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Abstract—In this paper, we develop an integral reinforcement
learning algorithm based on policy iteration to learn online the
Nash equilibrium solution for a two-player zero-sum differential
game with completely unknown linear continuous-time dynamics.
This algorithm is a fully model-free method solving the game alge-
braic Riccati equation forward in time. The developed algorithm
updates value function, control and disturbance policies simulta-
neously. The convergence of the algorithm is demonstrated to be
equivalent to Newton’s method. To implement this algorithm, one
critic network and two action networks are used to approximate
the game value function, control and disturbance policies, respec-
tively, and the least squares method is used to estimate the un-
known parameters. The effectiveness of the developed scheme is
demonstrated in the simulation by designing an state feed-
back controller for a power system.

Note to Practitioners—Noncooperative zero-sum differential
game provides an ideal tool to study multiplayer optimal decision
and control problems. Existing approaches usually solve the Nash
equilibrium solution by means of offline iterative computation,
and require the exact knowledge of the system dynamics. However,
it is difficult to obtain the exact knowledge of the system dynamics
for many real-world industrial systems. The algorithm devel-
oped in this paper is a fully model-free method which solves the
zero-sum differential game problem forward in time by making
use of online measured data. This method is not affected by errors
between an identification model and a real system, and responds
fast to changes of the system dynamics. Exploration signals are
required to satisfy the persistence of excitation condition to update
the value function and the policies, and these signals do not affect
the convergence of the learning process. The least squares method
is used to obtain the approximate solution for the zero-sum games
with unknown dynamics. The developed algorithm is applied
to a load-frequency controller design for a power system whose
parameters are not known a priori. In future research, we will
extend the results to zero-sum and nonzero-sum differential games
with completely unknown nonlinear continuous-time dynamics.

Index Terms—Adaptive critic designs, adaptive dynamic pro-
gramming, approximate dynamic programming, reinforcement
learning, policy iteration, zero-sum games.
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I. INTRODUCTION

A DAPTIVE DYNAMIC PROGRAMMING (ADP)
[1]–[4] and reinforcement learning (RL) [5] have re-

ceived significantly increasing attention as machine learning
and optimization methods. These algorithms can solve the
optimal control problem forward in time by making use of
online measured data, while the exact knowledge of the system
dynamics is not required. For discrete-time dynamical systems,
ADP and RL have obtained great success in both theories
[6]–[15] and applications [16]–[25]. He et al. [26], [27] pro-
posed a dual critic network design that contains the internal
goal representation to help approximate the value function.
For continuous-time dynamical systems, Doya [28] pre-

sented RL framework without a prior discretization of time,
state and control. Vamvoudakis and Lewis [29] proposed a
synchronous policy iteration (PI) algorithm for learning online
the continuous-time optimal control with known dynamics,
where both action and critic neural networks were simulta-
neously tuned. Zhang et al. [30] extended the synchronous
PI algorithm to the optimal tracking problem for unknown
nonlinear systems, and added a robust term to compensate for
the neural network approximation errors. Bhasin et al. [31]
presented an actor-critic-identifier structure to implement the
PI algorithm without the requirement of complete knowledge
of the dynamics. However, the technique by identifying the
system parameters responds slowly to parameter variations
from the plant. A pioneering work was that Vrabie et al.
derived an integral RL algorithm to obtain direct adaptive
optimal control for partially unknown linear [32] and nonlinear
systems [33]. It is more meaningful to develop adaptive optimal
control algorithms for completely unknown systems without
identification. Mehta and Meyn [34] established connections
between Q-learning and nonlinear optimal control of contin-
uous-time models, and proposed continuous-time Q-learning
for completely unknown systems. Lee et al. [35] derived an
integral Q-learning for linear continuous-time systems without
the knowledge of the system dynamics. Jiang and Jiang [36]
presented a computational adaptive optimal control algorithm
for linear continuous-time systems with completely unknown
system dynamics. The algorithms in [35] and [36] have sim-
ilar properties, and they are similar to the action-dependent
heuristic dynamic programming for unknown discrete-time
systems [16].
Game theory provides an ideal environment to study multi-

player optimal decision and control problems. Two-player non-
cooperative zero-sum differential game [37] has received much
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attention since it provides the solution of the optimal con-
trol [38]. The Nash equilibrium solution is usually obtained by
means of offline iterative computation, and the exact knowledge
of the system dynamics is required. For linear discrete-time sys-
tems, Al-Tamimi et al. [39] solved online the zero-sum game
using ADP methods, and proposed a model-free Q-learning it-
erative algorithm [40]. Kim and Lewis [41] presented a model-
free control algorithm by using Q-learning with linear ma-
trix inequalities.
For nonlinear continuous-time systems, Abu-Khalaf et al.

[42], [43] derived a two-player PI to design an suboptimal
state feedback controller. Zhang et al. [44] used four action
networks and two critic networks to obtain the saddle point so-
lution of the game. Vamvoudakis and Lewis [45] presented an
online synchronous PI to solve the two-player zero-sum game
with known dynamics. In [46], the Hamilton–Jacobi–Isaacs
(HJI) equation was solved online using a novel single approxi-
mator-based scheme to achieve optimal regulation and tracking
control of affine nonlinear continuous-time systems. In [47],
a neural-network-based online simultaneous policy update
algorithm with only one iterative loop was proposed to solve
the HJI equation for partially unknown systems, and the con-
vergence was established by proving that it was mathematically
equivalent to Newton’s method.
When the system has linear dynamics and the performance

index is quadratic, finding the Nash equilibrium of the zero-sum
game problem reduces to solving the game algebraic Riccati
equation (GARE). Vrabie and Lewis [48] proposed an online
data-based ADP algorithm based on the idea of integral RL for
two-player zero-sum differential games without requiring the
knowledge of internal system dynamics. The algorithm leads to
the equilibrium solution of the Nash game while only one of
the players actively learns to optimize its policy and the other
passively plays based on fixed policies. There are two itera-
tive loops, thus the method is often time-consuming [49]. Wu
and Luo [49] proposed an online simultaneous policy update
algorithm for state feedback control to improve the effi-
ciency by updating policies of both control player and distur-
bance player simultaneously, where only one iterative loop was
involved. It should be mentioned that the methods above only
relax the requirement of exact knowledge on the internal system
dynamics.
However, for many practical problems, it is difficult for us

to obtain the knowledge of the system dynamics. Hence, the
ADP methods mentioned above cannot be directly applied to
zero-sum games with completely unknown dynamics. In this
paper, we develop an online integral RL algorithm to learn the
Nash equilibrium solution for a two-player zero-sum linear dif-
ferential game with completely unknown dynamics. It results in
a fully model-free method solving the GARE forward in time
for the first time, where both internal and drift system dynamics
are not required. The developed algorithm updates value func-
tion, control and disturbance policies simultaneously. The con-
vergence of the algorithm is demonstrated to be equivalent to
Newton’s method. To implement this algorithm, one critic net-
work and two action networks are used to approximate the game
value function, control and disturbance policies, respectively,
and the least squares method is used to estimate the unknown
parameters.

The rest of this paper is organized as follows. Section II
provides the formulation of a two-player zero-sum differential
game. In Section III, we first develop a model-free integral RL
for zero-sum games, then provide the convergence analysis, and
finally give the least squares method to estimate the unknown
parameters. Section IV presents a simulation example in power
systems to demonstrate the effectiveness of the developed
algorithm and is followed by concluding remarks in Section V.
Notations: , and are the set of positive real

numbers, the -dimensional Euclidean space and the set of all
real matrices, respectively. denotes the vector norm
or matrix norm in or . denotes the -dimensional
identity matrix. Denote the set of nonnegative integers. Use

for as a vectorization map from a matrix
into an -dimensional column vector which stacks the column
of on top of one another. For and , we
let be a Kronecker product of and . The superscript
is used for the transpose. denotes

a gradient operator notation.

II. PROBLEM FORMULATION

Consider a class of linear continuous-time dynamical systems
described by

(1)

where is the system state with initial state is
the control input, and is the external disturbance input
with . , and
are unknown system matrices.
Define the infinite horizon performance index

(2)

with , and a prescribed constant
, where denotes the smallest for which the

system (1) is stabilized. For feedback policy and distur-
bance policy , we define the value function of the policies
as

(3)

Then, we define the two-player zero-sum differential game as

where the control policy player seeks to minimize the perfor-
mance index, while the disturbance policy player desires to
maximize it. The goal is to find the saddle point which
satisfies the following inequalities:

for any state feedback control policy and disturbance policy
.



708 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 11, NO. 3, JULY 2014

We use notations and for the state feed-
back control policy and the disturbance policy, respectively.
Then, the value function (3) can be represented as

, where the matrix is determined by and . The
saddle point can be obtained by solving the following contin-
uous-time GARE [37]:

(4)

Defining as the unique positive definite solution of (4), the
saddle point of the zero-sum game is

(5)

(6)

and the game value function is

The solution of the control problem can be obtained by
solving the saddle point of the equivalent two-player zero-sum
game problem. The following norm (the -gain) is used
to measure the performance of the control system.
Definition 1: Let be certain prescribed level of distur-

bance attenuation. The system (1) is said to have -gain less
than or equal to if

(7)

for all .
The control problem is to find a state feedback con-

trol policy such that the closed-loop system is asymptotically
stable and satisfies the condition (7). For every , the
GARE has a unique positive definite solution [37].
A stabilizing control policy exists with the following stan-

dard assumptions: The pair is stabilizable and the pair
is observable.

III. MAIN RESULTS

The methods for solving the GARE of a linear zero-sum dif-
ferential game can be classified into: online or offline algo-
rithms and algorithms with one or two iterative loops. The of-
fline methods [43] require complete knowledge of the system
dynamics. The algorithms with two iterative loops [48] have
lower efficiency than those with one iterative loop [49]. The on-
line simultaneous policy update algorithm proposed in [49] has
only one iterative loop, but it requires the input gain matrix. On
the other hand, an integral Q-learning algorithm [35], [36] was
proposed to solve the adaptive optimal control of linear con-
tinuous-time systems with completely unknown dynamics. In
this section, we first develop an online model-free integral RL
algorithm for the linear continuous-time zero-sum game with
completely unknown systems.We then provide the convergence
analysis, and finally present the online implementation using the
least squares method.

A. Model-Free Integral RL for Zero-Sum Games

In this part, we will develop an online model-free integral
RL algorithm for the linear continuous-time zero-sum differ-
ential game with completely unknown dynamics. First, we as-
sume an initial stabilizing control matrix to be known. De-
fine , and as the
value function, control policy and disturbance policy, respec-
tively, for each iterative step .
To relax the assumptions of exact knowledge of , and
, we use and to denote the exploration signals added

to the control policy and disturbance policy , respectively.
The exploration signals are assumed to be any nonzero measur-
able signal which is bounded by , i.e.,

. Then, the original system (1) becomes

(8)

The derivative of the value function with respect to time is cal-
culated as

(9)

Integrating (9) from and with any time interval ,
we have

where the values of the state at time and are denoted
with and . Therefore, we obtain the online model-free
integral RL algorithm (Algorithm 1) for zero-sum differential
games.

Algorithm 1: Online Model-Free Integral RL for Zero-Sum
Games

Step 1. Give an initial stabilizing policy and
. Set and .

Step 2. (Policy Evaluation and Improvement)
For the system (8) with policies and

, and exploration signals and , solve
the following equation for and

(10)

Step 3. If ( is a prescribed small positive
real number), stop and output ; else, set
and go to Step 2.

Remark 1: Equation (10) plays an important role in relaxing
the assumption of the knowledge of system dynamics, since
, and do not appear in (10). Only online data measured
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along the system trajectories are required to run this algorithm.
The exploration signals can satisfy the persistence of excitation
(PE) condition to efficiently update the value function and the
policies.
Remark 2: Our method avoids the identification of ,

and whose information is embedded in the online measured
data. In other words, the lack of knowledge about the system
dynamics does not have any impact on our method to obtain the
Nash equilibrium. Thus, our method will not be affected by the
errors between the identification model and the real system, and
it can respond fast to changes of the system dynamics.
Remark 3: This algorithm is actually a PI method, but the

policy evaluation and improvement are performed at the same
time. Compared with the model-based method [45] and partially
model-free method [49], our algorithm is a fully model-free
method which does not require knowledge of the system dy-
namics. Different from the iterative method with inner loop on
disturbance policy and outer loop on control policy [45], and
the method with only one iterative loop by updating control and
disturbance policies simultaneously [49], the developed method
here updates the value function, control and disturbance policies
at the same time. Hence, our method will have higher efficiency.
Remark 4: The PE condition in adaptive control is very sim-

ilar to the exploration and exploitation in RL. To guarantee the
PE condition, the state may need to be reset during the iterative
process, but it results in technical problems for stability analysis
of the closed-loop system. An alternative way is to add explo-
ration noises. The solution obtained by our method is exactly
the same as the one determined by the GARE by considering
the effects of exploration noises.
Next, we will show the relationship between the developed

algorithm and Q-learning algorithm by extending the concept
of Q-function to zero-sum games that are continuous in time,
state and action space.
The optimal continuous-time Q-function for zero-sum games

is defined as the following quadratic form:

(11)

It can be seen that thematrix is associated with in GARE.
By solving and , we
can obtain

(12)

(13)

which are the same as the (5) and (6). Since we have

the relationship between and can be represented as

According to (11), we can obtain

and thus is a redundant term. Define

where and . Then, we can de-
velop the following online integral Q-learning algorithm (Al-
gorithm 2).

Algorithm 2: Online Integral Q-Learning for Zero-Sum
Games

Step 1. Give an initial stabilizing policy and
.

Step 2. Set , and .
Step 3. (Policy Evaluation)

Let . For the system (8) with policies
and , and exploration signals

and , solve the following equation for
and

(14)

Step 4. (Policy Improvement)
Update the following parameters

Step 5. If
( is a prescribed small positive real number), stop
and output ; else, go to Step 3.

Remark 5: It can be seen that the developed model-free in-
tegral RL (Algorithm 1) is equivalent to the integral Q-learning
(Algorithm 2) for zero-sum games. As PI methods, the algo-
rithms developed above require an initial stabilizing control
policy which is usually obtained by experience. We can also
obtain and .

B. Convergence Analysis of Model-Free Integral RL for
Zero-Sum Games

In this part, we will provide a convergence analysis of the de-
veloped algorithms for two-player zero-sum differential games.
It can be shown that the developed model-free integral RL and
Q-learning algorithms are equivalent to Newton’s method.
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Theorem 1: For an initial stabilizing control policy
, the sequences of , and ob-

tained by solving (10) in Algorithm 1 converge to the optimal
solution of GARE, the saddle point , and , respec-
tively, as .

Proof: First, for an initial stabilizing control policy
, we can prove that the developed Algorithm 1 is equiv-

alent to the following Lyapunov equation:

(15)

where

With the control policy , the disturbance policy
, and the exploration signals and , the closed-loop

system (1) becomes

where . Considering the Lyapunov
function , its derivative can be calculated as

(16)

Integrating (16) from and yields

(17)

According to (10), we have

(18)

Therefore, considering (17) and (18), we have

i.e.,

where

Then, according to the results in [49], the sequence
generated by (15) is equivalent to Newton’s method and con-
verges to the optimal solution of GARE, as . Fur-
thermore, the sequences and converge to the
saddle point and , respectively, as .
Remark 6: In [45], the value function of the inner loop is

monotonically increasing, while the value function of the outer
loop is monotonically decreasing. The monotonicity of game
value function using our algorithm is monotonically decreasing
as Newton’s method, and the game value function has quadratic
convergence. We can find that the exploration signals do not
affect the convergence of the learning process.
The next theorem will show the convergence of the model-

free integral Q-learning algorithm for zero-sum games.
Theorem 2: For an initial stabilizing control policy

, the sequence obtained by solving (14) in Al-
gorithm 2 converges to the optimal solution , i.e., ,
as .

Proof: Because the iteration process of with solving
(14) in Algorithm 2 is equivalent to that of with solving (10)
in Algorithm 1, then as

C. Online Implementation of Model-Free Integral RL for
Zero-Sum Games

In this part, an online implementation of Algorithm 1 is devel-
oped based on ADP with the least squares method. Algorithm 2
can be implemented by the same way. Here, parametric struc-
tures are used to approximate the game value function, control
policy, and disturbance policy.
Given a stabilizing control policy , a

triplet with , can be
uniquely determined by (10). We define the following
two operators:

, where

Hence, we have

where and . Using Kronecker product , we can
obtain
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Using the expressions established above, (10) can be rewritten
in a general compact form as

(19)

where

where themeasurement time is from to . Since
(19) is only a one-dimensional equation, we cannot guarantee
the uniqueness of the solution. We will use the least squares
method to solve this problem, where the parameter vector is
determined in a least squares sense over a compact set .
For any positive integer , denote and

. Then, we have the following -dimen-
sional equation:

If has full column rank, the parameters can be solved by

(20)

Therefore, we need to have the number of collected points at
least , i.e.,

which will guarantee exist.
The least squares problem in (20) can be solved in real time

by collecting enough data points generated from the system (8).
The flowchart of this algorithm is shown in Fig. 1. The solution
can be obtained using the batch least squares, the recursive least
squares algorithms, or the gradient descent algorithms.
Remark 7: The sequence calculated by the least

squares method converges to the approximate solution of
GARE. The PE condition is required in adaptive control to
perform system identification. Several types of exploration
signal have been used, such as piecewise constant exploration
signals [35], sinusoidal signals with different frequencies [36],
random noise [39], [44], and exponentially decreasing probing
noise [45].

IV. SIMULATION STUDY

In this section, we will demonstrate the effectiveness of the
developed algorithm by designing an state feedback con-
troller for a power system.

Fig. 1. Flowchart of Algorithm 1.

Consider the following linear model of a power system that
was studied in [48]:

(21)

where the state vector is (Hz)
is the incremental frequency deviation, (p.u. MW) is the
incremental change in generator output, (p.u. MW) is the
incremental change in governor value position, and is the
incremental change in integral control. We assume that the dy-
namics of the system (21) is unknown. The matrices and
in the performance index are identity matrices of appropriate di-
mensions, and . Using the systemmodel (21), the matrix
in the optimal value function of the zero-sum game is

Now, we will use the developed online model-free integral
RL algorithm to solve this problem. The initial state is selected
as . The simulation is conducted using
data obtained along the system trajectory at every 0.01 s. The
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Fig. 2. Convergence of the game value function matrix .

Fig. 3. Convergence of the control action network parameters .

least squares problem is solved after 50 data samples are ac-
quired, and thus the parameters of the control policy is updated
every 0.5 s. The parameters of the critic network, the control
action network and the disturbance action network are all ini-
tialized to zero. Similar to [44], the PE condition is ensured by
adding small zero-mean Gaussian noises with variances to the
control and disturbance inputs.
Fig. 2 presents the evolution of the parameters of the game

value function during the learning process. It is clear that Al-
gorithm 1 is convergent after ten iterative steps. The obtained
approximate game value function is given by the matrix

Fig. 4. Convergence of the disturbance action network parameters .

and . We can find that the solution
obtained by the online model-free integral RL algorithm is quite
close to the exact one obtained by solving GARE. Figs. 3 and 4
show the convergence process of the control and disturbance
action network parameters. The obtained state feedback
control policy is .

V. CONCLUSION

In this paper, we developed an integral RL algorithm based
on PI to solve online the Nash equilibrium solution for a two-
player zero-sum differential game with completely unknown
linear continuous-time dynamics. This led to a fully model-
free method solving the GARE forward in time. The devel-
oped algorithm updates the value function, control and distur-
bance policies simultaneously. The convergence of the algo-
rithm is demonstrated to be equivalent to Newton’s method. One
critic network and two action networks are used to approximate
the game value function, control and disturbance policies, and
the least squares method is given to estimate the unknown pa-
rameters. We demonstrate the effectiveness of the developed
scheme by designing an state feedback controller for a
power system. In future research, we will extend the results to
zero-sum and nonzero-sum differential games with completely
unknown nonlinear continuous-time dynamics.
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