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a b s t r a c t

Feature coding and pooling are two critical stages in the widely used Bag-of-Features (BOF) framework
in image classification. After coding, each local feature formulates its representation by the visual
codewords. However, the two-dimensional feature-code layout is transformed to a one-dimensional
codeword representation after pooling. The property for each local feature is ignored and the whole
representation is tightly coupled. To resolve this problem, we propose a hierarchical feature coding
approach which regards each feature-code representation as a high level feature. Codeword learning,
coding and pooling are also applied to these new features, and thus a high level representation of the
image is obtained. Experiments on different datasets validate our analysis and demonstrate that the new
representation is more discriminative than that in the previous BOF framework. Moreover, we show that
various kinds of traditional feature coding algorithms can be easily embedded into our framework to
achieve better performance.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Image classification is a fundamental vision problem which is
to classify images to the specified one or more categories. It has a
wide range of applications in image retrieval [1–3], web analysis
[4–6], etc. This is a very challenging task due to the variability of
illumination, scales, rotation, viewpoints and occlusion. Inspired
by the bag of words (BOW) model [7] in document analysis, the
bag of features (BOF) model [8] has been demonstrated successful
for image classification. In the BOF model, an image is modeled as
an unordered composition of visual features which are encoded by
a group of visual codewords. After that, features’ responses on
each codeword are pooled to one single value, and the image is
finally described as a codebook histogram.

Coding and pooling are two critical procedures of the tradi-
tional BOF model. Many efforts have been dedicated to develop
effective encoding and pooling algorithms. Though many algo-
rithms have been proposed, the inherent characteristics of coding
and pooling stay unchanged. Our proposed hierarchical framework
is inspired by the essential drawbacks of coding and pooling, as
can be summarized in the following two aspects:

1. The nature of coding is to partition the continuous feature
space to discrete visual words. Different coding strategies are
employed to assign each feature to its surrounding visual
words. Inspired by Huang et al. [9], we interpret coding as a

process of constructing connections. Features and visual words
can be deemed as vertexes in the feature space. After coding, an
undirected and weighted edge will bridge each local feature
and their surrounding visual words. A more weighted edge
characterizes an accurate approximation of features, whereas
a less weighted edge indicates the ambiguity of visual words.
Therefore, we believe such connections yield some valuable
information, which yet, are not fully utilized in the traditional
framework.

2. After coding, the traditional BOF framework will enter the next
stage, pooling. The nature of pooling is to accumulate local
features to a global appearance-based representation. For each
local feature, the weighted connections with its surrounding
visual words are obliterated in the process of pooling. Therefore
the abundant and more subtle information of each local feature
are abandoned in the process of pooling. Figs. 1 and 2 illustrate
the phenomenon. Fig. 1 shows average pooling, where different
appearances result in the same visual word histogram after
pooling. As a result, two images from different categories might
be wrongly classified into the same one. Fig. 2 shows max
pooling, where only the largest response (0.5) is preserved.
Though close enough, other values (0.49) are ignored.

Current studies on feature coding combined with feature
pooling naturally result in the drawback of the traditional BOF
framework. As analyzed above, the pooling operation ignores the
connections of each local feature and their surrounding visual
words. To address this, we deem the connections between features
and visual words as a kind of “higher level” features (here,
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“higher” is against the pixel level representation, e.g., SIFT [10] and
HOG [11]). Based on this consideration, we propose a hierarchical
BOF framework. In addition to the traditional pipeline, higher level
features also generate the codebook and go through the stage of
coding and pooling. In the end, a global histogram describing the
frequency of connections between features and visual words are
obtained.

The rest of the paper is organized as follows. Section 2 reviews
related work. Section 3 provides the details of various coding
methods based on the hierarchical framework. Section 4 evaluates
our framework on two different datasets and discusses why the
two-layer framework improves the performance. Section 5 con-
cludes the paper with discussion on future research.

2. Related work

In this section, we introduce related work of the BOF framework.
A traditional BOF framework generally consists of the following
stages:

(1) Extract local features: This step involves sampling local
patches and describing them via classic feature descriptors. Local
patches can be sampled in either a dense (with a fixed grid) or a
sparse (with feature detectors) way. One of the typical feature
descriptors is the scale-invariant feature transform (SIFT) descrip-
tor [10]. It describes a local area by accumulating pixel gradients
from each orientation weighted by their magnitude. In image
classification, the general operation usually divides orientations
into 8 bins in 16 sub-regions. Other typically used descriptors
include local binary pattern (LBP) [12] and histogram of gradients

(HOG) [11]. The inputs of this step are images, and the outputs are
feature vectors.

(2) Generate a codebook: This step generates a codebook via
learning from local features. For the computational efficiency,
usually a subset of descriptors are randomly selected from all feature
vectors obtained from the first step. The learning procedure is
often implemented by unsupervised learning, e.g., K-means [13],
or supervised learning [14]. Clustered centers are approximations of
features and are often called codewords. In general, performance
would be enhanced as the number of codewords becomes larger,
since feature appearance spans over a large space and more code-
words can present more sophisticated appearance of features. The
inputs of this step are feature vectors and the output is the codebook
consisting of codewords.

(3) Encode features: This step encodes local features to the
codewords. Each feature will activate its nearest codewords
measured in the feature space, and one or more codewords might
obtain responses. Many encoding methods have emerged since it
is not trivial to determine which codeword to activate as well as
the weight with it. The input of this step is the codebook and the
output is the coding vector. There are mainly five kinds of coding
methods [15].

� Voting-based methods [8,16] apply a histogram to approximate
the probability distribution of features. Each feature votes to its
nearest one or multiple codewords, and the weight with the
vote is obtained by hard quantization or soft quantization.

� Reconstruction-based methods [17–19] employ a subset of code-
words to reconstruct a feature. Penalty is added to assure that
few codewords are employed. So the optimization problem is
formulated with certain constraints on the codewords, and the
target is to minimize the reconstruction error. Sparse coding is
widely used in reconstruction-based methods, wherein con-
straint terms are the main differences among various methods
[20–26].

� Saliency-based coding [27] introduces the concept of codeword
saliency, which is measured by relative proximity of the closest
codeword compared with other codewords. Combining with
MAX pooling, only the strongest response is preserved, indicat-
ing that the codeword can independently describe the feature
without others.

� Local tangent-based coding [28] models features and code-
words based on the manifold theory. It is assumed that code-
words are located on the same smooth manifold constituted by
all features. The encoding is formulated by using codewords to
approximate the manifold. Lipschitz smooth function is applied
to express the feature manifold.

� Fisher coding [29] is based on the Fisher kernel, which uses the
gradient vector of its probability density function to describe a
signal. IFK [30] employs Gaussian Mixture Model to estimate
feature distributions. Each of the multiple Gaussian distribu-
tions reflects one pattern of features. Mean vector and covar-
iance matrix are used to encode features.

(4) Pool features: This step is implemented via pooling votes
obtained by each code. Typical pooling methods involve average
pooling by averaging all the votes and MAX pooling by picking the
most significant vote. One major drawback of pooling is that it
ignores the spatial distribution in the process of the descriptor
quantization. The problem can be partially resolved via spatial
pyramid matching (SPM) [31] and multiple spatial pooling (MSP)
[32]. SPM partitions an image into increasingly finer subregions
and then employs pooling independently in them, which accords
with the regular spatial structure of images from a particular
category. An in-depth research on pooling can be found in [33].
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Fig. 1. Different feature appearances formulate the same visual word histogram
after average pooling. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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Fig. 2. Max pooling ignores other significant responses. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)
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3. A hierarchical coding framework

In this section, the pipeline of our hierarchical coding frame-
work is firstly illustrated in Section 3.1. Then the details of
various embedded coding methods are respectively described in
Sections 3.2–3.4.

3.1. Pipeline of the hierarchical coding framework

The output of the coding stage is called the coding vector,
which records responses of one feature on all the codewords, as
shown in Fig. 3. In our proposed hierarchical framework, coding
vector of each local feature is deemed as a “higher level” feature.
All coding vectors are trained to generate the codebook, encoded
and pooled afterwards.

The detailed process is as follows: let X ¼ ½x1; x2;…; xN�ARD�N

denote N D-dimensioned features extracted from a single image,
B1 ¼ ½b1; b2;…; bM �ARD�M denote M codewords obtained via clus-
tering over features, and V ¼ ½v1; v2;…; vN � denote N coding vectors
obtained via encoding. After pooling, a final representation F of a
single image is obtained, F ¼ ½f 1; f 2;…; f M � is a vector of length M,
representing a distribution of visual codewords. Coding vectors V
obtained from the first layer is regarded as the second layer

features. Let B2 ¼ ½b01; b02;…; b0M0 �ARD0�M0
denote M0 codewords

obtained via clustering over V, where D0 ¼M is the dimension of
the second layer codewords. After pooling, another representation
F 0 of a single image is obtained, F 0 ¼ ½f 01; f 02;…; f 0M0 � is a vector of
length M0.

Fig. 4 illustrates the difference between our approach and the
traditional BOF framework.

3.2. Hierarchical voting-based coding

Voting-based coding methods approximate the probability
distribution of codewords by a histogram of votes. Hard voting
[8] only assigns each feature to their nearest codeword, then
denotes codewords' existence by simple 0/1 response, hence too
coarse to get higher accuracy. Instead, soft voting [16] (SV) applies
a kernel function to measure the similarity between features and
their nearest several codewords. In this paper, we combine our
framework with soft voting, and the coding strategy is as follows:

vðiÞ ¼ expð‖x�bi‖22=sÞ
∑K

k ¼ 1expð‖x�bk‖22=sÞ
; i¼ 1;2;…;M; ð1Þ

where x and b are feature and codeword respectively, ∑K
k ¼ 1

expð‖x�bk‖22=sÞ is the normalization factor, s is a smooth para-
meter and v¼ ½vð1Þ;…; vðMÞ� is the coding vector obtained by the
first layer. Recent work in [34] demonstrates that higher accuracy
is obtained when K is set to a small number rather than M. In the
second layer, the soft coding strategy is reproduced to formulate
a higher level representation:

v0ðiÞ ¼ expð‖v�b0i‖22=sÞ
∑K0

k ¼ 1expð‖v�b0k‖22=sÞ
; i¼ 1;2;…;M0: ð2Þ

Fig. 5 illustrates the pipeline of the proposed hierarchical
framework by voting-based coding. To better illustrate this,
assuming in the first layer a SIFT feature is extracted to describe
a patch, maintaining a pixel-level representation. After extracting
features and training them, the codebook of the first layer is
obtained. Next, each local feature (red square) constructs connec-
tions with its surrounding codewords (blue circle) in the proce-
dure of coding. After that, the pipeline of the second layer starts,
and connections (dashed rectangle) are trained to generate higher
level codewords (red diamond). The second layer framework will
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Fig. 3. Coding vectors are coupled after pooling (on the left), while they reflect
connections between features and codewords (on the right). (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this paper.)

Fig. 4. Comparison between (a) the traditional BOF framework and (b) the proposed hierarchical BOF framework.
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go through the pipeline the same as the original framework. After
pooling, representations of both layers are concatenated as the
input of the classifier.

3.3. Hierarchical saliency-based coding

Saliency-based coding [27] (SAC) approximates the salient
degree one codeword might have, relative proximity is used to
measure the salient degree. Despite the simplicity of SAC, results
demonstrate that it can compete with sparse coding [17] and
consumes less time. In traditional saliency coding, only the nearest
codeword receives the response of one feature. Recent work called
group saliency coding [35] (GSC) demonstrates that higher accu-
racy can be obtained if a group of codewords receive responses
together. Fig. 6 illustrates the coding strategy of group saliency
coding.

In this paper, we combine GSC with our framework, and the
coding strategy is as follows:

vðiÞ ¼maxfski g; k¼ 1;…;K

ski ¼
ψ kðxÞ if biAgðx; kÞ
0 otherwise

(

ψ kðxÞ ¼ ∑
Kþ1�k

j ¼ 1
‖x�bkþ j‖2�‖x�bk‖2 ð3Þ

where si
k is the ith entry of the coding result obtained with the

group size k, ψ kðxÞ is the function measuring the group saliency
degree, gðk; xÞ is the set of the k closest codewords of x, bi is the ith
nearest neighbouring codeword, K is the maximum group size,
and v¼ ½vð1Þ;…; vðMÞ� is the coding vector obtained by the
first layer. In the second layer, group saliency coding strategy is

reproduced to formulate a higher level representation:

v0ðiÞ ¼maxfs0ki g; k¼ 1;…;K

s0ki ¼ ψ 0kðxÞ if b0iAgðx; kÞ
0 otherwise

(

ψ 0kðxÞ ¼ ∑
Kþ1�k

j ¼ 1
‖v�b0 kþ j‖2�‖v�b0 k‖2: ð4Þ

3.4. Other hierarchical coding methods

It is evident that the hierarchical framework can also embed
other coding methods such as reconstruction-based methods (LCC
[18] and LLC [19]), fisher-kernel coding [29], and super vector
coding [36]. The implementation detail is similar with the hier-
archical framework mentioned above.

4. Experimental results and discussion

Our approach is evaluated on two databases: VOC07 [37] and
15 natural scenes [38]. To explore the compatibility of our
hierarchical framework with different coding strategies, we chose
three representative coding algorithms. The choice of the pooling
operation is based on previous evaluation rules [15]. They are:

1. Soft voting with the average pooling operation.
2. Group saliency coding with the max pooling operation.
3. Fisher coding with the average pooling operation.

In our hierarchical framework, coding strategies remain the
same as they are in the first layer:

1. Soft voting with the average pooling operation plus the second
layer representation.

2. Group saliency coding with the max pooling operation plus the
second layer representation.

3. Fisher coding with the average pooling operation plus the
second layer representation.

Our experimental settings are the following: gray SIFT descrip-
tors [10] are used to extract local features by dense sampling.
Three scales, 16�16, 24�24, 32�32, are adopted to extract
different sizes of features. For FK coding, visual codes are gener-
ated by GMM (Gaussian Mixture Model); for other methods, visual
codes are generated by the K-means clustering algorithm. The SPM
of ½1� 1;2� 2;1� 3� are adopted for both datasets, and Lib-linear
SVM [39] is employed for classification. All three coding strategies
are re-implemented in the same framework to achieve effective
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Fig. 6. Group saliency coding. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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comparison. Our results might be slightly different from those of
the original authors due to the implementation details.

4.1. PASCAL VOC07 dataset

The PASCAL VOC07 dataset [37] is one of the most challenging
datasets for image classification. It contains 9963 images origi-
nated from 20 classes including person, bicycle, bird, etc. The
dataset is challenging due to large variations of size, scale, view-
point, clutter and deformation. Training and testing images have
been carefully divided and the labels of testing images have been
released.

We firstly study the performance improved by the second layer
codebook. To focus on the second layer, we fix the first layer
codebook size to 32 and test the performance of both SV and GSC.
The result is shown in Fig. 7. For both SV and GSC, the overall
tendency is that more codewords generate better performance.
Because of the over-fitting effect, the accuracy of both coding
methods will decrease when the dimension of the representation
gets very large. The performance curve shows that SV is more
sensitive to the over-fitting effect than GSC. The performance of SV
stops increasing when the codebook size is 256, whereas the one
of GSC still increases until the codebook size reaches 4096.

Our next experiment is designed to reflect the overall tendency
of coding dimension. To make a universal comparison among
different codebook sizes, we uniformly set the second layer code-
book size 8 times of the first layer codebook size. The result is
shown in Fig. 8. For SV, the accuracy improves 0.82%, 1.01% and
0.71% in terms of first layer size 32, 128 and 512 respectively.

However, when the first layer codebook size reaches 2048, both
the baseline and hierarchical framework obtain the mean average
accuracy of 51.53%. For GSC, the hierarchical framework obtains
more improvement, i.e. 6.51%, 2.71% and 1.28% respectively in
terms of size 32, 128 and 512.

For both SV and GSC, the result shows that more improvement
is obtained when the first layer codebook size is small. Because a
small codebook size fails in providing accurate descriptions of
features, the hierarchical framework can complement more than
that of the large size codebook.

The dimension of Fisher coding based representation is propor-
tional to the production of the codebook size and feature dimen-
sion. We only test the case when the codebook size of both layers
are 16. Following the general operation of FK coding, we apply
Principle Component Analysis (PCA) [40] to the raw SIFT patch
of 128 dimensions, and obtain an 80-dimensioned vector. After
encoding, the coding vector would be 2560 (2�16�80) dimen-
sions. Since 2560 is too large for FK encoding, we apply PCA
again for dimension reduction. We test different levels of energy
preserved after PCA, i.e. different kinds of reduced dimensions.
Results demonstrate that the reduced dimension should be neither

Fig. 7. Influence of second layer codebook size when the first layer codebook size is set to 32. (a) SV on the VOC-07 dataset. (b) GSC on the VOC-07 dataset.

Fig. 8. Performance comparison of SV and GSC on the PASCAL VOC07 dataset.

Table 1
Performance of hierarchical FK coding with different feature dimensions in the
second layer on the VOC07 dataset (codebook sizes of both layers are 16).

Second layer feature dimension 80 320 640 960 1280 Baseline
MAP (%) 56.49 57.65 57.96 57.88 57.74 56.85
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too high nor too low. Mean average precision has been improved
to 57.65% when the reduced dimension is 320. Performance of
different second layer feature dimensions is listed in Table 1.

4.2. 15-Scenes dataset

The 15-Scenes dataset contains 4485 images in 15 categories of
natural and human scenes. Each category consists of 200–400
images. We follow the traditional experimental setup used in [31],
wherein 100 images are randomly selected from each category for
training and the rest for testing.

We test SV and GSC on the 15-Scenes dataset. The overall
tendency is similar to that displayed on the VOC07 dataset. The
smaller the codebook size, the greater enhancement can be
obtained by our framework. Moreover, GSC gets more improve-
ment than SV when the codebook size is small. The result is shown
in Fig. 9.

4.3. Discussion

While the traditional combination of coding and pooling ignores
the connections between features and codewords, our model is to
preserve and utilize the information contained by them. A strong
connection to one codeword means it could accurately describe a
feature, whereas a weak connection indicates the ambiguity of the
codeword. In our hierarchical model, connections recorded by the
coding vectors are deemed as “higher level” features. So it is
reasonable and nature to apply the BOW framework to the “higher
level” features. The experimental results validate our analysis espe-
cially when there are fewer codewords in the first layer. Because few
codewords provide only vague representations of visual features, the
distance (connection) between a feature and its surrounding code-
words falls in a wide range. So the coding histogram in the second
layer presents a more accurate representation measured in feature-
codeword distance (connection). That is why our hierarchical model
improves the performance.

5. Conclusion

In this paper, we have discussed the drawback caused by the
traditional combination of coding and pooling in the BOF frame-
work. Motivated by that, we have proposed a hierarchical frame-
work wherein coding vectors obtained in the first layer are treated
as higher level features. The hierarchical framework is flexible
wherein various coding and pooling methods can be easily
embedded. Experimental results have demonstrated that our

approach can effectively improve the accuracy for image classifi-
cation. In future, further efforts might be focused on two aspects:
(1) to overcome the drawbacks of coding and pooling, use
other methods to explore the information of feature-codeword
connections and (2) add more layers to formulate higher level
representation of an image.
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