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a b s t r a c t

This paper addresses the model-free nonlinear optimal control problem based on data by introducing
the reinforcement learning (RL) technique. It is known that the nonlinear optimal control problem relies
on the solution of the Hamilton–Jacobi–Bellman (HJB) equation, which is a nonlinear partial differential
equation that is generally impossible to be solved analytically. Evenworse, most practical systems are too
complicated to establish an accurate mathematical model. To overcome these difficulties, we propose a
data-based approximate policy iteration (API) method by using real system data rather than a system
model. Firstly, a model-free policy iteration algorithm is derived and its convergence is proved. The
implementation of the algorithm is based on the actor–critic structure, where actor and critic neural
networks (NNs) are employed to approximate the control policy and cost function, respectively. To
update the weights of actor and critic NNs, a least-square approach is developed based on the method of
weighted residuals. The data-based API is an off-policy RL method, where the ‘‘exploration’’ is improved
by arbitrarily sampling data on the state and input domain. Finally, we test the data-based API control
design method on a simple nonlinear system, and further apply it to a rotational/translational actuator
system. The simulation results demonstrate the effectiveness of the proposed method.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The nonlinear optimal control problemhas beenwidely studied
in the past few decades, and a large number of theoretical results
(Bertsekas, 2005; Hull, 2003; Lewis, Vrabie, & Syrmos, 2013) have
been reported. However, the main bottleneck for their practical
application is that the so-called Hamilton–Jacobi–Bellman (HJB)
equation should be solved. The HJB equation is a first order
nonlinear partial differential equation (PDE), which is difficult or
impossible to solve, and may not have global analytic solutions
even in simple cases. For linear systems, the HJB equation results
in an algebraic Riccati equation (ARE). In 1968, Kleinman (1968)
proposed a famous iterative scheme for solving the ARE, where it
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was converted to a sequence of linear Lyapunov matrix equations.
In Saridis and Lee (1979), the thought of the iterative scheme
was extended to solve the HJB equation, which was successively
approximated by a series of generalized HJB (GHJB) equations that
are linear PDEs. To solve the GHJB equation, Beard, Saridis, and
Wen (1997) proposed a Galerkin approximation approach where
a detailed convergence analysis was provided. By using a neural
network (NN) for function approximation, the iterative scheme
was further extended to constrained input systems (Abu-Khalaf
& Lewis, 2005). In Lin, Loxton, and Teo (2014); Wang, Gui, Teo,
Loxton, and Yang (2009), the control parameterization method
does not require the solution of the HJB equation, and can handle
state constraints, which furnishes an open-loop control rather
than a feedback control. However, most of these approaches are
model-basedwhich require an accuratemathematicalmodel of the
system.

With the fast development of science technologies, many in-
dustrial systems (such as systems in aeronautics and astronau-
tics, chemical engineering, mechanical engineering, electronics,
electric power, traffic and transportation) become more and more
complicated due to their large scale and complex manufacturing
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techniques, equipment andprocedures. One of themost prominent
features for these systems is the presence of vast volumeof data ac-
companied by the lack of an effective physical process model that
can support control design. Moreover, the accurate modeling and
identification of these systems are extremely costly or impossible
to conduct. On the other hand, with the development and exten-
sive applications of digital sensor technologies, and the availabil-
ity of cheapermeasurement and computing equipments, more and
more system information could be extracted for direct control de-
sign. Thus, the development of data-based control approaches for
practical systems is a promising, but still challenging research area.

Over the past few decades, the thought of reinforcement
learning (RL) techniques has been introduced to study the optimal
control problems (Al-Tamimi, Lewis, & Abu-Khalaf, 2008; Lewis &
Liu, 2013; Lewis, Vrabie, & Vamvoudakis, 2012; Luo, Wu, & Huang,
in press; Luo, Wu, & Li, in press, 2014; Si & Wang, 2001; Vrabie
& Lewis, 2009). RL methods have the ability to find an optimal
control policy in an unknown environment, which makes RL a
promisingmethod for data-based control design. For discrete-time
systems, many RL based optimal control approaches have been
developed, such as, heuristic dynamic programming (HDP) (Al-
Tamimi et al., 2008), direct HDP (Si & Wang, 2001), dual heuristic
programming (Heydari & Balakrishnan, 2013), and globalized DHP
algorithm (Wang, Liu, Wei, Zhao, & Jin, 2012). For continuous-
time systems, Vrabie and Lewis (2009) proposed a policy iteration
algorithm to solve the nonlinear optimal control problem online
along a single state trajectory. Vamvoudakis and Lewis (2010) gave
an online policy iteration algorithm which tunes synchronously
the weights of both actor and critic NNs for the nonlinear optimal
control problem. In Liu,Wang, and Li (2014), approximate dynamic
programming (ADP) was employed to design a stabilizing control
strategy for a class of continuous-time nonlinear interconnected
large-scale systems. But those methods are partially model-based
(Vrabie & Lewis, 2009) or completely model-based (Liu et al.,
2014; Vamvoudakis & Lewis, 2010). Recently, some data-based
RL methods have been reported. For example, data-based policy
iteration (Jiang & Jiang, 2012) and Q-learning (Lee, Park, & Choi,
2012) algorithms were developed for linear systems. Zhang, Cui,
Zhang, and Luo (2011) presented a data-driven robust approximate
optimal tracking control scheme for nonlinear systems, but it
requires a prior model identification procedure and the ADP
method is still model-based. Till present, the development of
model-free RL methods and theories for nonlinear continuous-
time optimal control problem remains an open issue, which
motivates the present study.

In this paper, we consider the optimal control problem of
continuous-time nonlinear systems with completely unknown
model, and develop a model-free approximate policy iteration
(API) method for learning the optimal control policy from real
system data. The rest of the paper is arranged as follows. The
problemdescription and some preliminary results are presented in
Sections 2 and 3. A data-basedAPImethod is developed in Section 4
and its effectiveness is tested in Section 5. Finally, a brief conclusion
is given in Section 6.

Notation. R,Rn and Rn×m are the set of real numbers, the n-
dimensional Euclidean space and the set of all real matrices,
respectively. ∥ · ∥ denotes the vector norm or matrix norm in Rn

or Rn×m, respectively. The superscript T is used for the transpose
and I denotes the identify matrix of appropriate dimension. ▽ ,
∂/∂x denotes a gradient operator notation. For a symmetric matrix
M,M > (≥)0 means that it is a positive (semi-positive) definite
matrix. ∥v∥2

M , vTMv for some real vector v and symmetric
matrix M > (≥)0 with appropriate dimensions. C1(X) is a
function space on X with first derivatives are continuous. Let
X and U be compact sets, denote D , {(x, u, x′)|x, x′

∈ X,
u ∈ U}. For column vector functions s1(x, u, x′) and s2(x, u, x′),
where (x, u, x′) ∈ D define the inner product ⟨s1(x, u, x′), s2(x, u,
x′)⟩D ,


D
sT1(x, u, x

′)s2(x, u, x′)d(x, u, x′) and the norm ∥s1(x, u,
x′)∥D , ⟨s1(x, u, x′), s1(x, u, x′)⟩

1/2
D .

2. Problem description

Let us consider the following continuous-time affine nonlinear
system:

ẋ(t) = f (x(t))+ g(x(t))u(t), x(0) = x0 (1)

where [x1 . . . xn]T ∈ X ⊂ Rn is the state, x0 is the initial state and
u = [u1 . . . um]

T
∈ U ⊂ Rm is the control input. Assume that

f (x) + g(x)u(t) is Lipschitz continuous on a set X that contains
the origin, f (0) = 0, and that the system is stabilizable on X,
i.e., there exists a continuous control function such that the system
is asymptotically stable on X. In this paper, system dynamics f (x)
and g(x) are unknown continuous vector or matrix functions of
appropriate dimensions.

The optimal control problem under consideration is to find a
state feedback control law u(t) = u∗(x) such that the system
(1) is closed-loop asymptotically stable, and the following infinite
horizon cost function is minimized:

V (x0) ,


∞

0


Q (x(t))+ ∥u(t)∥2

R


dt (2)

where R > 0 and Q (x) is a positive definite function, i.e., for
∀x ≠ 0,Q (x) > 0,Q (x) = 0 only when x = 0. Then, the optimal
control problem is briefly presented as

u(t) , u∗(x) , argmin
u

V (x0). (3)

3. Preliminary works

From the optimal control theory (Bertsekas, 2005; Lewis et al.,
2013), if the mathematical model of system (1) is completely
known, the optimal control problem (3) with cost function (2) can
be converted to solve the following HJB equation:

[∇V ∗(x)]T f (x)+ Q (x)

−
1
4
[∇V ∗(x)]Tg(x)R−1gT (x)∇V ∗(x) = 0 (4)

where V ∗(x) ∈ C1(X), V ∗(x) ≥ 0 and V ∗(0) = 0. Then, the
optimal controller (3) is given by

u∗(x) = −
1
2
R−1gT (x)∇V ∗(x). (5)

It is noted that the optimal control policy (5) depends on the
solution V ∗(x) of the HJB equation (4). However, the HJB equation
is a nonlinear PDE that is impossible to be solved analytically. To
obtain its approximate solution, in Saridis and Lee (1979), the HJB
equation (4)was successively approximated by a sequence of GHJB
equations as follows:

[∇V (i+1)
]
T (f + gu(i))+ Q (x)+ ∥u(i)∥2

R = 0 (6)

with

u(i) = −
1
2
R−1gT (x)∇V (i)(x). (7)

By providing an initial admissible control policy u(0) (see Defini-
tion 1 for admissible control), it has been proven in Saridis and Lee
(1979) that the solution of the iterative GHJB equation (6) will con-
verge to the solution of the HJB equation (4), i.e., limi→∞ V (i) = V ∗

and limi→∞ u(i) = u∗.
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Definition 1 (Admissible Control). For the given system (1), x ∈ X,
a control u(x) is defined to be admissible with respect to cost
function (2) on X, denoted by u(x) ∈ U(X), if, (1) u is continuous
on X, (2) u(0) = 0, (3) u(x) stabilizes the system, and (4) V (x) <
∞,∀x ∈ X. �

Remark 1. Note that the GHJB equation (6) is a Lyapunov function
equation,which is a linear PDEmuch simpler than theHJB equation
(4). But in Saridis and Lee (1979), no method has been provided to
solve the GHJB equation. Thus, Beard et al. (1997) used a Galerkin
approximation method to obtain the approximate solution of the
GHJB equation (6). However, this approach is completely model-
based. �

4. Data-based approximate policy iteration

Since the mathematical model of the system dynamics f (x)
and g(x) are completely unknown, the explicit expression of the
HJB equation (4) is unavailable. Thus, it is impossible to obtain
the solution of HJB equation with model-based approaches. To
overcome this problem, a data-based API algorithm is introduced
to learn the solution of the HJB equation (4) by using real system
data rather than a system model.

4.1. Derivation of data-based policy iteration

To derive the data-based API algorithm, rewrite the system
(1) as

ẋ = f + gu(i) + g[u − u(i)] (8)
for ∀u ∈ U. Let us consider V (i+1)(x), which is the solution of
the GHJB equation (6). By using (6) and (7), we take derivative of
V (i+1)(x)with respect to time along the state of system (8)

dV (i+1)(x)
dt

= [∇V (i+1)
]
T (f + gu(i))+ [∇V (i+1)

]
Tg[u − u(i)]

= −Q (x)− ∥u(i)∥2
R + 2[u(i+1)

]
TR[u(i) − u]. (9)

Integrating both sides of (9) on the interval [t, t + 1t] and
rearranging terms yields
V (i+1)(x(t))− V (i+1)(x(t +1t))

+ 2
 t+1t

t
[u(i+1)(x(τ ))]TR[u(i)(x(τ ))− u(τ )]dτ

=

 t+1t

t
[Q (x(τ ))+ ∥u(i)(x(τ ))∥2

R]dτ . (10)

In (10), V (i+1)(x) and u(i+1)(x) are the unknown function and vector
function to be determined, respectively. Given an initial admissible
control policy u(0), the problem of solving the GHJB equation (6)
for V (i+1)(x) is transformed to the problem of solving Eq. (10) for
V (i+1)(x) and u(i+1)(x). Compared with the GHJB equation (6), Eq.
(10) does not require the explicit mathematical model of system
(1), i.e., f (x) and g(x).

Remark 2. Note that in iterative equation (10), the system
dynamics f (x) and g(x) are not required. In fact, their information
is embedded in the measurement of the state x and control signal
u. Thus, the lack of information about the system model does
not have any impact on the model-free policy iteration algorithm
for learning the solution of the HJB equation and the optimal
control policy. The resulting control policy learns with the real
process behavior and thus does not suffer from model inaccuracy
or simplifications made in the design process. Furthermore,
in contrast to control methods based on the nonparametric
identification models, the issue of collecting system data is also
incorporated within the learning process and can be concentrated
on regions important to the control application. �
The convergence of the data-based policy iteration with (10) is
established in Theorem 1.

Theorem 1. Let V (i+1)(x) ∈ C1(X), V (i+1)(x) ≥ 0, V (i+1)(0) = 0
and u(i+1)(x) ∈ U(X). (V (i+1)(x), u(i+1)(x)) is the solution of
Eq. (10) iff (if and only if) it is the solution of the GHJB equations
(6) and (7), i.e., Eq. (10) is equivalent to theGHJB equation (6)with (7).

Proof. From the derivation of Eq. (10), it is concluded that if
(V (i+1), u(i+1)) is the solution of the GHJB equation (6) with (7),
then (V (i+1), u(i+1)) also satisfies Eq. (10). To complete the proof,
we have to show that (V (i+1), u(i+1)) is the unique solution of
Eq. (10). The proof is by contradiction.

Before starting the contradiction proof, we derive a simple fact.
Consider any function h̄(t), then

lim
1t→0

1
1t

 t+1t

t
h̄(τ )dτ

= lim
1t→0

1
1t

 t+1t

0
h̄(τ )dτ −

 t

0
h̄(τ )dτ


=

d
dt

 t

0
h̄(τ )dτ = h̄(t). (11)

From (10), we have

dV (i+1)(x)
dt

= lim
1t→0

1
1t


V (i+1)(x(t +1t))− V (i+1)(x(t))


= 2 lim

1t→0

1
1t

 t+1t

t
[u(i+1)(x(τ ))]TR[u(i)(x(τ ))− u(τ )]dτ

− lim
1t→0

1
1t

 t+1t

t
[Q (x(τ ))+ ∥u(i)(x(τ ))∥2

R]dτ . (12)

By using (11), Eq. (12) is rewritten as

dV (i+1)(x)
dt

= 2[u(i+1)(x(t))]TR[u(i)(x(t))− u(t)]

−Q (x(t))− ∥u(i)(x(t))∥2
R. (13)

Suppose that (W (x), v(x)) is another solution of Eq. (10), where
W (x) ∈ C1(X) with boundary condition W (0) = 0 and v(x) ∈

U(X). Thus, (W , v) also satisfies Eq. (13), i.e.,

dW (x)
dt

= 2[v(x(t))]TR[u(i)(x(t))− u(t)]

−Q (x(t))− ∥u(i)(x(t))∥2
R. (14)

Subtracting Eq. (14) from (13) yields,

d
dt


V (i+1)(x)− W (x)


= 2[u(i+1)(x(t))− v(x(t))]TR[u(i)(x(t))− u(t)]. (15)

This means that Eq. (15) holds for ∀u ∈ U. If letting u = u(i), we
have

d
dt


V (i+1)(x)− W (x)


= 0. (16)

This implies that V (i+1)(x)−W (x) = c for ∀x ∈ X, where c is a real
constant, and c = V (i+1)(0)−W (0) = 0. Then, V (i+1)(x)−W (x) =

0, i.e., V (i+1)(x) = W (x) for ∀x ∈ X. From (15), we have that

[u(i+1)(x(t))− v(x(t))]TR[u(i)(x(t))− u(t)] = 0

for ∀u ∈ U, thus u(i+1)(x) − v(x) = 0, i.e., u(i+1)(x) = v(x) for
∀x ∈ X. This completes the proof. �
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It follows from Theorem 1 that the data-based policy iteration
with Eq. (10) is equivalent to the iteration of Eqs. (6) and (7),
which is convergent as proved in Saridis and Lee (1979). Thus, the
convergence of the data-based policy iteration with Eq. (10) can be
guaranteed.

4.2. Actor–critic neural network structure

To solve Eq. (10) for V (i+1)(x) and u(i+1)(x) based on data
instead of a system model, we develop an actor–critic NN-based
approach, where critic and actor NNs are used to approximate cost
function V (i+1)(x) and control policy u(i+1)(x) respectively. From
the well known high-order Weierstrass approximation theorem
(Courant & Hilbert, 2004), it follows that a continuous function can
be represented by an infinite-dimensional linearly independent
basis function set. For real practical applications, it is necessary
to approximate the function in a compact set with a finite-
dimensional function set. We consider the critic and actor NNs for
approximating the cost function and control policy on a compact
set X. Let ϕ(x) , [ϕ1(x) . . . ϕLV (x)]

T be the vector of linearly
independent activation functions for critic NN, where ϕj(x) :

X → R, j = 1, . . . , LV , LV is the number of critic NN hide
layer neurons. Let ψ l(x) , [ψ l

1(x) . . . ψ
l
Lu(x)]

T , be the vector of
linearly independent activation functions of the l-th sub-actor NN
for approximating control ul, l = 1, . . . ,m, where ψ l

k(x) : X →

R, k = 1, . . . , Lu, Lu is the number of actor NN hide layer neurons.
Then, the outputs of critic and the l-th actor NNs are given by

V̂ (i)(x) =

LV
l=1

θ
(i)
V ,jϕj(x) = ϕT (x)θ (i)V (17)

û(i)l (x) =

Lu
k=1

θ
(i)
ul,k
ψ l

k(x) = (ψ l(x))T θ (i)ul (18)

for ∀i = 0, 1, 2, . . . , where θ (i)V , [θ
(i)
V ,1 . . . θ

(i)
V ,LV

]
T and

θ
(i)
ul , [θ

(i)
ul,1

. . . θ
(i)
ul,Lu

]
T are weight vectors of critic and actor NNs

respectively. Expression (18) can be rewritten as a compact form

û(i)(x) =


û(i)1 (x) . . . û

(i)
m (x)

T
=

(ψ1(x))T θ (i)u1 . . . (ψ

m(x))T θ (i)um

T
. (19)

To show the stability of closed-loop system with approximate
control policy û(i)(x), define estimation error as ϵ(i)u (x) , û(i)(x) −

u(i)(x). With the approximate control policy (19), the closed-loop
system is given by

ẋ = f (x)+ g(x)û(i)(x). (20)

Select V (i)(x) as the Lyapunov function candidate, where V (i)(x) is
the solution of the GHJB equation (6) with index i. By using (6),
differentiating V (i) with respect to system (20) yields

V̇ (i)(x) = [∇V (i)]T (f + gû(i))
= [∇V (i)]T [f + g(u(i) + ϵ(i)u )] + Q (x)

+ ∥u(i−1)
− u(i)∥2

R − Q (x)− ∥u(i−1)
− u(i)∥2

R

= [∇V (i)]T [f + g(u(i−1))] + Q (x)+ ∥u(i−1)
∥
2
R

+ [∇V (i)]Tgϵ(i)u − Q (x)− ∥u(i)∥2
R − ∥u(i−1)

− u(i)∥2
R

= [∇V (i)]Tgϵ(i)u − Q (x)− ∥u(i)∥2
R − ∥u(i−1)

− u(i)∥2
R. (21)

Assuming the following condition holds:

Q (x)+ ∥u(i)∥2
R + ∥u(i−1)

− u(i)∥2
R > [∇V (i)]Tgϵ(i)u (22)

then V̇ (i) 6 0 according to Eq. (21), i.e., the closed-loop system
(20) is asymptotically stable. Based on the uniform approximation
property (Courant & Hilbert, 2004) of NN, by choosing appropriate
activation function sets and their size Lu for NN, ϵ(i)u can be
arbitrarily small such that the condition (22) be satisfied.

Considering R = [rl1,l2 ]m×m, we have

∥u∥2
R = uTRu =

m
l1=1

m
l2=1

rl1,l2ul1ul2 . (23)

For notation simplicity, define x′(t) , x(t + 1t) for ∀t, 1t . Due
to estimation errors of the critic and actor NNs (17) and (18), the
replacement of V (i+1) and u(i+1) in the iterative equation (10) with
V̂ (i+1) and û(i+1) respectively, yields the following residual error:

σ (i)(x(t), u(t), x′(t)) , [ϕ(x(t))− ϕ(x′(t))]T θ (i+1)
V

+ 2
 t+1t

t
[u(i)(x(τ ))− u(τ )]TRu(i+1)(x(τ ))dτ

−

 t+1t

t
Q (x(τ ))dτ −

 t+1t

t
∥u(i)(x(τ ))∥2

Rdτ .

= [ϕ(x(t))− ϕ(x′(t))]T θ (i+1)
V + 2

m
l1=1

m
l2=1

rl1,l2

×

 t+1t

t
[u(i)l1 (x(τ ))− ul1(τ )]u

(i+1)
l2

(x(τ ))dτ

−

 t+1t

t
Q (x(τ ))dτ

−

m
l1=1

m
l2=1

rl1,l2

 t+1t

t
u(i)l1 (x(τ ))u

(i)
l2
(x(τ ))dτ

= [ϕ(x(t))− ϕ(x′(t))]T θ (i+1)
V + 2

m
l1=1

m
l2=1

rl1,l2

×

 t+1t

t
[(ψ l1(x(τ )))T θ (i)ul1

− ul1(τ )](ψ
l2(x(τ )))T θ (i+1)

ul2
dτ

−

 t+1t

t
Q (x(τ ))dτ −

m
l1=1

m
l2=1

rl1,l2

×

 t+1t

t
(θ (i)ul1

)Tψ l1(x(τ ))(ψ l2(x(τ )))T θ (i)ul2
dτ . (24)

For convenience, define

ρ1ϕ(x(t), x′(t)) ,

ϕ(x(t))− ϕ(x′(t))


(25)

ρQ (x(t)) ,

 t+1t

t
Q (x(τ ))dτ (26)

ρ
l1,l2
ψ (x(t)) ,

 t+1t

t
ψ l1(x(τ ))(ψ l2(x(τ )))Tdτ (27)

ρ
l1,l2
uψ (x(t), u(t)) ,

 t+1t

t
ul1(τ )(ψ

l2(x(τ )))Tdτ (28)

where l1, l2 = 1, . . . ,m. Then, expression (24) is rewritten as

σ (i)(x(t), u(t), x′(t)) = ρT
1ϕ(x(t), x

′(t))θ (i+1)
V

+ 2
m

l2=1


m

l1=1

rl1,l2

(θ (i)ul1

)Tρ
l1,l2
ψ (x(t))

− ρ
l1,l2
uψ (x(t), u(t))


θ (i+1)
ul2

− ρQ (x(t))



B. Luo et al. / Automatica 50 (2014) 3281–3290 3285
−

m
l1=1

m
l2=1

rl1,l2(θ
(i)
ul1
)Tρ

l1,l2
ψ (x(t))θ (i)ul2

= ρ(i)(x(t), u(t), x′(t))θ (i+1)
− π (i)(x(t)) (29)

where θ (i+1) , [(θ
(i+1)
V )T (θ

(i+1)
u1 )T . . . (θ

(i+1)
um )T ]T , π (i)(x(t)) , ρQ

(x(t)) +
m

l1=1
m

l2=1 rl1,l2(θ
(i)
ul1
)T ρ

l1,l2
ψ (x(t))θ (i)ul2

, ρ(i)(x(t),

u(t), x′(t)) , [ρT
1ϕ(x(t), x

′(t)) 2ρ(i)1uψ (x(t), u(t)) . . . 2ρ(i)muψ (x(t),

u(t))], with ρ(i)l2uψ (x(t), u(t)) ,
m

l1=1 rl1,l2 [(θ
(i)
ul1
)Tρ

l1,l2
ψ (x(t)) −

ρ
l1,l2
uψ (x(t), u(t))].

For description simplicity, denote ρ(i) = [ρ
(i)
1 . . . ρ

(i)
L ], where

L , LV + mLu is the length of the vector ρ(i). Based on the method
of weighted residuals (Finlayson, 1972), the unknown critic NN
weight vector θ (i+1) can be computed in such a way that the
residual error σ (i)(x, u, x′) (for ∀t ≥ 0) of (29) is forced to be
zero in some average sense. Thus, we project the residual error
σ (i)(x, u, x′) onto dσ (i)/dθ (i+1) and set the result to zero on domain
D using the inner product, ⟨·, ·⟩D , i.e.,
dσ (i)/dθ (i+1), σ (i)(x, u, x′)


D

= 0. (30)

Then, the substitution of (29) into (30) yields
ρ(i)(x, u, x′), ρ(i)(x, u, x′)


D
θ (i+1)

−

ρ(i)(x, u, x′), π (i)(x)


D

= 0

where the notations

ρ(i), ρ(i)


D

and

ρ(i), π (i)


D

are given by


ρ(i), ρ(i)


D

,



ρ
(i)
1 , ρ

(i)
1


D

· · ·


ρ
(i)
1 , ρ

(i)
L


D

... · · ·
...

ρ
(i)
L , ρ

(i)
1


D

· · ·


ρ
(i)
L , ρ

(i)
L


D


and


ρ(i), π (i)


D

,

ρ
(i)
1 , π

(i)

D

· · ·


ρ
(i)
L , π

(i)

D

T
.

Thus, θ (i+1) can be obtained with

θ (i+1)
=

ρ(i)(x, u, x′), ρ(i)(x, u, x′)

−1
D

ρ(i)(x, u, x′), π (i)(x)

D
. (31)

Note that the computation of

ρ(i)(x, u, x′), ρ(i)(x, u, x′)


D

and
ρ(i)(x, u, x′), π (i)(x)


D

involves many numerical integrals on the
domainD , which are computationally expensive. Thus, theMonte-
Carlo integration method (Peter Lepage, 1978) is introduced,
which is especially competitive on multi-dimensional domains.
We now illustrate the Monte-Carlo integration for computing
ρ(i)(x, u, x′), ρ(i)(x, u, x′)


D
. Let ID ,


D
d(x, u, x′), and SM ,

{(xk, uk, x′

k) |(xk, uk, x′

k) ∈ D, k = 1, 2, . . . ,M} be the set sampled
on domain D , where M is the size of the sample set SM . Then,
ρ(i)(x, u, x′), ρ(i)(x, u, x′)


D

is approximately computed with
ρ(i)(x, u, x′), ρ(i)(x, u, x′)


D

=


D


ρ(i)(x, u, x′)

T
ρ(i)(x, u, x′)d(x, u, x′)

=
ID
M

M
k=1


ρ(i)(xk, uk, x′

k)
T
ρ(i)(xk, uk, x′

k)

=
ID
M


Z (i)
T

Z (i) (32)
where Z (i) ,

ρ(i)(x1, u1, x′

1)
T
. . .


ρ(i)(xM , uM , x′

M)
TT

.
Similarly,
ρ(i)(x, u, x′), π (i)(x)


D

=
ID
M

M
k=1


ρ(i)(xk, uk, x′

k)
T
π (i)(xk)

=
ID
M


Z (i)
T
η(i) (33)

where η(i) ,

π (i)(x1) . . . π (i)(xM)

T . The substitution of (32) and
(33) into (31) yields,

θ (i+1)
=


Z (i)
T

Z (i)
−1 

Z (i)
T
η(i). (34)

The data set SM is collected from real system on domain D ,
which is sampled arbitrary such that the domain D can be
covered adequately. Based on the sample set SM and (25)–(28),
and using trapezoidal rule for approximating definite integrals,
ρ1ϕ(xk, x′

k), ρQ (xk), ρ
l1,l2
ψ (xk) and ρ

l1,l2
uψ (xk, uk) (k = 1, . . . ,M) can

be numerically computed with ρ1ϕ(xk, x′

k) =

ϕ(xk)− ϕ(x′

k)

,

ρQ (xk) =
1t
2 [Q (xk) + Q (x′

k)], ρ
l1,l2
ψ (xk) =

1t
2 [ψ l1(xk)(ψ l2(xk))T +

ψ l1(x′

k)(ψ
l2(x′

k))
T
] and ρ

l1,l2
uψ (xk, uk) =

1t
2 [uk,l1(ψ

l2(xk))T +

uk,l1(ψ
l2(x′

k))
T
]. Then, after Z (i) and η(i) are computed, θ (i+1) can

be obtained accordingly.

Remark 3. Note that Z (i) ∈ R(M×L), where L represents the number
of unknownparameters. The least-squaremethod (34) requires the
inverse of matrix (Z (i))TZ (i), then Z (i) should be full column rank,
and its rank would be rank(Z (i)) = L, which is the standard for
determining the size M of sample set SM . Thus, M > L, i.e., the
lower bound of M is L. In practical implementation, to achieve
rank(Z (i)) = L, two ways could be useful. (1) Increase the size of
sample set SM such thatM > L. (2) The input signal is expected to
be chosen such that it is persistent exciting (but is not a necessity),
which is similar with the issue of ‘‘exploration’’ (will be discussed
in Section 4.3) in the machine learning community. �

4.3. Data-based API with off-policy implementation algorithm

In Section 4.2, the developed least-square scheme is designed
only for solving one iterative equation (10). Now, we present a
complete data-based API algorithm procedure as follows:

Algorithm 1. Data-based API algorithm.

• Step 1: With different input signal u, collect real system data
(xk, uk, x′

k) for sample set SM , and compute ρ1ϕ(xk, x′

k), ρQ (xk),
ρ
l1,l2
ψ (xk) and ρ

l1,l2
uψ (xk, uk);

• Step 2: Let the initial actor NNweight vector θ (0)ul (l = 1, . . . ,m)
such that û(0) ∈ U(X), and the initial critic NN weight θ (0)V = 0.
Let i = 0;

• Step 3: Compute Z (i) and η(i), and update θ (i+1) with (34);
• Step 4: Let i = i + 1. If ∥θ (i) − θ (i−1)

∥ ≤ ξ (ξ is a small positive
number), stop iteration and θ (i) is employed to obtain the final
control policywith (19), else go back to Step 3 and continue. �

Remark 4. It is found that the data-based API algorithm uses real
system state and input information of the closed-loop system
instead of a dynamicmodel, for learning the optimal control policy
(5) and the solution of the HJB equation (4). The procedure of the
API algorithm can be divided into a preparation part and an offline
control design part. (1) Step 1 is the preparation part for data
processing. By collecting system state and input signal, compute
ρ1ϕ(xk, x′

k), ρQ (xk), ρ
l1,l2
ψ (xk) and ρ l1,l2

uψ (xk, uk), and then prepare
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for iteration. In fact, the information of the system dynamics
is embedded in the data measured, and thus explicit system
identification is avoided. (2) Steps 2–4 are the offline part for
iterative learning the optimal control policy and the solution of HJB
equation. After the iterations have converged, the resulting actor
NN weight is applied to obtain the optimal control policy for real
control. �

Remark 5. In the optimal control community, bang–bang control
is a popular method applied in practice. It is noted that the
bang–bang control signal is of discontinuous form, while the
proposed data-based API algorithm requires a continuous control
law. Thus, the data-based API algorithm may not be directly
applied to the bang–bang control design. On the other hand, for
the optimal control problem of practical systems, many issues
are expected to be involved, such as state constraints, input
constraints, external disturbance, and uncertainties. Due to the
complexity and difficulty of the control design when considering
these issues, this paper is concerned only with the optimal
control problem of affine nonlinear systems without involving
these issues. Moreover, it is still theoretically unclear whether the
proposed data-based API algorithm can be extended to solve these
problems or not, and thus they are left for future investigation. �

Remark 6. Observe that the data-based API (i.e., Algorithm 1) is an
‘‘off-policy’’ learning method (Luo, Wu, & Huang, in press; Precup,
Sutton, & Dasgupta, 2001; Sutton & Barto, 1998), whichmeans that
cost function V (i+1)(x) of control policy u(i)(x) can be evaluated
by using system data generated with different control policies
u. Off-policy learning, the ability for an agent to learn about an
optimal policy rather than the one it is following (Luo, Wu, &
Huang, in press; Precup et al., 2001; Sutton & Barto, 1998), is a
key element of reinforcement learning. The rationality of using the
‘‘off-policy’’ learning method is that it can overcome the difficulty
of inadequate exploration, which widely exists in reinforcement
learning approaches. Generally, to evaluate the cost function of
a control policy µ, it needs to generate system data using policy
µ. This biases the learning process by under-representing states
that are unlikely to occur under µ. As a result, the estimated
cost function of these underrepresented states may be highly
inaccurate, and seriously impact the improved policy, which is
known as inadequate exploration. For the proposed data-based
policy iteration algorithm, the control u and state x can be selected
arbitrarily on U and X, which greatly increases the ‘‘exploration’’
ability during the learning process. �

Remark 7. Most recently, we noted that similar expressions like
(10) has been reported in Jiang and Jiang (2014, 2013). Even
though, there are severalmain contributions and differences of this
paper compared with the work in Jiang and Jiang (2014, 2013).
1. In Theorem 1, it is proved that the iterative equation (10) is
theoretically equivalent to the iterative equations (6) and (7), and
the uniqueness of its solution is also demonstrated clearly. Thus,
the solution of the iterative equation (10) will converge to the
solution of the HJB equation (4). 2. Under the consideration of
NN estimation errors, the NN weight vector update rule (34) is
derived rigorously with the method of weighted residuals. 3. The
methods in Jiang and Jiang (2014, 2013) are online adaptive control
approaches,which learn the cost function and control policy online
by using system data generated along the neighborhood of a single
signal trajectory, and thus will result in deficiency of inadequate
exploration as described in Remark 6. The inadequate exploration
problem is a particularly difficult issue in RL methods, which is
rarely discussed in the existing works using RL techniques for
optimal control design. In this paper, the interesting off-policy
RL framework is introduced for developing a data-based API
Fig. 1. For example 1, two representative critic NN weights θ (i)V ,1 and θ (i)V ,3 .

algorithm (i.e., Algorithm 1), which learns the cost function and
control policy offline, and then the convergent control policy can
be employed for real time control. According to the method of
weighted residuals described in Section 4.2, the system data for
Algorithm 1 can be selected arbitrary on domain D , which implies
that the data can be collected fromdifferent signal trajectories such
that the domain D be covered adequately, and thus inadequate
exploration problem is overcome. �

5. Simulation studies

In this section, we first test the effectiveness of the developed
data-based API algorithm on a simple nonlinear numerical system,
and further apply it to the complex RTAC nonlinear benchmark
problem.

5.1. Example 1: effectiveness test on a simple nonlinear numerical
system

The numerical example is constructed by using the converse
HJB approach (Nevistić & Primbs, 1996). The systemmodel is given
as follows:

ẋ =


−x1 + x2

−0.5(x1 + x2)+ 0.5x21x2


+


0
x1


u,

x0 =


0.1
0.1


.

(35)

With the choice of Q (x) = xT x and R = I in the cost function
(2), the solution of the associated HJB equation (4) is V ∗(x) =

0.5x21 + x22, and thus u∗(x) = −x1x2.
In the data-based API algorithm, select the critic NN activation

function vector as ϕ(x) = [x21 x1x2 x22]
T with the size of LV = 3,

actor NN activation function vector as ψ(x) = [x1 x2 x21 x1x2 x22]
T

with the size of Lu = 5, and the initial actor NN weight vector
θ
(0)
u = [−5 − 5 − 5 − 5 − 5]T . Since V ∗(x) = 0.5x21 + x22 and

u∗(x) = −x1x2, the optimal critic and actor NN weight vectors are
θ∗

V = [0.5 0 1]T and θ∗
u = [0 0 0 − 1 0]T , respectively.

After collecting sample set SM and computing ρ1ϕ (xk, x′

k),

ρQ (xk), ρ l
ψ (xk), ρ

l
uψ (xk, uk), offline iteration (i.e., Steps 2–4) is

used to learn the optimal control policy. Setting the value of the
convergence criterion ξ = 10−5, it is found that the critic and
actor NN weight vectors converge respectively to θ∗

V and θ∗
u , at

the 5th iteration. Fig. 1 shows two representative critic NNweights
θ
(i)
V ,1 and θ

(i)
V ,3, and Fig. 2 shows two representative actor NNweights

θ
(i)
u,1 and θ (i)u,4, wherein the dashed lines are optimal values of the

weights. By using the converged actor NNweights θ (5)u , closed-loop
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Fig. 2. For example 1, two representative actor NN weights θ (i)u,1 and θ (i)u,4 .

simulation is conducted with control policy of (19), and the real
cost (2) is 0.0150. Thus, the simulation on this simple nonlinear
system demonstrates the effectiveness of the developed data-
based API algorithm.

5.2. Example 2: application to the RTAC nonlinear benchmark
problem

The rotational/translational actuator (RTAC) nonlinear bench-
mark problem has been widely used to test the abilities of control
methods. The dynamics of this nonlinear plant poses challenges as
the rotational and translation motions are coupled. The RTAC sys-
tem is given as follows:

ẋ =



x2
−x1 + ζ x24 sin x3
1 − ζ 2 cos2 x3

x4
ζ cos x3(x1 − ζ x24 sin x3)

1 − ζ 2 cos2 x3

+



0
−ζ cos x3

1 − ζ 2 cos2 x3
0
1

1 − ζ 2 cos2 x3

 u,
x0 = [0.2 − 0.2 0.2 − 0.2]T (36)

where ζ = 0.2. Let Q (x) = xT x and R = I in the cost function (2).
To learn the optimal control policy with the data-based API

algorithm, select the critic NN activation function vector as
ϕ(x) = [x21 x1x2 x1x3 x1x4 x22 x2x3 x2x4 x23 x3x4 x24 x31 x32 x33 x34
x41 x42 x43 x44]

T with the size of LV = 18, actor NN activation
function vector as ψ(x) = [x1 x2 x3 x4 x21 x1x2 x1x3 x1x4 x22 x2x3
x2x4 x23 x3x4 x24 x31 x32 x33 x34]

T with the size of Lu = 18, and initial
actor NN weight vector as θ (0)u = [6.1302 − 0.4006 − 5.0000 −

9.3413 0 0 0 0 0 0 0 0 0 0 0 0 0 0]T . After the preparation part of
Algorithm1 is completed, offline iteration (i.e., Steps 2–4) is used to
learn the optimal control policy. Setting the value of convergence
criterion ξ = 10−5, it is observed that at the 8th iteration, the critic
NNweight vector converges to θ (8)V = [13.2386−0.9901 0.1641−

2.5512 13.3557 2.8576 5.4960 1.8723 2.4949 2.3443 0.0108 −

0.0015 0.0260 0.0019 − 0.7807 0.8968 0.5084 0.0126]T and the
actor NN weight vector converges to θ (8)u = [1.2250 − 0.0817 −

1.0011 −1.8698 0.0186 −0.0037 −0.0015 −0.0016 −0.0091 −

0.0106 − 0.0081 − 0.0047 − 0.0003 − 0.0038 0.9607 0.4003 −

0.4773 − 0.0162]T . Fig. 3 shows six representative critic NN
weights θ (i)V ,1, θ

(i)
V ,4, θ

(i)
V ,5, θ

(i)
V ,8, θ

(i)
V ,10 and θ (i)V ,18, and Fig. 4 gives six

representative actor NNweights θ (i)u,1, θ
(i)
u,2, θ

(i)
u,3, θ

(i)
u,4, θ

(i)
u,10 and θ

(i)
u,17.

By using the convergent actor NN weights, closed-loop simulation
is conductedwith control policy (19), and the real cost (2) is 1.3862.
Figs. 5 and 6 demonstrate the state trajectories and control action,
respectively.

6. Conclusions

Themodel-free optimal control problemof nonlinear continuous-
time systems is addressed by proposing a data-based API algo-
rithm, and its convergence is proved. The data-based API method
learns the solution of the HJB equation and the optimal control pol-
icy from real system data instead of a mathematical model. Based
on the actor–critic-NN structure, the algorithm implementation
procedure is developed under the off-policy RL framework, which
contains a preparation part for data processing, and an offline part
Fig. 3. For example 2, six representative critic NN weights θ (i)V ,1, θ
(i)
V ,4, θ

(i)
V ,5, θ

(i)
V ,8, θ

(i)
V ,10 and θ (i)V ,18 .
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Fig. 4. For example 2, six representative actor NN weights θ (i)u,1, θ
(i)
u,2, θ

(i)
u,3, θ

(i)
u,4, θ

(i)
u,10 and θ (i)u,17 .
Fig. 5. For example 2, the system state trajectories.
for iterative learning the optimal critic and actor NN weight vec-
tors. The applications on a simple nonlinear numerical system and
a RTACbenchmark systemdemonstrate the effectiveness of the de-
veloped data-based API optimal control design method.
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Fig. 6. For example 2, the trajectory of control action.
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