optimization, we
derive implicit regularizers of robust M-estimators and their
proximity operators to model arbitrarily corrupted errors,
and propose a unified framework for robust matrix recov-
ery. The introduction of implicit regularizers not only
enriches the family of regularizers for robust learning but
also provides a general scheme to develop new robust
methods. When the implicit regularizer of Welsch M-esti-
mator is used, the maximum correntropy criterion [22] gives
a probabilistic foundation to support the proposed frame-
work to recover arbitrarily corrupted low-rank matrices.

2) We study the properties of thresholding function of
the ‘1 regularizer on errors under convex conjugacy, and
point out a connection between the ‘1 regularizer solved by
soft-thresholding operator and Huber loss function, which
bridges the gap between ‘1 regularization based robust
PCAs and M-estimators based ones.

3) For computational efficiency, we develop a general-
ized algorithm to solve the optimization problem with
implicit regularizers based on the state-of-the-art acceler-
ated proximal gradient (APG) algorithm [1]. Extensive
experiments on simulated data set, background modeling,
face reconstruction, and gait recognition corroborate our
claims and demonstrate that when nonzero items of E
are sparse, implicit regularizers of L1-L2 and Welsch M-
estimators can also obtain a sparse representation of E.
However, the two regularizers perform in a significantly
different way in the estimation of noise (or outliers) com-
pared with the ‘1 regularizer.

The remainder of this paper is structured as follows. We
first review related theories and methods for robust recov-
ery of low-rank matrices in Section 2. Then in Section 3, we
propose a general framework for low-rank matrix recovery
via implicit regularizers, and discuss the relationship
between the ‘1 regularizer and Huber M-estimator. In Sec-
tion 4, the proposed framework is validated by conducting
a series of experiments on simulations and real-world appli-
cations. Finally, we conclude this paper and discuss future
work in Section 5.

2 RELATED WORK

In the last decades, robust PCA has been drawn much
attention in the image processing, computer vision and
machine learning communities.3 Various robust PCA

methods have been developed for different purposes. In
this section, we first review proximity operators and
half-quadratic optimization, which are commonly used
to solve robust PCA problems. And then we briefly
review the recent low-rank matrix recovery methods in
robust PCA.

2.1 Proximity Operators

The ‘1 regularizer on errors in many robust sparse represen-
tation and low-rank matrix recovery methods are solved by
soft-thresholding (also known as a shrinkage) operator,
which belongs to proximity operator and is derived from a
function minimization problem miny hðx; yÞ. The function
hðx; yÞ takes the following form,

hðx; yÞ ¼: 1

2

��x� y
��2

2
þ ’ðyÞ; (3)

where x and y are variables in real Hilbert space [18], and
’ð:Þ is a continuous function in separable regularizers.4

hðx; yÞ is often used as a denoising function in image res-
toration and signal recovery. When ’ð:Þ satisfies certain
properties [19], the proximity operator of hðx; yÞ w.r.t. y is
unique. Based on Legendre transformation [18], [24], we
can define the Moreau proximity operator (MPO)
d : IR7!IR as y 7! dðxÞ where

dðxÞ ¼: arg min
y

1

2

��x� y
��2

2
þ ’ðyÞ

� �
: (4)

Proximity operator was firstly introduced in [25]. It is a gen-
eralization of a convex projection operator [18], and has
been used extensively in nonlinear signal recovery [18],
image denoising [19] and sparse representation [26]. And it
has recently been used to solve non-convex regularized
optimization problems [27]. The soft-thresholding operator
w.r.t the absolute function in ‘1 regularization is a special
case of proximity operator (See [18, Example 2.15 and Equa-
tion (2.29)]). To better understand the concept of MPO, we
give an example of proximity operator that is widely used
in robust low-rank matrix recovery.

Example 1. Let ’ðyÞ ¼ �jyj, the MPO dð:Þ of (4) is the scalar
soft-thresholding operator [18], i.e.,

dðxÞ ¼ 0 jxj � �;
x� �signðxÞ jxj > �;

�
(5)

where � is a positive constant. And miny hðx; yÞ is the
Huber loss function in (8) w.r.t. x.

2.2 Half-Quadratic Optimization

Like MPO, half-quadratic optimization [21] is another
commonly used optimization method based on Legendre
transformation. Different from MPO based methods that
mainly focus on regularizers, HQ tries to solve a nonlin-
ear objective function by solving a number of least
squares problems iteratively.

3. More details on robust PCA can be found in our ICPR tutorial:
http:// www.cripac.ia.ac.cn/People/rhe/ICPR2012.html. 4. If a regularizer FðuÞ is separable, FðuÞ ¼

P
i ’ðuiÞ [23].
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If a function fð:Þ is differentiable and satisfies five condi-
tions of the additive form of HQ optimization (i.e., [21,
Equation (59)]), we have that for a fixed x, the following
equation holds,5

fðxÞ ¼ min
y

1

2

��x� y
��2

2
þ ’ðyÞ; (6)

where ’ð:Þ is the dual potential function of fð:Þ [21]. The y�

that minimizes (6) is determined by the minimizer function
(y� ¼ dðxÞ),6 which is only relative to a specific function fð:Þ.
For every x, dðxÞ is such that [21]

1

2

��x� dðxÞ
��2

2
þ ’ðdðxÞÞ � 1

2

��x� y
��2

2
þ ’ðyÞ: (7)

In HQ, one only focuses on fð:Þ and its corresponding mini-
mizer function. The exact formulation of dual potential
function ’ð:Þ is often unknown. To better understand the
concept of the minimizer function, we also give an example
of half-quadratic optimization.

Example 2. Let fð:Þ be the Huber function, i.e.,

fðxÞ ¼
1
2x

2 jxj � �;
�jxj � 1

2�
2 jxj > �;

�
(8)

the absolute function �j:j is the dual potential function
of the Huber function and the minimizer function dðxÞ
is the scalar soft-thresholding operator in (5) (See [21,
Equations (83), (85), (86) and (87)]).

Although MPO and HQ are proposed from different
motivations, they are both based on convex conjugacy.
Comparing Example 1 with Example 2, we observe that
they are quite similar in their objective functions, which
motivates us to further analyze their relationship.

2.3 Robust Recovery of Low-Rank Matrix

Low-rank matrix recovery is a subfield of compressed sens-
ing, and its research is started in the research results in [28]
and [29]. Recently, there is growing interest in the robust
recovery of a corrupted low-rank matrix, or so-called robust
PCA [8], [12]. This problem occurs in a number of applica-
tions in machine learning and signal processing, and can be
formulated as the following nuclear norm minimization
problem [8],

min
A

1

2

��A�D
��2

F
þ mkAk� (9)

where k:k� denotes the nuclear norm of a matrix (i.e., the
sum of its singular values) and m is a constant. Cai et al., [11]
derived a singular value thresholding algorithm to solve (9).
The singular value thresholding operator is the Moreau
proximity operator associated with nuclear norm [11].

By assuming that the error matrix E has a sparse repre-
sentation, Wright et al [12] showed that the robust PCA

problem can be exactly solved by minimizing a combination
of nuclear norm and ‘1-norm. Then robust PCA can be for-
mulated as [12]:

min
A;E
kAk� þ �kEk0 s:t: D ¼ AþE; (10)

where k:k0 is the counting norm (i.e., the number of non-
zero entries in the matrix), and � is a positive constant. Since
the problem in (10) is NP-hard and cannot be efficiently
solved, one often considers its relaxation [12],

min
A;E
kAk� þ �kEk1 s:t: D ¼ AþE; (11)

where k:k1 represents the matrix 1-norm (i.e., the sum of
absolute values of all entries of a matrix). The nuclear norm
and ‘1 norm in (11) are natural convex surrogates for the rank
of A [30] and the sparsity of E [31] respectively. These two
norms in (11) are generally intractable to optimize [32]. Hence
one often uses a relaxed version of (11) [12], [1], [13], [32], i.e.,

min
A;E

1

2

��D�A� E
��2

F
þ m Ak k�þ m� Ek k1: (12)

The solutions to (12) approach the solution set of (11) as m

decreases [12], [1]. In addition, the regularized formulation
in (12) may be more suitable in certain applications and
may have different recovery properties [32].

Various methods have been developed to optimize (9),
(11) and (12). Wright et al. [12] adopted an iterative thresh-
olding technique. To alleviate the slow convergence of the
iterative thresholding method, fast algorithms [1], [33] are
developed for recovering a corrupted low-rank matrix. In
[13], augmented Lagrange multipliers are utilized to fur-
ther reduce computational cost. In [16], random projection
is introduced to deal with large-scale visual recovery prob-
lems. All of these methods are based on the soft-threshold-
ing operator that belongs to Moreau proximity operator
[25], [18]. Recently, iteratively reweighted least squares
(IRLS) [34] and multiplicative form of HQ optimization
[17] are used to solve (9) and (11) respectively. In [35], a
convex optimization formulation is introduced such that
the low-rank matrix recovery problem is reduced to a
semidefinite programming.

An important issue in low-rank matrix recovery is how
many sparse corruptions in (11) are allowed so that an
accurate recovery can be obtained. Ganesh et al. [14]
showed that one can exactly recover an arbitrarily cor-
rupted low-rank matrix by using the same optimization
algorithm with an improved regularization parameter.
Hsu et al. [32] further gave stronger recovery guarantees
to recover any low-rank matrix with high probability.
Gross [36] presented new techniques in quantum mechan-
ics for analyzing the problem of low-rank matrix recovery.
Although many methods are developed to analyze the
robustness of (11) and (12), the role of the ‘1 regularizer in
(12) still needs to be further studied [32]. When the errors
in E are dense, the solutions of ‘0-norm and ‘1-norm may
be inequivalent.

5. More details about (6) are given in [21, Appendix 7.2.]
6. As analyzed in the following section, there is a close relationship

between the minimizer function and proximity operator. Hence we
make use of the same notation dð:Þ to indicate them.
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3 MATRIX RECOVERY BY IMPLICIT REGULARIZERS

In this section, we first derive the definition of implicit
regularizers of robust M-estimators and their proximity
operators based on half-quadratic optimization. Then we
propose a general framework for robust low-rank matrix
recovery by implicit regularizers. Lastly, we study the
function value of scalar soft-thresholding operator and
discuss its relationship to Huber loss function.

3.1 Implicit Regularizers and Their Proximity
Operators

In statistics and information theoretic learning, one com-
mon technique to solve the M-estimators based robust
learning problem is the half-quadratic optimization [21].
Considering the similarity between HQ and MPO, we
define the implicit regularizer of a potential function as
follows.

Definition 1. Implicit regularizer. An implicit regularizer
’ðyÞ is defined as the dual potential function of a robust loss
function fðxÞ and satisfies

fðxÞ ¼ min
y

1

2

��x� y
��2

2
þ ’ðyÞ; (13)

where the proximity operator of ’ð:Þ exists.
According to Definition 1, we can study the properties of

an implicit regularizer from both ’ðyÞ and its corresponding
function fðxÞ. Furthermore, if fðxÞ is given, the analytic
form of function ’ðyÞ can be even unknown. During optimi-
zation, an implicit regularizer is iteratively solved by its
proximity operator. Equation (13) is the same as to (6). That
is, we make use of the additive form of HQ in (6) to define
an implicit regularizer, which is similar to the idea in struc-
tured sparsity [37].7 However, different from that HQ mini-
mization focuses on fðxÞ, an implicit regularizer applies the
right-hand side 1

2 kx� yk
2
2 þ ’ðyÞ of (13) to model optimiza-

tion problems.

Proposition 1. If fð:Þ and its dual potential function ’ð:Þ satisfy
(13) and there exits a minimizer function dð:Þ of fð:Þ, dð:Þ is
the proximity operator of regularizer ’ð:Þ.

Proof. According to the property of the minimizer function
in (7) and the definition of MPO in (4), we have that the
minimizer function dð:Þ of fð:Þ is the proximity operator
of regularizer ’ð:Þ. tu

Proposition 1 shows that the minimizer function dð:Þ of
fð:Þ in HQ is the proximity operator of regularizer ’ð:Þ. This
is due to the fact that both HQ and MPO are based on
Legendre transformation. Table 1 tabulates five potential
functions fð:Þ [21], [38] and their corresponding minimizer
functions, which are commonly used as the objectives in sig-
nal and image processing. In robust statistics [10], [20], these
functions belong to M-estimators.

According to the definition of M-estimators (Appendix
I, available in the online supplemental material), we see
that all M-estimators achieve the minima (zero) at the
origin. Fair M-estimator defines continuous derivatives
of the first three orders, and yields a unique solution.
Log-cosh M-estimator is a strictly convex function and is
an approximation of Huber M-estimator. L1-L2 M-esti-
mator takes both the advantage of L1 M-estimator (jtj) to
reduce the influence of large errors and that of L2 esti-
mator (t2) to be continuous. Huber M-estimator [10] is a
parabola in the vicinity of zero and increases linearly at
a given level jtj > �. Angst et al. [39] show that Huber
M-estimator can efficiently handle outliers than ‘1 esti-
mator for motion problems. Welsch M-estimator is
widely used in information theoretic learning. It has
been proved that the robustness of correntropy [22]
based algorithms is actually related to the Welsch M-esti-
mator. All properties of correntropy are controlled by its
kernel size s8 (See Appendix I, available in the online
supplemental material, for details).

Fig. 1 further depicts the five common M-estimators
and their minimizer functions. In Fig. 1a, we observe that
when jtj > 1, the value of MSE (i.e., y ¼ x2) increases rap-
idly whereas the values of the five M-estimators increase
slowly and tend to be stable. This means the M-estimators
can punish outliers such that they will generate small loss
in M-estimation. If a descending parameter is used in an
M-estimator and tends to be zero, the M-estimator will sig-
nificantly penalize outliers (e.g., jtj > �) such that outliers’
contribution in the M-estimator based loss function tends
to be zero. In information theoretic learning, if the kernel
size of Welsch M-estimator is set to large values, corren-
tropy defaults to MSE [22]. From Table 1 and Fig. 1a, it is
interesting to observe that when the thresholding parame-
ter � in Huber M-estimator is set to large values, Huber
M-estimator also defaults to MSE. In robust statistics, it
seems that Huber M-estimator can efficiently deal with
sparse corruptions whereas non-convex M-estimators

7. The half-quadratic penalty function in structured sparsity [37] (
[37, Equation (2.2)]) is relative to the multiplicative form of HQ optimi-
zation ([21, Equation (25)]).

TABLE 1
Robust M-Estimators fð:Þ and Their Minimizer Functions

a is a positive constant.

8. Since correntropy is derived from Parzen kernel estimator and
satisfies Mercer kernel theorem [22], we denote the parameter s in
Welsch M-estimator by the kernel size as in [22].
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(such as Welsch) are more robust to larger errors and non-
Gaussian noise [22].

In Fig. 1b, it is interesting to find that the five minimizer
functions have similar character near the origin (jtj < 0:5).
Like Huber M-estimator, the other four M-estimators have a
smooth region near the origin. This character indicates that
when proximity operators are used to estimate outliers,
they will estimate ground-truth values of outliers and map
variations of the uncorrupted data to zero because outliers
are assumed to be far away from the origin. In addition, if
the parameters of the five M-estimators tend to be zero, the
five minimizer functions will be dðtÞ ¼ t, which makes an
M-estimator recover corrupted data from outliers (e.g.,
E�ij ¼ dðDij �AijÞ ¼ Dij �Aij). As discussed in correntropy
[22] whose properties are controlled by the kernel size s, the
robustness of the five M-estimators is also affected by their
parameters, which control the boundary of the smooth
region around the origin. When outliers are sparse, the ker-
nel size or threshold parameters in robust M-estimators are
often determined by a robust and descending way [20], [22],
such as mean and median.

3.2 A General Framework for Robust Matrix
Recovery

Based on M-estimation and the proposed implicit regular-
izers, we propose a general framework for robust matrix
recovery. By substituting the Frobenius norm in (9) with a
robust M-estimator that has an implicit regularizer,9 we
have the following M-estimation problem,

min
A

Xn

i¼1

Xm

j¼1

fðDij �AijÞ þ mkAk� (14)

where m > 0 is a regularization parameter. The optimal
solution E� of (14) depends on the optimal solution A�

(i.e., E�=D�A�). The optimization problem in (14) is a
robust formulation of matrix completion in [11]. When
fð:Þ is a non-convex M-estimator, there are many local
minima in (14). However, non-convex loss functions often
can more effectively deal with non-Gaussian and large
outliers in real world problems [20], [22]. And they also
have drawn much attention in non-convex regularized
sparse learning problems [27], [40].

Based on convex conjugacy and the additive form of HQ
optimization, we have the augmented problem of (14),

min
A;E

Xn

i¼1

Xm

j¼1

1

2
ðDij �Aij � EijÞ2 þ ’ðEijÞ

� �
þ mkAk� (15)

where ’ð:Þ is an implicit regularizer w.r.t. fð:Þ, E is an auxil-
iary matrix in HQ optimization, andEij is determined by the
minimizer function of fð:Þ. If ’ðEÞ ¼:

P
i

P
j ’ðEijÞ, we can

reformulate (15) as the following regularization problem,

min
A;E

1

2

��D�A� E
��2

F
þ ’ðEÞ þ mkAk�: (16)

If the M-estimator fð:Þ in (14) is Huber M-estimator, the
implicit regularizer ’ð:Þ in (16) becomes m� :k k1 norm. When
the M-estimator fð:Þ in (14) is Welsch M-estimator, the mini-
mization problem becomes the sample based maximum cor-
rentropy problem (See Appendix I, available in the online
supplemental material). Compared with mean square error
:k kF in (9), the model in (14) or (16) is more robust to outliers

due to M-estimation. As illustrated in Fig. 1, it only mini-
mizes the loss at the origin (D�A ¼ 0) and treats nonzero
loss with large values as outliers.

Comparing with the M-estimators based objective in (14)
with those objectives in traditional robust PCAs [4], [2], [6]
in (2), we find that although they are all based on robust
estimators to deal with outliers, they are different. First, tra-
ditional robust PCAs often treat a sample (a column in D)
as an outlier whereas the low-rank recovery model in (14)
treats an item Dij as an outlier. Second, the nuclear norm
makes the model in (14) automatically determine the num-
ber of Eigenvectors.

In traditional robust PCAs, the problem in (14) can be
solved by the multiplicative form of HQ optimization (or
iteratively reweighted least squares) as in [17]. However,
the iteratively reweighted methods involve matrix multi-
plication, which often results in a high computational cost
[21]. Fortunately, we can solve (14) via solving (16), in
which the optimization problem also belongs to the linear
inverse problem with compound regularization [19], [41],
[23] where two regularizers are nuclear norm and implicit
regularizer.

In compressed sensing, proximal gradient methods have
shown their advantage in solving linear inverse problems
(or ‘1 minimization) [42], nuclear norm minimization [43],
and low-rank matrix recovery [1]. This class of methods can
be viewed as an extension of the classical gradient algo-
rithm. Hence, we resort to the proximal gradient method
[42] to solve the compound regularization problem in (16).
Let the pair ðAk;EkÞ be the value of the pair ðA;EÞ in the kth
iteration, we can solve (16) by iteratively solving the follow-
ing subproblems [1], [12],

Akþ1 ¼ arg min
A

1

2

��D�A� Ek

��2

F
þ mkAk�; (17)

Ekþ1 ¼ arg min
E

1

2

��D�Akþ1 � E
��2

F
þ ’ðEÞ: (18)9. Note that, both L1 M-estimator j:j and Lp M-estimator j:jp are not

applicable in the additive form of HQ minimization and have no
implicit regularizers.

Fig. 1. Graphic representations of five common estimators and their min-
imizer functions.
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Here, we follow the approach of accelerated proximal gradi-
ent [1], [42] to solve the above two subproblems. Let fðxÞ ¼:
1
2 kx� bk

2
2 where b is a given constant and

Qðx; yÞ ¼: fðyÞþ < rfðyÞ; x� y > þLf
2
kx� yk2

2 þ m’ðxÞ;

where the Lipschitz constant Lf ¼ 2 [1]. Moreover, if we
define G ¼: y� 1

Lf
rfðyÞ, then

arg min
x
Qðx; yÞ ¼ arg min

x

Lf
2

��x�G
��2

2
þ m’ðxÞ: (19)

Based on Qðx; yÞ and (19), we can further solve subpro-
blems in (17) and (18) by solving the following two subpro-
blems [1],

Akþ1 ¼ arg min
A

1

2

��A�GA
k

��2

F
þ mkAk�; (20)

Ekþ1 ¼ arg min
E

1

2

��E �GE
k

��2

F
þ ’ðEÞ: (21)

The subproblem in (20) can be solved by the singular value
thresholding operator [11] and the subproblem in (21) can
be solved by the proximity operator [18], [19]. Let USV T be
the singular value decomposition (SVD) of GA

k . Then the
optimal solutions of (20) and (21) are

Akþ1 ¼ Ud�mk
2
ðSÞV T ; Ekþ1 ¼ d

�
GE
k

�
; (22)

where d�mk
2
ðSÞ is the singular value thresholding operator

[11] on matrix S and dð:Þ is the minimizer function listed in
Table 1. As in compressed sensing and low-rank matrix
recovery, the parameter in dð:Þ (i.e., � in Huber, a in Fair
and log-cosh, s in L1-L2 and Welsch) often has a descend-
ing sequence and approaches zero, or is set to a small value.

Algorithm 1 summarizes the procedure of our general-
ized accelerated proximal gradient (GAPG) algorithm.
Since mk converges to m > 0, the proof of convergence of
Algorithm 1 is similar to the ones provided in [42] and [1].
As suggested in [1], m varies from a large initial value m0

and decreases until it reaches the floor m, and u and h are set
to 10�9 and 0.9 respectively. As in [1], the stopping criterion
of Algorithm 1 is identical to the one in [43]. In step 7,

Algorithm 1 obtains a robust and conjugated solution of
gradient GE

k via the MPO of an implicit regularizer, based
on which it further finds a feasible solution Y E

k to decrease
its objective in step 3.

In particular, when Huber M-estimator is used in (14)
and a descending parameter m� is set as in [1], dð:Þ and ’ð:Þ
in (22) and (21) become soft-thresholding function and
m� Ek k1 respectively. From this viewpoint, the algorithm in
[1] is a special case of Algorithm 1. In addition, according to
convex conjugacy [21], the following equation of (21) for a
fixed GE

k always exists,

min
E

1

2

��E �GE
k

��2

F
þ m� Ek k1

¼ 1

2

��d
�
GE
k

�
�GE

k

��2

F
þ m�

��d
�
GE
k

���
1
¼ fm�

H

�
GE
k

�
; (23)

where fm�
H ð:Þ denotes the Huber M-estimator in (8) and m� is

its thresholding parameter. That is, the optimum solutionE�ij
in (21) is a dual variable of Huber M-estimator at pointGE

k .

3.3 ‘‘1 Regularizer and Huber Loss Function

In this subsection, we further study the problems in (14) and
(15) when fð:Þ is the Huber M-estimator denoted by fm�

H ð:Þ.
According to the definitions of :k kF and :k k1, we can rewrite
(12) as follows,

min
A;E

Xn

i¼1

Xm

j¼1

1

2
ðDij �Aij �EijÞ2 þ m� Eij

�� ��
� 	

þ m Ak k�: (24)

By substituting soft-thresholding operator back into (24),
(24) takes the following form,

min
A

1

2

Xn

i¼1

Xm

j¼1

fm�
H ðDij �AijÞ þ m Ak k�: (25)

Since fm�
H ð:Þ belongs to M-estimators, we learn that the

model in (25) can treat errors incurred by occlusion or cor-
ruption whether the errors are sparse or not. Comparing
(11), (12), (24) and (25), we have the following observations:

1) If we resort to soft-thresholding operator (denoted
by dm�

H ðxÞ) to solve (12) and (25), the optimal solution of
(12) and (25) tends to be that of (11) when m in soft-
thresholding operator tends to be zero. When m�jxj tends
to be zero, soft-thresholding operator dm�

H ðxÞ ! x such
that E�ij ¼ dm�

H ðDij �A�ijÞ ¼ Dij �A�ij. As a result, the opti-
mal solution (A�,E�) of (12) and (25) satisfies D ¼ A� þ
E� and approaches the solution set of (11). Whether the
errors modeled by E are sparse or dense, the ‘1 regular-
izer solved by soft-thresholding function is always
related to the dual potential function of Huber M-estima-
tor. If outliers are significantly different from uncor-
rupted data, the model in (12) can efficiently deal with
dense or sparse outliers.

2) By substituting the equality constraint E ¼ D�A into
the objective of (11), we directly have the following minimi-
zation problem,

min
A
� D�Ak k1þ Ak k�; (26)

where the ‘1-norm is a natural convex surrogate for sparsity,
and is generally intractable to optimize [31], [32]. It has been
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shown that the sparse solution of (12) approaches that of (11)
and (10) when m tends to be zero and E (or D�A) is sparse
[12], [1]. If we treat the ‘1-norm in (26) as L1 M-estimator10 in
robust statistics rather than sparsity surrogate, (26) can be
solved by iteratively reweighted least squares [20] when
Dij 6¼ Aij for 8i; j.11 However, since there will be many zero
elements in E ¼ D�A (i.e., E is sparse), we cannot simply
treat (26) as an L1 M-estimation problem and use IRLS to
solve (26).

3) From (12) and (25), we learn that ‘1 regularized low-
rank matrix recovery methods for solving (12) have a
potential relationship with traditional M-estimators based
PCA methods in (2). They are all related to M-estimation.
In HQ optimization, there are multiplicative and additive
forms [21]. Traditional M-estimator based PCA methods
often apply the multiplicative form whereas the ‘1 regular-
ized low-rank matrix recovery methods harness the addi-
tive form of Huber M-estimator (i.e., soft-thresholding
operator). The merit of using the additive form is to avoid
weighting samples, which results in a low computational
cost. Another advantage of low-rank matrix recovery is to
automatically determine a low-rank eigenspace.

4 EXPERIMENTS

In this section, numerical simulations are first run to evalu-
ate the recovery ability of different M-estimators. Then three
computer vision applications involving background model-
ing, face reconstruction and gait recognition are further
used to verify the robustness of the proposed framework.
All algorithms were implemented in MATLAB based on the
code available in Yi Ma’s website.12 The singular value
decomposition is implemented by PROPACK,13 which uses
the iterative Lanczos algorithm to compute the SVD
directly. The parameters m0 and t0 in Algorithm 1 are set as
the same as those of accelerated proximal gradient algo-
rithm in [1]. Note that the goal of our experiments is to com-
pare different regularizers based methods for robust
learning rather than to just achieve the highest recognition
accuracy on these data sets.

Since the minimizer function dð:Þ in Algorithm 1 corre-
sponds to a special M-estimator, we mainly study Huber

M-estimator, L1-L2 M-estimator, and Welsch M-estimator
for Algorithm 1. When Huber M-estimator is used, the
thresholding parameter in dð:Þ is set to m�. Then Algorithm 1
becomes the accelerated proximal gradient algorithm in [1].
For vision applications, the parameter s2 in Welsch and L1-
L2 M-estimator is estimated by the robust mean value [38],
i.e., s2 ¼ meani;jððGE

k Þ
2Þ. For succinct notation, we denote

GAPGþHuber, GAPGþL1-L2, and GAPGþWelsch by
Huber, L1-L2, and Welsch respectively.

4.1 Simulation Results

4.1.1 Simulation Conditions

As suggested in [12], [13], [43], random matrices are
generated to quantitatively evaluate different M-estima-
tors. Without loss of generality and for simplicity, we
assume that the unknown matrix A 2 Rm�m is square
[12]. The ordered pair ðA0; E0Þ 2 Rm�m �Rm�m denotes
the true solution. And the observation matrix D ¼ A0þ
E0 is the input to all algorithms, and the ordered pair
ðÂ; ÊÞ denotes the output. The matrix A0 is generated as
a product UV T according to the random orthogonal
model of rank r [12]. The matrices U and V are indepen-
dent m� r matrices whose elements are i.i.d. Gaussian
random variables with zero mean and unit variance. To
simulate outliers, we generate error matrix E0 as a matrix
whose zero elements are chosen uniformly at random
and non-zero elements are i.i.d. uniformly in the interval
½�500; 500�. The distributions of A0 and E0 are identical
to those used in [12], [13], [43]. The maximum iteration
number of our GAPG algorithm is set to 500. All of these
simulations are averaged over 20 runs. To achieve the
best recovery ability, we tune parameters of the Huber
M-estimator based algorithm for each experimental set-
ting, i.e., �, m, u, m0, and h. And for the remaining two
M-estimators, we set s2 ¼ 200�mediani;jððGE

k Þ
2Þ.

We use the reconstruction error to quantitatively eval-
uate different methods under different levels of corrup-
tions. The reconstruction error is computed by rc ¼

:

kÂ�A0kF=kA0kF and the level of corruptions is defined
as re ¼

: kE0k0=m
2.

4.1.2 Recovery of Low-Rank Matrix

Table 2 shows experimental results of the three M-estima-
tors based algorithms with respect to different dimensions
(m), different ranks (rankðA0Þ) and different levels of cor-
ruptions (re ¼

: kE0k0=m
2). We see that the three methods

can all obtain small reconstruction errors and find the
ground truth low-rank. These results corroborate that the

10. L1 M-estimator is not stable because jxj is not strictly convex in x
[20]. Although L1 M-estimator reduces the influence of large errors,
these errors still have an influence because L1 M-estimator has no cut
off point[10], [20].

11. The weighing function of L1 M-estimator jxj is 1=jxj [20].
12. http://perception.csl.uiuc.edu/matrix-rank/sample_code.html.
13. http://sun.stanford.edu/~rmunk/PROPACK/.

TABLE 2
Correct Recovery for Randomly Corrupted Matrices of Varying Size
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GAPG algorithm based on different M-estimators can accu-
rately recover a corrupted low-rank matrix.

Fig. 2 further shows the variations of reconstruction
errors, ranks and corrupted errors estimated by the three
M-estimators based algorithms when m ¼ 200, rankðA0Þ

m ¼
0:05, re ¼ 0:05. From Figs. 2a and 2b, we see that all the
three methods reduce reconstruction errors and increase
estimated ranks step by step. When the number of itera-
tions is larger than 30, they all find the ground-truth
rank. However, we see from Fig. 2c that they estimate
error matrix E in a different way. Both L1-L2 and Welsch
M-estimator based algorithms make use of the median
operator to estimate outliers. In L1-L2 and Welsch M-esti-
mator based algorithms, all entries of E will have large
values due to the poor reconstruction of low-rank matrix
on the first several iterations. Since M-estimators are
robust to outliers, the two algorithms finally estimate real
outliers when they converge.

4.1.3 Different Levels of Corruptions

This subsection is to evaluate the performance of differ-
ent M-estimators based algorithms under different levels
of corruptions in terms of rc, rankðÂÞ, kÊk0, and the
number of iterations. Fig. 3 shows experimental results
of the three algorithms.

Figs. 3a and 3b show reconstruction errors and esti-
mated ranks respectively. We see that the reconstruction
errors of all methods increase as the level of corruptions
increases. When the level of corruptions is larger than

20 percent, all methods fail to estimate the ground-truth
rank, i.e., rankðA0Þ. It is interesting to observe that the
Welsch M-estimator based method achieves the lowest
reconstruction error when the level of corruption is 20
percent. This is because the kernel size in Welsch M-esti-
mator controls its robustness [22] and is directly related
to the level of corruptions [38], [6]. Hence this phenome-
non shows that this parameter setting of Welsch M-esti-
mator is the best for 20 percent corruption.

Fig. 3c shows estimated corruption ððkÊk0=m
2Þ � 100%Þ

as a function of the level of corruptions. We see that the
Huber M-estimator based methods estimate 80 percent
entries of matrix D as outliers when the level of corruptions
is 35 percent, whereas the Welsch M-estimator based
method can almost accurately estimate corrupted entries.
Welsch M-estimator seems to be more effective to control
large outliers than the other two M-estimators.

Fig. 3d shows the variation of the number of iterations as
a function of the level of corruptions. We see that the num-
ber of iterations increases significantly as the level of cor-
ruptions becomes larger. The reason for this increase may
be that the three methods need more iterations to estimate
the errors incurred by corruptions.

4.2 Background Modeling from Video

One natural application of low-rank matrix recovery is
video analysis due to the correlation between video frames
[12]. Background modeling and foreground detection [44]
are two of the most basic algorithmic tasks in video

Fig. 2. Comparison of the three M-estimators based algorithms when m ¼ 200, rankðA0Þ
m ¼ 0:05, and re ¼ 0:05. (a) Reconstruction error as a

function of the number of iterations. (b) Estimated rank rankðÂÞ as a function of the number of iterations. (c) Estimated error kÊk0 as a func-
tion of the number of iterations.

Fig. 3. Comparison of the three M-estimators based algorithms under different levels of corruptions when m ¼ 200, rankðA0Þ
m ¼ 0:05. Since the method

based on L1-L2 M-estimator fails to find the ground-truth outliers when the level of corruptions is larger than 20 percent in this case, we only report
the results of L1-L2 M-estimator when the level of corruptions is smaller than 20 percent.
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analysis. The tests are performed on two example videos
introduced in [44], [12], [8]. (1) In the first airport scene,14 a
total of 200 grayscale frames were used and the size of
each frame is 64� 80. And so D is a 5; 120� 200 matrix.
This video sequence has a relatively static background,
but significant foreground variations [8]. The first and sec-
ond row in Fig. 4a show two frames from this video. (2)
The second scene includes a sequence of 550 grayscale
frames taken in the lobby scene with drastic illumination
changes.15 The size of each frame is 64� 80, and so D is a
5; 120� 550 matrix. The third and fourth rows in Fig. 4a
show two frames from this scene.

Figs. 4b, 4c, and 4d show the low-rank Â obtained by
Huber, Welsch and L1-L2 M-estimator based methods
respectively. And Figs. 4e, 4f, and 4g show the fore-
ground components obtained by Huber, Welsch and L1-
L2 M-estimator based methods respectively. Since fore-
ground variation is significantly different from static
background, the pixels corresponding to the foreground
can be treated as outliers. As a result, all methods can
estimate low-rank components and separate foregrounds
from the background. For the airport scene, Welsch M-
estimator seems to outperform the other two methods.
Since foreground variations in Fig. 4a are not sparse, the
Huber M-estimator based method only estimates some
parts of the foreground.

For the lobby scene, the low-rank components learned
by Huber and L1-L2 M-estimator based methods cor-
rectly identify the main illuminations as background and
the sparse part corresponding to the motion in this
scene. On the other hand, the results produced by the
Welsch M-estimator based method treat some of the illu-
mination as foreground, which is the same as that pro-
duced by robust estimator based PCA in [4]. This
inaccurate estimation is due to the unique setting of the
kernel size s2 in Welsch M-estimator for fair comparison,

though well-tuned parameter could further improve the
accuracy of estimation [6], [22]. We see that there are
two variations in this lobby scene. One is human motion
and the other is illumination change. The current kernel
size makes Welsch M-estimator treat both of the two var-
iations as outliers. An appropriate selection of the kernel
size is important for Welsch M-estimator to detect out-
liers. Fig. 5 further shows the variation of estimated
errors (or foreground) in this scene. As illustrated in
Fig. 2c, the L1-L2 and Welsch M-estimator based meth-
ods perform significantly different from the Huber M-
estimator based method whereas they can all find the
ground-truth foreground.

Fig. 5 also shows that all compared methods reach the
maximum iteration number. We consider this phenomenon
as an agreement with these experiments. This is because
that the number of iterations for real scenes is typically
higher than that in the simulation results in Section 4.1.2 [8].
In addition, the level of corruptions is often larger than 10
percent in real scenes. As shown in Fig. 3d, the number of
iterations for low-rank matrix recovery often becomes larger
as the level of corruption increases.

14. http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html.
15. http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html.

Fig. 4. Background modeling from video [8], [12]. (a) Two frames in first and second rows taken in an airport scene; two frames in third and fourth
rows taken in a lobby scene with changing illumination [44]. (b)-(d) Low-rank matrix Â obtained by Huber, Welsch and L1-L2 M-estimator based
GAPGs respectively. (e)-(g) Sparse components obtained by Huber, Welsch and L1-L2 M-estimator based methods respectively.

Fig. 5. Estimated error (or foreground) kEk0=m
2 as a function of the

number of iterations.
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4.3 Face Reconstruction: Removing Shadows and
Specularities

Another application of low-rank matrix recovery is face
reconstruction [8], [12]. It has been demonstrated that varia-
tion of many face images under variable lighting can be
effectively modeled by low dimensional linear spaces [45].
Under certain ideal circumstances, aligned facial images of
the same subject approximately exist in a nine dimensional
linear subspace [12]. However, in face recognition, face
images often suffer from self-shadowing or saturations in
brightness under directional illumination [12]. As illus-
trated in Table 3, although PCA can deal with small Gauss-
ian noise, it fails to deal with the errors incurred by
shadows and specularities.

In this subsection, we evaluate the reconstruction ability
of different M-estimators on the Extended Yale B database
[45]. A total of 31 different illuminations are used for
each person. All facial images are cropped and aligned to
96� 84 pixels according to two eyes’ positions. The matrix
D contains well-aligned training images of a person’s face
under various illumination conditions. Fig. 6 shows the
results of all methods on face images. We see that all meth-
ods can detect specularities in the eyes and shadows around
the nose region. It seems that the Huber method obtains bet-
ter reconstruction results in Fig. 6b and the Welsch method
detects corrupted regions more accurately in Fig. 6f.

Facial image restoration is an important step in a face
recognition system. Here we make use of GAPGs as a pre-
processing step and then perform classification to quanti-
tatively evaluate the reconstruction ability of different
GAPGs. We randomly divided 31 different face images of
one subject into two subsets. One for training contains 27
face images per subject, and the other for testing contains
four face images per subject. We performed GAPGs for
each individual on the training set and projected all recov-
ered data into the subspace learned by PCA. Then the
nearest-neighbor classifier is used, and average error rates
of different methods are reported. A lower average error
rate means a better reconstruction ability.

Table 3 shows the statistical results of the compared four
methods. Although PCA can deal with small Gaussian noise
in face images, it fails to deal with the errors incurred by
shadows and specularities. Hence it obtains the highest aver-
age error rate. The error rates of the three M-estimators based
methods are 90, 89, and 88 percent of that of the PCA method
respectively, which suggests that all the three methods can
efficiently deal with shadows and specularities. In addition,
error rates of the three M-estimators based methods are close
to those of HQ-SVTs in [17]. This is because their objective
functions are based on the same M-estimators albeit different
optimization methods are adopted. The experimental results

suggest that low-rank matrix recovery methods are effective
as a preprocessing tool for face recognition.

4.4 Gait Recognition

Gait is a commonly used behavioral biometric to recognize
persons at a distance [46], [47]. The representation of human
gait in real-world surveillance often gets out of control due
to variations of viewing angles or carrying conditions.
Recently, Zheng et al. [48] showed that there is a low-rank
subspace of view transformation model computed to trans-
form the gait features in probe viewing angle to those in gal-
lery viewing angles.

In this experiment, low-rank matrix recovery methods
are used to deal with the variations of viewing angles and
carrying conditions in gait recognition. The CASIA Gait
database16 is used to evaluate gait recognition accuracy as it
is one of the most widely used data set in the recent litera-
ture. This database is composed of human walking videos
for 124 subjects, each under 11 viewpoints. For one subject
under each view, there are six normal walking sequences,
two bag-carrying sequences and two coat-wearing sequen-
ces. Gait energy image (GEI) [49] was constructed as gait
feature descriptor. The nearest neighbor classifier is used.

To systematically evaluate the robustness of different
methods, we perform tests on two subsets of the CASIA
Gait database. (1) The first subset includes a total num-
ber of 4,092 GEIs of 124 individuals from the first two
normal walking sequences and the first bag-carrying
sequence. (2) In the second subset, the training set is the
same as the subset in (1). The first testing set contains a
total number of 1,364 GEIs of 124 individuals from the
third normal walking sequence, and the second testing
set constants a total number of 1,364 GEIs of 124 individ-
uals from the second bag-carrying sequence. Figs. 7a and
8a show GEIs of normal walking sequence and bag-car-
rying sequence respectively.

In the first test, we use GAPGs to recover a low-rank
matrix of a GEI and its sparse components for each indi-
vidual. Fig. 7 shows the recovered low-rank matrices and
sparse components on gait energy images of a normal
walking sequence. Fig. 8 shows the recovered low-rank
matrices and sparse components on gait energy images of
a bag-carrying sequence. We observe that all three meth-
ods can find the sparse components corresponding to the
bag on GEIs. In the sparse components in Fig. 7b, the
Huber M-estimator based method seems to estimate more
gait variations as sparse components (denoted by light-
gray pixels) in error matrix E than the other two methods.
For normal walking sequence, the smaller the light-gray
area of sparse components is, the better a robust method is.

To quantitatively evaluate the reconstruction accuracy,
we divide the recovered low-rank matrices into probe set
and gallery set [48]. The probe set contains a total number
of 1,364 recovered GEIs of 124 individuals from the bag-
carrying sequence in the first test. And the gallery set
includes the recovered GEIs of one view of each individ-
ual from the two normal working sequences in the first
test. Then we obtain 10 gallery sets that corresponds to

TABLE 3
Comparison of the Three M-Estimators Based

Algorithms for Face Recognition

A lower average error rate means a better reconstruction ability.

16. http://www.cbsr.ia.ac.cn/english/Gait Databases.asp.
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10 different views. Each gallery set contains 248 recovered
GEIs. Fig. 9 shows the recognition rates of different meth-
ods under different views. We observe that the GEI

around 90 degree in Fig. 7a is significantly different from
that in Fig. 8a in the case of carrying bag. It seems that car-
rying bag leads to more difference on the GEIs around

Fig. 6. Removing shadows from face images. (a) Original images of a face under different illuminations from the Extended Yale B database. (b)-(d)
Low-rank matrix Â obtained by Huber, Welsch and L1-L2 M-estimator based methods respectively. (e)-(g) Sparse components corresponding to
specularities in the eyes and shadows around the nose region.

Fig. 7. Recovered low-rank matrices and sparse components (light-gray pixels) on gait energy images of normal walking under 11 different
viewpoints.

Fig. 8. Recovered low-rank matrices and sparse components (light-gray pixels) corresponding to the bag on gait energy images of bag-
carrying people.
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90 degree than those around other degrees such that the
GEIs around 90 degree in the probe set are significantly
different from those around 90 degree in the gallery set.
As a result, all methods obtain relatively lower recognition
rates around 90 degree. We also observe that the methods
can be ordered in the ascending recognition rates as PCA,
L1-L2, Huber, and Welsch. The Welsch M-estimator based
method achieves the highest recognition rate. This is
because it can accurately reconstruct GEIs in both the gal-
lery and probe sets. As shown in Figs. 7 and 8, Welsch M-
estimator can keep useful information in A and estimate
bags in error matrix E. These results demonstrate that
low-rank matrix recovery methods can accurately estimate
the errors incurred by bag-carrying.

In the second test, we perform PCA on the whole recov-
ered low-rank matrices to learn a subspace. Then we project
the training data and the testing data into this subspace.
Table 4 shows the error rates of different methods. As
expected, three low-rank methods all perform better than
PCA. Since there are bag-carrying sequences in both train-
ing and testing sets in this test, the recognition rates of all
methods are very close and higher than those in Fig. 9.

4.5 Discussion

‘1 regularizer and M-estimators. Experimental results on the
simulated and real-world data sets demonstrate that all the
compared M-estimators can be used to recover corrupted
low-rank data, and further verify the relationship between
the absolute function in ‘1 regularizer and Huber M-estima-
tor in Section 3.3. Since M-estimators have similar proper-
ties as shown in Fig. 1, all the methods can detect and
correct corrupted errors if they are significantly different
from uncorrupted data. In some applications, L1-L2 and
Welsch M-estimators based methods even achieve higher
accuracy than ‘1 regularizer based one (Huber M-estima-
tor). This may be because the two M-estimators make use of
an adaptive and robust way to estimate their parameters.
As shown in Fig. 1, if parameters of M-estimators are well
tuned, all M-estimators can have similar robustness.

Kernel size and threshold parameters. Experimental results
also show that without sparsity assumption, both L1-L2 and
Welsch M-estimators based methods can estimate sparse
errors. However, they perform in a different way to estimate
errors compared with Huber M-estimator. As discussed in
correntropy, the kernel size based M-estimator runs in a

different way against the threshold based one [22]. Since
outliers are those data points that are significantly different
from other data points, both the kernel size and threshold
based methods can find the ground truth outliers due to the
robustness of M-estimators. The analysis between kernel
size and threshold based methods suggests that the soft-
threshold based methods are more preferable for sparse
errors and the kernel size based methods are more prefera-
ble for dense errors.

5 CONCLUSION AND FUTURE WORK

This paper has studied the low-rank matrix recovery prob-
lem from the viewpoint of implicit regularizers which are
derived from conjugated functions. It provides a unified
view to analyze recent ‘1 regularization based and tradi-
tional M-estimators based robust PCAs. It also gives an M-
estimation explanation of the robustness of robust low-rank
matrix recovery methods. Moreover, our study enriches the
family of regularizers for robust learning. Based on proxim-
ity operators of implicit regularizers, a robust framework is
developed for robust low-rank matrix recovery, which is
solved by a generalized accelerated proximal gradient algo-
rithm. A series of experiments on simulations and real-
world applications have verified the robustness of the pro-
posed framework.

Recently, iteratively reweighted least squares methods
have been developed to solve nuclear norm minimization
[34] and trace norm minimization [50] where the used
weighting functions ([34, p. 6]) are just the same multiplica-
tive minimizer functions of half-quadratic minimization
[21]. It has been shown in [51] that IRLS for some certain
functions is a special case of HQ. Hence, future work is to
study the nuclear norm (or trace norm) minimization prob-
lem from the two forms of HQ.
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