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Abstract—Robust sparse representation has shown significant potential in solving challenging problems in computer vision such as

biometrics and visual surveillance. Although several robust sparse models have been proposed and promising results have been

obtained, they are either for error correction or for error detection, and learning a general framework that systematically unifies

these two aspects and explores their relation is still an open problem. In this paper, we develop a half-quadratic (HQ) framework to

solve the robust sparse representation problem. By defining different kinds of half-quadratic functions, the proposed HQ framework

is applicable to performing both error correction and error detection. More specifically, by using the additive form of HQ, we propose

an ‘1-regularized error correction method by iteratively recovering corrupted data from errors incurred by noises and outliers; by

using the multiplicative form of HQ, we propose an ‘1-regularized error detection method by learning from uncorrupted data

iteratively. We also show that the ‘1-regularization solved by soft-thresholding function has a dual relationship to Huber M-estimator,

which theoretically guarantees the performance of robust sparse representation in terms of M-estimation. Experiments on robust

face recognition under severe occlusion and corruption validate our framework and findings.

Index Terms—‘1-minimization, half-quadratic optimization, sparse representation, M-estimator, correntropy

Ç

1 INTRODUCTION

SPARSE signal representation arises in application of
compressed sensing and has been considered as a

significant technique in computer vision and machine
learning [1], [2], [3]. Based on the ‘0-‘1 equivalence theory
[4], [5], the solution of an ‘0 minimization problem is
equal to that of an ‘1 minimization problem under certain
conditions. Sparse representation has been widely applied
in image analysis [6], [7], compressive imaging [8], [9],
multisensor networks [10], and subspace segmentation
[11]. Recent theoretical analysis [12] and experimental
results [13] show that even if corruptions are high, one
can almost recover corrupted data using ‘1-based techni-
ques. So far, all the sparse representation algorithms can
be basically categorized into two major categories: error
correction [12], [13], [14] and error detection [3], [15], [16].
The former aims to reconstruct the original data during
robust learning, while the latter detects errors and learns
from uncorrupted data. However, the theoretical support
that ‘1 regularization tends to achieve robustness still
needs to be further studied [17], [18]. More importantly, it

is still an open issue to unify these two approaches in a
general framework and study their intrinsic relation.

1.1 Related Work

1.1.1 Sparse Representation

Given a predefined sample set X ¼: ½x1; x2; . . . ; xn� 2 IRd�n

and an input sample y 2 IRd�1, where n is the number of

elements in X and d is the feature dimension, the sparse

representation problem can be formulated as the following

minimization problem [14]:

min
�
k�k1 s:t: X� ¼ y; ð1Þ

where k�k1 ¼
Pn

i¼1 j�ij. Considering that a white noise z

satisfies kzk2 � ", we can relax the equality constraint X� ¼
y in the following form:

y ¼ X� þ z: ð2Þ

Then the sparse representation � can be computed via basis

pursuit denoising (BPDN) method [19], [20],

min
�
k�k1 s:t: ky�X�k2 � ": ð3Þ

By using the Lagrangian method, one can rewrite (3) as an

unconstrained optimization problem [13],

min
�

1
2ky�X�k

2
2 þ �k�k1; ð4Þ

where � is a positive regularization parameter. Iteratively

reweighted methods, such as adaptive lasso [21], re-

weighted ‘1 minimization [22], and multistage convex

relaxation [23], are further developed to enhance sparsity

for high-dimensional data. And various numerical methods

[24], [25] have been developed to minimize (3) or (4), where
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the iterative regularization method based on soft-shrinkage
operator [26] is often used.

1.1.2 Error Correction

In robust statistics [27] and computer vision [1], the errors
incurred by corruptions or occlusions may be arbitrarily
large. Hence, one often addresses the following robust
model [27]:

y ¼ X� þ eþ z; ð5Þ

where e is a variable describing outliers that are
intrinsically different from uncorrupted data. A number
of algorithms have been developed to deal with outliers in
(5) [1], [3], [13]. They are actually either for error
correction or for error detection. The algorithms for error
correction are mainly for recovering the groundtruth
from corrupted data. One representative algorithm in the
context of robust face recognition was proposed by Wright
et al. [14], which assumes that the error e has a sparse
representation and seeks the sparsest solution via solving
the following problem:

min
�;e
kX� þ e� yk2

2 þ �ðk�k1 þ kek1Þ; ð6Þ

where e 2 IRd�1 is an unknown error vector whose nonzero
entries correspond to outliers. In [12] and [14], (6) is often
solved by

min
!
kB!� yk2

2 þ �k!k1; ð7Þ

where ! ¼ ½�T ; eT �T 2 IRðdþnÞ�1 and B ¼ ½X; I� 2 IRd�ðnþdÞ (I
is the identity matrix). The algorithms to solve (7) estimate
error as a vector variable and correct it in each iteration.
And the ‘1 norm is an approximation of ‘0 norm to obtain a
sparse solution. Recent analysis and experimental investi-
gations in [12] and [13] show that the same ‘1-minimization
algorithm can be used to recover corrupted data even if the
level of corruption is almost arbitrarily large.

1.1.3 Error Detection

The algorithms for error detection are mainly for selecting
the most significant pixels (or uncorrupted pixels) in an
image for better recognition performance [28], [29], [30].
These methods are often based on robust M-estimators or
assume the occlusion masks are provided, which are widely
used in subspace learning and Eigen tracking. Recently,
based on maximum correntropy criterion (MCC) [31] and
half-quadratic (HQ) optimization [32], [33], He et al. [3]
extended (4) by substituting mean square error with
correntropy and iteratively computed a nonnegative sparse
solution for robust face recognition. He et al. [15] further
studied an ‘1 regularized correntropy problem for robust
pattern recognition, where a robust sparse representation is
computed by iteratively solving a weighted ‘1-minimization
problem. Furthermore, Yang et al. [16] modeled robust
sparse representation as the robust regression problem with
a sparse constraint and proposed an iteratively reweighted
least-squares algorithm. Li et al. [34] developed a structured
sparse error coding method for continuous occlusion based
on the error detection strategy.

To the best of our knowledge, currently there is not a
general framework to unify these two kinds of sparse
representation approaches aforementioned and study their
relationship. For example, although the sparse representa-
tion method in [1] indeed improves robustness under tough
conditions (e.g., 80 percent corruption), the reason why it
can work under such a dense error still needs to be further
investigated. In addition, robust sparse analysis is still an
open and hot issue in information theory [18], [17], [35].

1.2 Contribution

To unify robust sparse representation methods for error
correction and error detection into one framework, we first
address a general robust sparse representation problem, i.e.,

min
�

Xd
j¼1

�ððX� � yÞjÞ þ �k�k1; ð8Þ

where �ð:Þ is a robust M-estimator and can be optimized by
half-quadratic optimization,1 and ð:Þj denotes the jth
dimension of an input vector. We will investigate a general
half-quadratic framework to minimize (8). Under this
framework, a robust sparse representation problem is
reduced to an iterative regularization problem, which can
be optimized by solving a number of unconstrained
quadratic problems. Then, we show that iteratively
reweighted least squares and shrink operator- based ‘1

iterative regularization methods are its two special cases.
Second, by utilizing the additive form of HQ, an ‘1-

regularized error correction method is developed to
iteratively recover corrupted data through estimating errors
incurred by noise and outliers; by harnessing the multi-
plicative form of HQ, an ‘1-regularized error detection
method is developed through iteratively using uncorrupted
data to perform learning.

Third, we investigate possible M-estimators (�ð:Þ) to
show that the shrink operator on errors can be explained as
the additive form of Huber M-estimator in iterative
regularization, and the variable e in (6) can be viewed as
an auxiliary variable of Huber M-estimator in half-
quadratic minimization. When the M-estimator in (8) is
Welsch M-estimator, the undetermined linear system (i.e.,
X� ¼ y) becomes a correntropy [31] adaptive system,
which has a probabilistic support for large level of
corruptions [31]. Numerical results on robust face recogni-
tion are run to validate our claims and demonstrate that
our framework is sufficient in most cases.

In summary, the novelties of our work are as follows:

1. A unified framework is proposed to investigate both
error correction and error detection. The connection
and difference between error correction and detec-
tion are extensively investigated.

2. A deep investigation into Huber M-estimator is
presented, which shows that the absolute function
(in ‘1 regularizer) solved by shrink operator can be
viewed as the dual function of Huber M-estimator.
To the best of our knowledge, it is the first time to
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1. Note that �ð:Þ can be a convex function or a nonconvex function.
And not all M-estimators can be optimized by HQ. For example,
absolute function cannot be optimized by HQ [33] and j:j�ð� 2 ð1; 2�Þ in
‘p M-estimator is not applicable in the additive form of HQ.



present such a theoretical guarantee of the robust-
ness of the ‘1-based sparse representation methods
from the viewpoint of M-estimation.

3. Robust and efficient ‘1-regularized methods are
developed using correntropy (i.e., Welsch M-esti-
mator), which performs better than other M-estima-
tors in terms of robustness with lower computational
cost.

The remainder of the paper is organized as follows: In
Section 2, we revisit the HQ minimization for convex or
nonconvex functions. In Section 3, we develop error
correction and detection methods by harnessing the additive
and the multiplicative form, respectively. In Section 4, we
investigate various robust M-estimators and discuss their
robustness from the viewpoint of M-estimation. In Section 5,
the proposed approaches are validated by conducting
robust face recognition experiments along with the compar-
ison with related methods. Finally, we draw the conclusion
and discuss future work in Section 6.

2 HALF-QUADRATIC MINIMIZATION

Since our investigation is relying on the half-quadratic
theory, we first review some theoretical background and
half-quadratic modeling based on conjugate function theory
[36], [37] for convex or nonconvex minimization.

2.1 Conjugate Function

Given a differentiable function fðvÞ : IRn ! IR, the conju-

gate f�ðpÞ : IRn ! IR of the function f is defined as [38]:

f�ðpÞ ¼ max
v2domf

ðpTv� fðvÞÞ: ð9Þ

The domain of f�ðpÞ is bounded above on domf [38]. Since
f�ðpÞ is the pointwise supremum of a family of convex
functions of p, it is a convex function [38]. If fðvÞ is convex
and closed, the conjugate of its conjugate function is itself,
i.e., f�� ¼ f [38].

Based on conjugate function, a loss function in image
restoration and signal recovery can be defined as [33],
[39], [40],

fðvÞ ¼ min
p
fQðv; pÞ þ ’ðpÞg; ð10Þ

where fð:Þ is a potential loss function (such as M-estimators
in Table 1), v is a set of adjustable parameters of a linear
system, p is an auxiliary variable in HQ optimization,
Qðv; pÞ is a quadratic function (Qðv; pÞ ¼:

P
i piv

2
i for p 2 IRd

þ
and v 2 IRd, or Qðv; pÞ ¼: kv� pk2

2 for p 2 IRd and v 2 IRd),
and ’ð:Þ is the dual potential function of fð:Þ.2 An example
of (10) is given in (61) (see Appendix III, which can be found
in the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2013.102) for
compressed signal recovery.

In the two-step iterative shrinkage/thresholding algo-
rithms [13], the minimization function of (10) is also
known as proximal mapping [39], [40]; in half-quadratic
methods, the function Qðv; pÞ þ ’ðpÞ is called the resultant
(augmented) cost-function of fðvÞ, and can be optimized
by a two-step alternating minimization way [33]. In [36]
and [37], half-quadratic regularization is developed to
minimize nonconvex fðvÞ. In the following, we briefly
review the HQ minimization and discuss its relationship
to other methods.
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TABLE 1
Minimization Functions � Relevant to the Multiplicative and the Additive Form of HQ for Different Potential M-Estimators �

(� in M-Estimator Is a Constant)

2. Note that for different types of Qðv; pÞ, the dual potential functions ’ð:Þ
may be different.



2.2 Half-Quadratic Optimization

Let �vð:Þ be a function on a vector v 2 IRd that is defined as

�vðvÞ ¼:
Xd
j¼1

�ðvjÞ; ð11Þ

where �ð:Þ is a potential loss function in HQ [33], [41] and vj
is the jth entry of v. In machine learning and compressed
sensing, one often aims to compute the following mini-
mization problem:

min
v
�vðvÞ þ JðvÞ; ð12Þ

where JðvÞ is a convex penalty function on v. According to
half-quadratic minimization [36], [37], we know that for a
fixed vj, the following equation holds

�ðvjÞ ¼ min
pj

Qðvj; pjÞ þ ’ðpjÞ; ð13Þ

where ’ð:Þ is the dual potential function of �ð:Þ, and
Qðvj; pjÞ is the half-quadratic function which can be
modeled in the additive or the multiplicative form as
shown later. Let Qvðv; pÞ ¼

: Pd
j¼1 Qðvj; pjÞ, we have the

vector form of (13),

�vðvÞ ¼ min
p
Qvðv; pÞ þ

Xd
j¼1

’ðpjÞ: ð14Þ

By substituting (14) into (12), we obtain that

min
v
f�vðvÞ þ JðvÞg ¼ min

v;p
Qvðv; pÞ þ

Xd
j¼1

’ðpjÞ þ JðvÞ
( )

;

ð15Þ

where pj is determined by a minimization function �ð:Þ that
is only related to �ð:Þ (See Table 1 for specific forms). In HQ
optimization, �ð:Þ is derived from conjugate function and
satisfies that fQðvj; �ðvjÞÞ þ ’ð�ðvjÞÞg � fQðvj; pjÞ þ ’ðpjÞg.
Let �vðvÞ ¼: ½�ðv1Þ; . . . ; �ðvdÞ�, and then one can alternately
minimize (15) as follows:

ptþ1 ¼ �vðvÞ; ð16Þ

vtþ1 ¼ arg min
v

Qv

�
v; ptþ1

�
þ JðvÞ; ð17Þ

where t indicates the tth iteration. Algorithm 1 summarizes
the optimization procedure. At each step, the objective
function in (15) is reduced alternatingly until it converges.

Algorithm 1. Half-quadratic-based Algorithms.

Input: data matrix X, test sample y, and v ¼~0.

Output: v

1: while “not converged” do

2: ptþ1 ¼ �vðvÞ
3: vtþ1 ¼ arg minv Qvðv; ptþ1Þ þ JðvÞ
4: t ¼ tþ 1

5: end while

2.3 The Additive and Multiplicative Forms

In HQ minimization, the half-quadratic reformulation
Qðvj; pjÞ of an original cost-function has two forms [36],
[37]: the additive form denoted by QAðvj; pjÞ and the

multiplicative form denoted by QMðvj; pjÞ. Specifically,
QAðvj; pjÞ is formulated as [37]

QAðvj; pjÞ ¼ ðvj
ffiffiffi
c
p
� pj=

ffiffiffi
c
p
Þ2; ð18Þ

where c is a constant and c > 0. The additive form indicates
that we can expand a function �ð:Þ to a combination of
quadratic terms and the auxiliary variable pj is related to vj.
During iterative minimization, the value of vj is updated
and refined by pj.

The multiplicative form QMðvj; pjÞ is formulated in the
form [36],

QMðvj; pjÞ ¼
1

2
pjv

2
j : ð19Þ

It indicates that we can expand a nonconvex (or convex)
function �ð:Þ to quadratic terms of the multiplicative form.
The auxiliary variable pj is introduced as a data-fidelity
term. For vj, pj indicates the contribution of vj to the
whole data v.

Experimental results in [33] show that when the additive
form is applicable, the number of iterations required to
converge for the additive form seems to be larger than that
for the multiplicative one. However, the computational cost
of the additive form is much lower than that of the
multiplicative one. Although the computational cost of the
additive form is cheap, the additive form has not received
much attention in the past decades [33].

By using different forms of quadratic functions, we are
able to specifically obtain error correction or detection
models as shown in Section 3. Before that, we in the next
section first discuss the relationship between the half-
quadratic minimization with existing works.

2.4 Connection to Sparse Representation Modeling

By combining the additive form or the multiplicative one,
the half-quadratic framework is well connected with some
existing popular sparse representation models. We specify
JðvÞ to be two convex functions (i.e., Jð:Þ ¼ �k:k1 and
Jð:Þ ¼ �k:k2

2), and discuss its relationship with other
algorithms.

First, by substituting JðvÞ ¼ �kvk1 into (12), we obtain
the following ‘1-minimization problem:

min
v
�kvk1 þ

1

2
�vðvÞ: ð20Þ

By combining (20), (18), and (14), we have

v� ¼ arg min
v

�kvk1 þ
1

2

Xd
j¼1

�
vj

ffiffiffi
c
p
� ptþ1

j =
ffiffiffi
c
p �2

: ð21Þ

According to the additive form of HQ [33], we have that the
minimization function �ðvÞ ¼ cv� �0ðvÞ. Then we have

ptþ1
j ¼ cvtj � �0

�
vtj
�
: ð22Þ

By substituting (22) into (21), we have the iterative scheme,

vtþ1 ¼ arg min
v

�kvk1 þ
1

2

�� ffiffiffi
c
p
v� ð

ffiffiffi
c
p
vt � ðr�vðvtÞ=

ffiffiffi
c
p
ÞÞ
��2

2
;

ð23Þ

264 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 2, FEBRUARY 2014



where r�vðvtÞ ¼ ½�0ðvt1Þ; . . . ; �0ðvtdÞ�
T . Let ct ¼ 1

c , we can
rewrite the above equation as follows:

vtþ1 ¼ arg min
v

�kvk1 þ
1

2ct
��v� �vt � ctr�v�vt����2

2
: ð24Þ

The iterative scheme in (24) is a basic scheme in ‘1

minimization [24]. Many algorithms [26], [42], [43], [44], have
been proposed based on (24). Each of its components vi can
be independently obtained by soft shrinkage operator [24].

In addition, by substituting v ¼ X� � y and Jð�Þ ¼ k�k2
2

into (12), (12) then takes the form:

min
�
�vðX� � yÞ þ �k�k2

2: ð25Þ

If we make use of the multiplicative form of HQ in
Algorithm 1 to solve (25), Algorithm 1 becomes the iterative
reweighted least squares (IRLS) of robust statistics [28], [31].
It has been shown in [32] that IRLS is a special case of half-
quadratic minimization.

3 HALF-QUADRATIC-BASED ROBUST SPARSE

REPRESENTATION ALGORITHMS

Based on the HQ framework, this section addresses the
robust problem in (8). We can rewrite (8) as follows:

Jð�Þ ¼: min
�
�vðX� � yÞ þ �k�k1; ð26Þ

where �ð:Þ in �vð:Þ is a nonconvex (or convex) M-estimator
and can be optimized by HQ. Equation (26) can be viewed
as a robust formulation of (4) by substituting ‘2-norm with
�vð:Þ. When �ð:Þ is Welsch M-estimator, (26) is actually
based on maximum correntropy criterion (see Appendix II,
which is available in the online supplemental material).
Since �ð:Þ is a robust M-estimator, the minimization of (8) is
actually an M-estimation of �. We adopt the two forms of
HQ to optimize (26). When the additive form is used, we
gain an ‘1 regularized error correction algorithm. The
auxiliary variable of HQ actually models errors incurred
by noise. When the multiplicative form is used, we obtain
an ‘1 regularized error detection algorithm. The auxiliary
variable can be viewed as a weight to detect noise. The
following will detail the technique respectively.

3.1 Proposed Error Correction

In this section, we utilize the additive form of HQ to
optimize (26). Let QvðX� � y; pÞ ¼ kX� � y� pk2

2, we have
the following augmented objective function of (26) [32], [33],

JAð�; pÞ ¼: min
�;p
kX� � y� pk2

2 þ
Xd
j¼1

’ðpjÞ þ �k�k1; ð27Þ

where auxiliary variable p is uniquely determined by the
minimization function w.r.t. �ð:Þ.

Let ftþ1 ¼: ptþ1 þ y, we can alternatingly minimize (27) as
follows:

ftþ1 ¼ yþ �vðX�t � yÞ; ð28Þ

�tþ1 ¼ arg min
�
kX� � ftþ1k2

2 þ �k�k1: ð29Þ

Note that, to save computational costs, it is efficient to find a
solution in (29) that satisfies JAð�tþ1; ptþ1Þ � ĴAð�t; ptþ1Þ.

Algorithm 2 summarizes the optimization procedure. As
in Remark 2 in [33, p. 3], Algorithm 2 alternately minimizes
the augmented objective function JAð�; pÞ until it converges
(Proposition 2). In each iteration, it tries to re-estimate
the value of an input sample y (ftþ1). Since �ð:Þ is a robust
M-estimator, corrupted entries in y will be corrected step by
step. Hence, we denote Algorithm 2 as error correction. The
minimization subproblem in (29) can be solved and
expressed in a closed form as a shrinkage [24]. To easily
tune the parameters, we give an active set algorithm in
Appendix I, which is available in the online supplemental
material, to implement Algorithm 2.

Algorithm 2. ‘1-regularized Error Correction.

Input: data matrix X, test sample y, and � ¼ XTy.

Output: �

1: while “not converged”do

2: ftþ1 ¼ yþ �vðX�t � yÞ
3: �tþ1 ¼ arg min� kX� � ftþ1k2

2 þ �k�k1

4: t ¼ tþ 1

5: end while

Proposition 1. The sequence {JAð�t; ptÞ, t ¼ 1; 2; . . . } generated
by Algorithm 2 converges.

Proof. According to the properties of the minimizer
function �ð:Þ (fQðvj; �ðvjÞÞ þ ’ð�ðvjÞÞg � fQðvj; pjÞ þ
’ðpjÞg), for a fixed �t, we have JAð�t; ptþ1Þ � JAð�t; ptÞ.
And according to (29), for a fixed ptþ1, we have that
JAð�tþ1; ptþ1Þ � ĴAð�t; ptþ1Þ such that

JAð�tþ1; ptþ1Þ � ĴAð�t; ptþ1Þ � ĴAð�t; ptÞ:

Since JA is bounded below, the sequence

f. . . ; JAð�t; ptÞ; JAð�t; ptþ1Þ; JAð�tþ1; ptþ1Þ; . . .g;

converges as t!1. In particular, JAð�tþ1Þ � JAð�tÞ, for
all t, and the sequence JAð�tÞ is convergent. tu
Similar to S1-‘1-MAGIC, Algorithm 2 also estimates

noise at each iteration.3 However, different from S1-‘1-
MAGIC which assumes that noise has a sparse representa-
tion as well, Algorithm 2 has no such a specific
assumption. If noise is indeed sparse in some applications,
Algorithm 2 will naturally obtain a sparse solution of p
due to the fact that outliers are significantly different from
uncorrupted entries.

Figs. 1d and 1e show two examples of the auxiliary
variables when Algorithm 2 converges. From Fig. 1b, we
see that there are two occluded regions. One is highlight
occlusion, and the other is sunglasses occlusion. We see
that Algorithm 2 can accurately estimate these two
occlusions in this case. This is because M-estimators
can efficiently deal with outliers (occlusions) that are
significantly different from uncorrupted face pixels. As
shown in Table 1 in Section 4, the minimizer functions of
M-estimators in the additive form can estimate outliers
and meanwhile keep the variations of uncorrupted data.
More experimental validations are given in Section 5. In
Figs. 1d and 1e, the red regions with large positive values
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3. We denote the ‘1-MAGIC toolbox used to solve (47) as S1-‘1-MAGIC.



correspond to the highlight conclusion, and the blue
regions with small negative values correspond to the
sunglasses conclusion.

3.2 Proposed Error Detection

In this section, we make use of the multiplicative form to
optimize (26). Let QvðX� � y; pÞ ¼

P
j ðpjðyj �

P
i xij�iÞ

2Þ,
we have the following augmented objective function of (26)
[32], [33],

JMð�; pÞ ¼
:

min
�;p

Xd
j¼1

pj yj �
Xn
i¼1

xij�i

 !2

þ’ðpjÞ

0
@

1
Aþ �k�k1:

ð30Þ

According to HQ optimization, a local minimizer ð�; pÞ of
(30) can be alternately calculated by

ptþ1
j ¼ � yj �

Xn
i¼1

xij�
t
i

 !
; ð31Þ

�tþ1 ¼ arg min
�
ðy�X�ÞTP ðy�X�Þ þ �k�k1; ð32Þ

where P is a diagonal matrix whose diagonal element
Pjj ¼ ptþ1

j . The optimization problem in (32) can be
rewritten as the following ‘1-regularized quadratic problem:

min
�
kX̂� � ftþ1k2

2 þ �k�k1; ð33Þ

where X̂ ¼
ffiffiffiffi
P
p

X and ftþ1 ¼
ffiffiffiffi
P
p

y. Note that, to save
computational cost, it is unnecessary to find the global
solution of (33). It may be more efficient to find a sparse
solution that satisfies JMð�tþ1; ptþ1Þ � ĴMð�t; ptþ1Þ.

Algorithm 3 summarizes the optimization procedure. It
alternatingly minimizes the augmented objective function
JMð�; pÞ until it converges (Proposition 2). Since outliers are
far away from the portion of uncorrupted data, their
contributions to the optimization of the objective function
will be smaller, as they always gain small values in matrix
Ptþ1. Therefore, outliers will have weaker influence on the
estimation of � such that Algorithm 3 can compute a sparse
representation based on uncorrupted entries in y. And
hence, we denote Algorithm 3 as error detection.

Algorithm 3. ‘1-regularized Error Detection.

Input: data matrix X, test sample y, and � ¼ XTy.

Output: �, p
1: while “not converged” do

2: Ptþ1
jj ¼ �ðyj �

Pn
i¼1 xij�

t
iÞ

3: ftþ1 ¼
ffiffiffiffiffiffiffiffiffiffi
Ptþ1
p

y and X̂ ¼
ffiffiffiffiffiffiffiffiffiffi
Ptþ1
p

X

4: �tþ1 ¼ arg min� kX̂� � ftþ1k2
2 þ �k�k1

5: t ¼ tþ 1

6: end while

Proposition 2. The sequence {ĴMð�t; ptÞ, t ¼ 1; 2; . . . } generated
by Algorithm 3 converges.

Proof. According to the properties of the minimizer
function �ð:Þ (fQðvj; �ðvjÞÞ þ ’ð�ðvjÞÞg � fQðvj; pjÞ þ
’ðpjÞg), we have the following form for a fixed �t,
JMð�t; ptþ1Þ � JMð�t; ptÞ. And for a fixed ptþ1, we have
JMð�tþ1; ptþ1Þ � JMð�t; ptþ1Þ such that

JMð�tþ1; ptþ1Þ � ĴMð�t; ptþ1Þ � ĴMð�t; ptÞ:

Since JA is bounded below, the sequence�
. . . ; JMð�t; ptÞ; JMð�t; ptþ1Þ; JMð�tþ1; ptþ1Þ; . . .

�
;

converges as t!1. In particular, JMð�tþ1Þ � JMð�tÞ, for
all t, and the sequence JMð�tÞ is convergent. tu
Figs. 1f and 1g show two examples of auxiliary variables

when Algorithm 3 converges. We see that Algorithm 3
treats the two occlusions in the same way. It assigns the two
occluded regions small values (weights) due to the
robustness of M-estimators. The auxiliary variable in
Algorithm 3 actually plays a role of weighting function in
each iteration.

4 M-ESTIMATION FOR LARGE CORRUPTIONS

We leave the discussion of � in the previous sections. In this
section, we focus on it and connect it with the M-estimation.
In robust statistics, one popular robust technique is M-
estimation [45] (see Appendix II, which is available in the
online supplemental material), which is defined as the
minima of summation of functions of data and has been
used with a history of more than 30 years. Table 1 tabulates
the corresponding minimization functions � related to the
multiplicative and the additive forms of HQ, respectively,
for different potential M-estimators �. The first row
tabulates potential M-estimators and their curves [45]. The
dashlines in these figures correspond to ‘1 M-estimator.4

The second row tabulates their corresponding minimization
functions of the multiplicative form. The third row tabulates
their corresponding minimization functions of the additive
form. From Table 1, we see that all M-estimators achieve the
minima (zero) at origin.
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Fig. 1. Error and weight images learned by different methods. An error (or weight) image is obtained by reshaping an error vector e or auxiliary
variable p. (a) An uncorrupted face image in the AR database. (b) An input face image y with sunglasses occlusion. (c) The error image of S1-‘1-
MAGIC. (d) The error image of Fair M-estimator-based error correction. (e) The error image of Welsch M-estimator-based error correction. (f) The
weight image of Fair M-estimator-based error detection. (g) The weight image of Welsch M-estimator-based error detection.

4. In this section, we discuss the ‘1 M-estimator in robust statistics [45].



In information theoretic learning (ITL) [46], it has been
proved that the robustness of correntropy [31] and Renyi’s
quadratic entropy-based algorithms [41] is actually
related to Welsch M-estimator. If we substitute �ð:Þ with
Welsch M-estimator, the adaptive linear system in (8) is a
correntropy-based adaptive system (see Appendix II, which
is available in the online supplemental material). In ITL,
correntropy has a probabilistic meaning of maximizing the
error probability density at the origin [31] and its adaptation
is applicable in any noisy environment when its distribution
has the maximum at the origin [31]. This probabilistic
property enables the theoretical support that correntropy
adaptation can deal with large corruption. Hence, learning
algorithms will obtain high accuracy if the uncorrupted
pixels are discriminative enough. In the following, we
mainly discuss two commonly used M-estimators: Huber
and Welsch.

In the compressed sensing community, the fast iterative
‘1-minimization algorithms [13], [24] often rely on the soft-
thresholding function. Since the ‘1-norm kpk1 ¼

P
j pj
�� �� in

those algorithms is separable, each entry pj of p is the
minimization solution of the following problem:

min
pj

1

2
ðxj � pjÞ2 þ �jpjj; ð34Þ

where pj 2 R and xj 2 R is the jth entry of vector x. In
compressed sensing, the optimal solution p�j of (34) is
popularly found by the following soft-thresholding func-
tion, i.e.,

p�j ¼ softðxj; �Þ ¼
0; jxjj � �;
xj � �signðxjÞ; jxjj > �;

	
ð35Þ

By substituting p�j ¼ softðxj; �Þ into (34), we have,

min
pj

1

2
ðxj � pjÞ2 þ �jpjj ¼

x2
j=2; xj

�� �� � �;
� xj
�� ��� �2

2 ; xj
�� �� > �:

(
ð36Þ

The right part of (36) is often denoted as Huber loss
function �Hð:Þ in HQ (or Huber M-estimator in robust
statistics). By conducting a summation on (36) over j, we
have the following equation:

min
p

1

2
kx� pk2

2 þ �kpk1 ¼
X
j

�HðxjÞ: ð37Þ

The formulations in (36) and (37) have also been studied for
the HQ minimization in terms of the additive form where
Huber loss function �Hð:Þ has the following additive form
(see (3.26) to (3.28) in [33, Section 3.3]),

minxj�HðxjÞ ¼ min
xj;pj

1

2
ðxj � pjÞ2 þ �jpjj; ð38Þ

where pj is an auxiliary variable and is uniquely deter-
mined by the minimization function of �H , i.e., soft-
thresholding function in (35). In HQ, the right-hand side
of (38) is often called augmented objective function.

Note that no matter which side (the left- or the right-
hand side of (36) and (38)) is used to model a problem, the
dual relationship between Huber loss function and
absolute function is uniquely determined by soft-thresh-
olding function. And it always holds no matter vector p is

sparse or not. If p is used to model dense noise, one can
also correctly detect outliers due to the robustness of
Huber M-estimator.

Based on this conjugate perspective, we learn that when
the problem in (6) is solved using soft-thresholding
methods, (6) is equivalent to the following problem by
substituting ej with �p�j in (35) and applying (38),

min
�

Xd
j¼1

�HððX� � yÞjÞ þ �k�k1: ð39Þ

And according to the additive form of HQ, we can also have
the augmented problem of (39), i.e.,

min
�;e

Xd
j¼1

�
ððX� þ e� yÞjÞ

2 þ �jejj
�
þ �k�k1; ð40Þ

where the function j:j is the dual potential function of Huber
loss function [33]. When one resorts to iterative shrinkage
thresholding for solving (6) and (40) and uses a descending
� (i.e., � approaches 0), �HðxÞ ¼ mine

1
2ðx� eÞ

2 þ � ej j will
approach mine

1
2ðx� eÞ

2 (i.e., e� ¼ arg mine
1
2ðx� eÞ

2 ¼ x)
such that the solutions of both (6) and (40) tend to be the
solution of X� � y ¼ e.

Different from the assumption that e in (6) has a sparse
representation [1], [14], the ‘1-norm in (40) means the dual
potential function of Huber M-estimator (see (37)) rather
than an approximation of ‘0-norm. Hence, both (39) and (40)
are robust to outliers due to M-estimation. Recent experi-
mental results on robust face recognition [13], [14] also
show that the model in (6) can achieve high recognition
accuracy even when corruption is larger than 50 percent.
From this dual viewpoint, we learn that this robustness is
potentially because the soft-thresholding function used to
solve (6) plays a role of robust Huber M-estimator.

Looking at the curve of Welsch M-estimator, we can
observe that its segment between 0 and 1 is similar to that of
‘1-norm. However, the segment of Welsch M-estimator
between 1 and 1 tends to be flattened out and is
significantly different from ‘1-norm. It imposes the same
penalties to all outliers so that it can efficiently deal with
those outliers with large magnitudes. Looking at the multi-
plicative minimization function of Welsch M-estimator, we
can observe that the minimization function decreases
dramatically when t > 0:5. That is to say, outliers will be
given small weights during optimization. Fig. 1g shows an
example of the weight image of Welsch M-estimator by
reshaping the auxiliary variable p of our error detection
algorithm. Looking at the additive minimization function of
Welsch M-estimator, we can observe that the minimization
function tends to be diagonal when t > 0:5. This means that
an algorithm based on Welsch M-estimator can accurately
estimate outliers that are intrinsically different from the
uncorrupted ones. Fig. 1e shows an example of the error
image of Welsch M-estimator by reshaping auxiliary
variable p of our error correction algorithm.

Fig. 1 also shows visual results of error correction and
detection algorithms for robust face recognition along with
the comparison with S1-‘1-MAGIC. (More results will be
reported in Section 5.) Fig. 1a shows an uncorrupted face
image in the AR database [47]. And Fig. 1b shows an input
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face image y with sunglasses occlusion. We can observe that
there are two types of occlusions: one is incurred by
sunglasses and the other is incurred by the highlight in the
sunglasses. Fig. 1c shows the error image of S1-‘1-MAGIC
by reshaping error vector e in (6). Figs. 1d and 1e show the
error images of Fair and Welsch M-estimators, respectively,
by reshaping the auxiliary variable p of our error correction
algorithm; and Figs. 1f and 1g show the weight images of
Fair and Welsch M-estimator, respectively, by reshaping the
auxiliary variable p of our error detection algorithm.

From Fig. 1, we can observe that the methods based on
Welsch M-estimator can accurately estimate or detect the
occluded region in a face image. Compared with the
results of Fair M-estimator, those of Welsch M-estimator
are smoother, especially in nonoccluded regions. This
means that the method based on Welsch M-estimator can
estimate occlusions more accurately than the one based
on Fair M-estimator. Comparing Fig. 1c with Fig. 1e, we
can observe that the error correction algorithm based on
Welsch M-estimator likely computes a smoother result
than S1-‘1-MAGIC.

5 EXPERIMENTAL RESULTS

In experiments, we focus on the robust face recognition
problem [14], [29] and demonstrate the effectiveness of the
proposed methods for solving occlusion and corruption
problems. Two public face recognition databases, namely,
the AR [47] and Extended Yale B [48] databases, were
selected for experiments. Recognition rate and computa-
tional cost were used to evaluate the compared methods.
All algorithms were implemented using MATLAB on an
AMD Quad-Core 1.80-GHz machine with 2-GB memory.

5.1 Experimental Setting and Face Databases

Databases. All grayscale images of the two public face
databases were aligned by manually locating eyes of face
images. The two selected databases are as follows:

1. AR database [47]. It consists of over 4,000 face images
from 126 subjects (70 men and 56 women). For each
subject, 26 facial images were taken in two separate
sessions. These images suffer different facial varia-
tions including various facial expressions (neutral,
smile, anger, and scream), illumination variations
(left light on, right light on, and all side lights on),
and occlusions by sunglasses or scarf. This database
is often used to compare robust face recognition
methods. In our experiments, we used the same
subset used in [3] that consists of 65 male subjects
and 54 female subjects. Facial images were cropped
and the resolution is 112� 92.

2. Extended Yale B database [48], [49]. It is composed of
2,414 frontal face images from 38 subjects. Cropped
and normalized 192� 168 face images were cap-
tured under various controlled lighting conditions
[49], [14]. Fig. 3 shows some face images of the first
subject in this database. For each subject, half of the
images were randomly selected for training (i.e.,
about 32 images for each subject), and the rest were
for testing.

Methods. We categorize the compared methods into two
groups. The first group is not robust to outliers, and the
second group is robust to outliers.

First group. In our experiments, the first group includes
five sparse representation models, detailed as follows:

1. For the first sparse representation model formed by

min
�
k�k1 s:t: kX� � yk2 � "; ð41Þ

we denote the ‘1-MAGIC toolbox5 used to solve (41)
as S0-‘1-MAGIC.

2. For the second sparse representation model formed by

min
�

X� � yk k2
2þ�k�k1; ð42Þ

we denote the feature-sign search (FSS) algorithm
[50],6 fast iterative shrinkage-thresholding algorithm
(FISTA) [51] and Homotopy (HOMO) [52] algorithm
used to solve (42) as S0-FSS, S0-FISTA, and S0-
HOMO, respectively.

3. For the third sparse representation model formed by

min
�
k�k1 s:t: X� ¼ y; ð43Þ

we denote the polytope faces pursuit (PFP) [53]
method used to solve (43) as S0-PFP.

4. For the fourth sparse representation model formed by

min
�

X� � yk k2
2þ�

X
i

wi �ij j; ð44Þ

where w ¼ ½w1; . . . ; wn� is a weight vector. We denote
the method used to solve the above adaptive LASSO
problem [21] as S0-ALASSO.

5. For the fifth sparse representation model formed by

min
�

X
i

wi �ij j s:t: X� ¼ y; ð45Þ

we denote the method used to solve the above
reweighted ‘1 minimization problem [22] as S0-‘1-W.

In addition, we also compare three linear representation
methods. In the half-quadratic minimization for image
processing, one considers the following model to deal with
white Gaussian noise,

min
�

X� � yk k2
2þ�

X
i

�ð�i � �iþ1Þ; ð46Þ

where �ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
"þ x2
p

is a half-quadratic loss function. And
the regularization in (46) models the first-order differences
between neighboring elements in �. We denote the additive
form and the multiplicative form to (46) as HQSA and
HQSM, respectively. Linear regression-based classification
(LRC) [54] and collaborative representation-based classifi-
cation (CRC) [55] are also compared.

Second group. The second group consists of three robust
sparse representation models detailed as follows:
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1. For the first sparse representation model formed by

min
�;e
k�k1 þ ek k1 s:t: kX� þ e� yk2 � "; ð47Þ

we denote the ‘1-MAGIC toolbox used to solve (47)
as S1-‘1-MAGIC.

2. For the second sparse representation model formed by

min
�;e

X� þ e� yk k2
2þ�ðk�k1 þ kek1Þ; ð48Þ

we denote the method FSS, FISTA, and HOMO used
to solve (48) as S1-FSS, S1-FISTA, and S1-HOMO,
respectively.

3. For the third sparse representation model in the form

min
�;e
k�k1 þ ek k1 s:t: X� þ e ¼ y; ð49Þ

we denote the polytope faces pursuit [53] method
used to solve (49) as S1-PFP.

PFP, FISTA, HOMO, and sparse reconstruction by separ-
able approximation (SpaRSA) [56] methods were implemen-
ted by “fast ‘1 minimization” MATLAB package [13].7 We
tuned the parameters of all the compared methods to achieve
the best performance on the training set, and then used these
parameter settings on the testing set. Since these methods
take different optimization strategies and a corrupted testing
set may be different from a training one, different sparse
representation methods may obtain different results.

Classifier. Wright et al. [1], [14] proposed a linear
classification method for sparse representation, and He
et al. [3], [15] developed a nonlinear one. In this section, to
fairly evaluate different robust methods, we classify an
input sample y as suggested in [14]. For each class c, let
 c : IRn ! IRnc be a function which selects the coefficients
belonging to class c, i.e.,  cð�Þ 2 IRnc is a vector whose
entries are the entries in � corresponding to class c. Utilizing
only the coefficients associated with class c, a given sample
y is reconstructed as ŷc ¼ Xc cð�Þ where Xc is a matrix
whose samples all belong to the class c. Then y can be
classified by assigning it to the class corresponding to the
minimal difference between y and ŷc, i.e.,

arg min
c
ky�Xc cð�Þk2: ð50Þ

Algorithm setting. As suggested by Wright et al. [14],
we normalized the columns of X to have unit ‘2-norm
for all compared algorithms. We make use of a robust
way to estimate the parameters of M-estimators. For
Huber M-estimator, the threshold parameter is estimated
as a function of median, i.e.,

� ¼ a�median
j

yj �
Xn
i¼1

xij�
t
i

�����
�����

 !
: ð51Þ

And the kernel size of other M-estimators is estimated as a
function of mean [3], i.e.,

�2 ¼ a�mean
j

yj �
Xn
i¼1

xij�
t
i

 !2
0
@

1
A: ð52Þ

The constant a in (51) and (52) is empirically set to be 0.8
and 0.5, respectively. More experimental results on the
parameter selection of M-estimators will be shown in
Section 5.4. There are various strategies for the implementa-
tion of Algorithms 2 and 3. Here, we implement them by the
active set algorithm detailed in Appendix I, which is
available in the online supplemental material.

5.2 Sunglasses Occlusion

In this section, we investigate different methods against
sunglasses occlusion. For training, we used 952 nonoc-
cluded frontal view images (about eight faces for each
subject) with varying facial expressions in the AR database.
Fig. 2 shows an example of eight selected images of the first
subject. For testing, we evaluated the methods on the images
occluded by sunglasses. Fig. 1b shows a facial image from
the testing set. Fig. 4 shows the recognition performance of
different methods using different downsampled images of
dimension 161, 644, and 2,576 [14], [54] corresponding to
downsampling ratios of 1/8, 1/4, and 1/2, respectively.

Fig. 4a shows experimental results of the methods that are
not robust to outliers. Although these “S0-” methods all aim
to find a sparse solution, they obtain different recognition
rates, as similarly shown in [13]. This is because they take
different strategies for optimization and the corruption level
in the testing set is unknown such that one cannot tune
parameters of each method to obtain the same result for each
testing sample. We also see that sparse representation
methods outperform linear presentation methods (HQSA,
HQSM, LRC, and CRC). In addition, HQSA and HQSM
perform slightly better than LRC and CRC.

Fig. 4b plots the results of different sparse representation
methods that are robust to outliers. Comparing Fig. 4b with
Fig. 4a, we see that recognition rates in Fig. 4b are obviously
higher than those in Fig. 4a. Although the same ‘1

minimization methods are used, one “S1-” method can
deal with outliers better than its corresponding “S0-”
method. The recognition rate of S1-‘1-MAGIC is twice
higher than that of S0-‘1-MAGIC. The results in Figs. 4a and
4b suggest that ‘1 minimization methods “S0-” fail to deal
with outliers that are significantly different from the
uncorrupted data. If outliers are not corrected, they will
affect the estimation of sparsity largely. And if outliers are
corrected as in the “S1-” methods, the estimated sparse
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Fig. 2. Cropped facial images of the first subject in the AR database.
Images in the first row are from the first session and images in the
second row are from the second session.

Fig. 3. Cropped facial images of one subject in the YALE B database.



representation can be more accurate. We also illustrate the
effect of outliers on sparse estimation in Appendix IV,
which is available in the online supplemental material.

Figs. 4c and 4d show the results computed by the

additive form (see Algorithm 2) and the multiplicative form

(see Algorithm 3), respectively. We observe that recognition

rates of the additive and multiplicative forms using the
same M-estimator are very close. As shown by He et al. [3],

S1-‘1-MAGIC is not robust enough to contiguous occlusion

for face recognition. As the results shown in Fig. 4, we

observe that algorithms based on Welsch M-estimator

significantly outperforms S1-‘1-MAGIC and other methods.

This is due to the fact that Welsch M-estimator places the

same penalties to the outliers incurred by sunglasses as
shown in Table 1. This is consistent with the results

reported in correntropy [3], [31] and M-estimation [45]

where Welsch M-estimator (or nonconvex M-estimators)

has shown to be an efficient tool for big outliers and non-

Gaussian noise. We can also observe that error correction

algorithms (or error detection algorithms) based on Huber
and Fair M-estimator achieve similar recognition accuracy

as compared with S1-‘1-MAGIC. This is because they all

make use of the absolute function in their objectives.
Fig. 5 further shows the variation of the ‘0 norm (i.e., the

number of nonzero entries of error e) of error e in error
correction methods as a function of the number of
iterations. We see that robust M-estimator with kernel size
parameter in (51) or (52) performs significantly different as
compared with Huber M-estimator and ‘1 minimization
methods. Since S1-FSS, S1-HOMO and S1-PFP all use the
active set method, they estimate only one entry as the error

in each iteration. As a result, when the level of corruptions
is large, these three methods will count on more iterations.

For the Huber M-estimator-based method and ‘1 mini-
mization methods, the ‘0-norm of error e increases until they
converge. For other robust methods with the kernel size
parameter, the ‘0 norm of error e decreases as the number of
iterations increases. This may be because the median
operator in Huber M-estimator and the soft-threshold
operator in ‘1 minimization adaptively decrease the value
of their threshold parameters. A large value of the
parameter can lead to the scenario that only a small number
of data entries are estimated as outliers at the beginning of
iterations. In contrast, the kernel size parameter does not
play a role of truncation function. As shown in Table 1, there
is a nonzero segment around the kernel size parameter so
that its corresponding methods estimate a large number of
data entries as noise at the beginning of iterations. Fig. 5 also
shows that different M-estimators will cause different
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Fig. 4. Recognition rates of different methods against sunglasses occlusion in the AR database. (a) Recognition rates of the methods that are not
robust to outliers. (b) Recognition rates of the sparse representation methods that are robust to outliers. (c) M-estimators are optimized by the
additive form (see Algorithm 2). (d) M-estimators are optimized by the multiplicative form (see Algorithm 3).

Fig. 5. Variation of nonzero entries of errors in error correction
algorithms when the feature dimension is 2,576.



strategies to estimate errors incurred by noise although they
are used in the same error correction algorithm.

5.3 Random Pixel Corruption

We tested the robustness of different methods on the
Extended Yale B Face Database. For each subject, half of the
images were randomly selected for training, and the rest
half were for testing. The training and testing set contained
1,205 and 1,209 images, respectively. Since the images in the
testing set incurred large variations due to different lighting
conditions or facial expressions, it is a difficult recognition
task. Each image was resized to 24� 218 and stacked it into
a 504-D vector. Each test image was corrupted by replacing
a set of randomly selected pixels with a random pixel value
which follows a uniform distribution over [0, 255]. We vary
the percentage of image pixels that suffer corruptions from
10 to 80 percent [14].

Fig. 6 shows the recognition accuracy of different
methods, as a function of the level of corruption. Here, we
focus on Welsch and Huber M-estimator-based methods.
We see that the recognition rates of all compared methods
are close when the level of corruption is 10 percent. But the
recognition rates of those methods in Fig. 6a decrease
rapidly as the level of corruption increases. In Fig. 6b, we
can observe that S1-FSS, S1-PFP, S1-SpaSRA, and S1-HOMO
perform worse than the other methods. This may be due to
the different modeling on sparsity under different para-
meters and optimization strategies. The two methods based
on Welsch M-estimator can perform slightly better than ‘1

minimization methods when the level of corruption is
larger than 50 percent. And the two methods based on
Huber M-estimator perform slightly worse than S1-‘1-
MAGIC and almost obtain similar results as S1-FISTA.
This is due to that the Huber M-estimator-based methods
and S1-FISTA all resort to soft-thresholding function. When
the level of corruption is larger than 30 percent, the sparsity
assumption on the noise vector e cannot be made. However,
methods based on (26) can still achieve high recognition
rates due to the use of M-estimator in their objective
functions. Even if there are large corruptions, the error
correction algorithm (or the error detection algorithm) can
still utilize uncorrupted pixels to correct (or detect) errors
incurred by the noise. As a result, they achieve high
recognition accuracy.

5.4 Robustness, Sparsity, and Computational Cost

In real-world applications, occlusion and corruption are
often unknown. Hence, a parameter obtained from cross-
validation on uncorrupted training set may not be realistic
for corrupted testing data. A common way for parameter
selection of M-estimators is robust parameter selection
method, such as median [28] and Silverman’s rule [31].
However, those robust parameter selection methods
are only developed for small level of corruptions. When
the corruption and occlusion are larger than 50 percent,
those methods will fail. To the best of our knowledge, there
seems no existing work to discuss the parameter selection of
M-estimators for large corruptions. To overcome this
difficulty, we follow the approach in [31] to investigate
parameter selection and discuss its effect on recognition
accuracy, computational cost, and sparsity of coefficient �.

We conducted two experiments in this section. The
setting of the first experiment is the same as that of
Section 5.3. In the second experiment, we study our
proposed methods via phase transition diagram [27], [57].
As in [27], we address the following problem:

y ¼ X�0 þ e;

where �0 is zero except for s entries drawn from Nð0; 1Þ,
each Xij � Nð0; 1Þ with column normalized to unit length,
and e is zero except for ð0:1� dÞ entries (i.e., the level of
corruption is 10 percent.). To simulate outliers, the nonzero
entries of e are drawn from f2�maxjjðX�0Þjjg �Nð0; 1Þ.

9

As in [27], white noise is not used. Since Huber loss function
has a dual relationship to absolute function j:j, we only
report phase transition diagrams of Huber M-estimator-
based methods.

The recognition accuracy, sparsity, and CPU time of
Huber and Welsch M-estimator-based methods are plotted
in Figs. 7 and 8 as a function of the value of a (in (51) and
(52)), respectively. And the phase transition diagrams of the
four compared methods are shown in Fig. 9. Capital letters
“A” and “M” indicate the additive and the multiplicative
form, respectively. The main observations from the experi-
ments are summarized below.

Parameter selection. As discussed in correntropy, the
kernel size of Welsch M-estimator controls all properties
of robustness [31]. We can see that for the two selected
M-estimators, their parameters control recognition rates,
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Fig. 6. Recognition rates of various methods under random corruption. Capital letters “A” and “M” indicate the additive and the multiplicative forms
respectively. (a) Recognition rates of the methods that are not robust to outliers. (b) Recognition rates of the methods that are robust to outliers.

8. The Matlab “imresize” function was used to resize image.
9. Since there will be several types of outliers in real-world problems, we

generate outliers in a different way from [27].



sparsity of coefficient �, and computational cost. More-
over, the effect of their parameters seems to be different
under different levels of corruptions. In the case of
10 percent corruption, the best accuracy is achieved when
a is around 1.2, suggesting the use of a large a; in the
case of 80 percent corruption, the best accuracy is
achieved when a is around 0.3, suggesting the use of a
small a. When the percentage of corruption or occlusion
is smaller than 50 percent, the mean (or median) is
mainly dominated by uncorrupted pixels, and therefore a
can be set to a larger value to adapt to uncorrupted
pixels; when the level of corruption is larger than
50 percent, the mean (or median) is mainly dominated
by corrupted pixels, and therefore a can be set to a
smaller value to punish outliers seriously.

Sparsity. From Figs. 7, 8, 9, and 13 (which can be found in
the online supplemental material), we see that outliers will
significantly affect the estimation of sparse representation.
Since the S0-‘1-MAGIC method does not concern outliers
very well, it fails to find the ground truth solution �0 in
Figs. 9a and 13a. And for all the compared methods, the
estimation errors of � increase as the level of corruption
increases. Although M-estimators do not directly penalize

the sparse coefficient �, they control uncorrupted pixels
during learning. In each iteration, robust methods make use
of uncorrupted pixels to estimate corrupted pixels. For
the additive form, the corrupted pixels of a test sample are
iteratively corrected; for the multiplicative form, the
corrupted pixels are eliminated by reweighting. Since
the sparsity of coefficient � is related to the linear model
which mainly depends on uncorrupted pixels, M-estimators
will also affect sparsity.

Computational cost. The computational cost of the multi-
plicative form is much higher than that of the additive
form. That is, the minimization using the additive form is
faster than the one using the multiplicative one. One
simple reason is that the method based on the multi-
plicative form often involves matrix multiplication in each
iteration (e.g., weighting the data in the training set). These
results are consistent with those reported in [33]. Therefore,
the use of the additive form is recommended for high-
dimensional data. In addition, since the proposed methods
aim to learn a sparse representation and deal with outliers
at the same time, their computational cost will be larger
than those “S0” methods. However, since our methods are
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Fig. 7. Recognition accuracy, sparsity, and total CPU time of Huber and Welsch M-estimator-based methods under 10 percent corruption.

Fig. 8. Recognition accuracy, sparsity, and total CPU time of Huber and Welsch M-estimator-based methods under 80 percent corruption.

Fig. 9. Phase transition diagrams [57], [27] of different methods, where the level of corruption is fixed at 10 percent and the number of samples n is
fixed at 200. Horizontal axis: � ¼ d=n (the number of feature dimension/the number of samples). Vertical axis: � ¼ s=d (the number of nonzero
elements/the number of feature dimension). Each color indicates a different median of normalized l2 error of k�̂ � �0k2= �0k k2 over 30 runs.



based on M-estimation rather than sparse assumption on
errors, our methods are potentially helpful for dense errors.

Convex and nonconvex M-estimators. From the experimen-
tal results, we see that recognition rates of the multiplicative
and the additive forms are close for each M-estimator.
And different M-estimators will result in different
recognition rates. In the case of 80 percent corruption,
Welsch M-estimator (nonconvex) seems to consistently
outperform Huber M-estimator (convex) in terms of
recognition rate. Although convex loss functions have a
global solution, they do not handle outliers well. In real-
world applications, there are often several types of outliers,
such as sunglasses and highlight occlusion in Fig. 1b. As
plotted in Table 1, a convex M-estimator gives different
errors different loss such that it may give much attention on
large errors. In contrast, nonconvex loss functions often
enhance sparsity for high-dimensional problem [23], or
improve robustness to outliers in [45]. Moreover, the study
in information theoretic learning [31] shows that the
performance sensitivity to kernel size is much lower than
the selection of thresholds in M-estimators. Hence, the
selection of M-estimators is important for robust sparse
representation and a nonconvex M-estimator may be
more applicable.

Error correction and detection. The performance of error
correction and detection is different in the aspects of
recognition rates, sparsity, and computation cost, although
they optimize the same objective function from the view-
point of HQ. This difference of the two forms always exists
in HQ methods [33]. Note that the augmented objective
functions of the multiplicative form is convex only when its
auxiliary variables are fixed, which makes local minimum
solutions for the pair ð�; pÞ. In addition, the recognition rate
of error detection algorithms seems to be higher than that of
error correction algorithms in a large range of a. And in
Figs. 9 and 13, the green and blue regions of the multi-
plicative form are larger than those of the additive form,
which indicates better recovery performance. Theoretically
speaking, the two forms of HQ methods should have
similar results if their parameters are well tuned for each
testing sample. However, in practice, the multiplicative
form is often more robust. This is because the parameter of
the multiplicative form seems to be more adaptive and
easily tuned for different corruption levels.

6 CONCLUSION AND FUTURE WORK

We have presented a general half-quadratic framework for
solving the problem of robust sparse representation. This
framework unifies algorithms for error correction and
detection by using the additive and the multiplicative
forms, respectively. Some effective M-estimators for the
proposed half-quadratic framework have been investigated.
We have shown that the absolute function in ‘1 regularizer
solved by soft-thresholding function can be viewed as the
dual form of Huber M-estimator, which gives a theoretical
guarantee of the robustness of robust sparse representation
methods in terms of M-estimation. Experimental results on
robust face recognition have shown that when applicable,
Welsch M-estimator is potentially attractive and effective to
handle large occlusion and corruption than other M-
estimators, and error correction algorithms are suitable for
high-dimensional data than error detection algorithms.

Our study of the HQ-based robust sparse representation
also shows that outliers significantly affect the estimation of
sparse coding and different M-estimators will result in
different robustness. Nonconvex M-estimators seem to be
more robust to real-world outliers that are often complex.
The first avenue for future research is to introduce structure
prior of errors, such as smooth constraint [33] and tree
structure, into our robust framework to deal with a
particular occlusion task. In addition, soft-thresholding
function and iteratively reweighted methods have drawn
much attention in subspace segmentation [11], robust
alignment [58], nuclear norm minimization [59], [60], and
structure sparsity [61], [62] where the used minimization
functions are related to HQ optimization. The second
avenue is to establish the relationship between different
methods in these applications and to develop new methods
by HQ optimization. Finally, considering that linear
representation (including sparse representation) methods
in Appendix IV, which is available in the online supple-
mental material, need a lot of samples to form a dictionary
(or subspace), another avenue is to study the under-
sampling case for linear representation methods.
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